top_canvas
separator Class
separator Divulgation
separator Home
separator Notes
separator Photographs
separator Press articles about
research work and conferences

separator Prizes
separator Prizes for thesis under supervision
separator Publications
separator Seminars and Conferences
separator Software
separator Thesis under my supervision
separator
Contact Information

Email
naumis@fisica.unam.mx

Fax
(525) 5622-50-08

Address
Room 37,
Main Building,
Institute of Physics,
C.U., México D.F.


Mailing Address
Apdo. Postal 20-364, 01000, México D.F., México.

Publications
Articles in research journals


    Amorphous Materials

  1. "Theoretical method for non-crystalline growth", R. Paredes, G. Naumis, R.A. Barrio, J. of Non-Cryst. Solids., 329 48 (2003).

  2. "Frustration effects on the electronic states of a random binary alloy", G.G. Naumis, Ch. Wang, R.A. Barrio., Phys. Rev. B65, 134203 (2002).

  3. "Modelling of growth and agglomeration processes leading to various non-crystalline materials", G.G. Naumis, J. of Non-Cryst. Solids 232-234, 600 (1998).

  4. "Evaluation of the concentration of boroxol rings in vitreous B2O3 by the stochastic matrix method", R.A. Barrio, R. Kerner, M. Micoulaut, G.G. Naumis, J. Phys.: Condens. Matter 9 (1997) 9219.

  5. "Bethe lattice studies in glasses", R.A. Barrio, G. Naumis, Ch. Wang, J. of Non-Cryst. Solids 182, (1995) 22.



    Complex and Dynamical Systems

  6. "Extracting real social interactions from a debate of COVID-19 policies on Twitter: The case of Mexico", Alberto Garcia-Rodriguez, Tzipe Govezensky, Carlos Gershenson, Gerardo Naumis, Rafael Barrio,, Advances in Complex Systems, Vol. 24, No. 07n08, 2150017 (2022).

  7. "Diffusion of knowledge and globalization in the web of twentieth century science", G. G. Naumis, J. C. Phillips, Physica A: Statistical Mechanics and its Applications, In Press, February 2012.

  8. "Turbulent Luminance in Impassioned van Gogh Paintings", J.L. Aragón, G.G. Naumis, Bai, Torres, Maini, J. Math. Imaging Vis. 30, : 275-283 (2008). (DOI 10.1007/s10851-007-0055-0)

  9. "The tails of rank-size distributions due to multiplicative processes: from power laws to stretched exponentials and beta-like functions", G.G. Naumis, G. Cocho, New J. Phys. 9, 286. (2007).

  10. "Tail universalities in rank distributions as an algebraic problem: The beta-like function", G.G. Naumis, G. Cocho, Physica A 387, 84-96 (2008).

  11. "Universality in the tail of musical note rank distribution", M. Beltrán del Río, G. Cocho, G.G. Naumis, Physica A: Statistical Mechanics and its Applications, Volume 387, Issue 22, 15 September, Pages 5552-5560, (2008).



    Localization Theory

  12. "New trends in localization theory", G.G. Naumis, Physica A 372, 243-248 (2006).

  13. Effects of an impurity in the Harper model, G.G. Naumis, Phys. Lett. A 309, 470-476 (2003).

  14. "Determination of localization in aperiodic systems by using the trace map", G.G. Naumis, Ferroelectrics 250 (2001) 405-409.



    Quasicrystals and Quasiperiodic and Hamiltonians

  15. "Higher-dimensional quasicrystalline approach to the Hofstadter butterfly topological-phase band conductances: Symbolic sequences and self-similar rules at all magnetic fluxes, Gerardo G. Naumis, Phys. Rev. B 100, 165101, (2019).

  16. "Perfect light transmission in Fibonacci arrays of dielectric multilayers", R.Nava, J.A. del Rio, J. Tagüeña-Martínez,G.G. Naumis, J. Phys.; Condens. Matter 21, 155901 (2009).

  17. "The electronic spectrum of a quasiperiodic potential: From the Hofstadter butterfly to the Fibonacci chain", G.G. Naumis, F.J. López-Rodríguez, Physica B 403, 1755-1762 (2008).**

  18. "Minimal multifractality in the spectrum of a quasiperiodic Hamiltonian", G.G. Naumis, Phys. Lett. A (2007).

  19. "Quasicrystalline and rational approximant wave patterns in hydrodynamic and quantum nested wells", A. Bazán, M. Torres, G. Chiappe, E. Louis, J.A. Miralles, J.A. Vergés, G.G. Naumis, J.L. Aragón, Phys. Rev. Lett. 97, 124501 (2006).

  20. "Phason hierarchy and electronic stability of quasicrystals", G.G. Naumis, Phys. Rev. B 71, 144204 (2005).

  21. "Wave-function scaling exponents and the trace map of a Fibonacci chain", G.G. Naumis, Ferroelectrics 305, 137 (2004).

  22. "Phason coherency in real space", G.G. Naumis, J.L. Aragón, Ferroelectrics 305, 199 (2004).

  23. "The stability of the renormalization group as a diagnostic tool for localization and its application to the Fibonacci chain", G.G. Naumis, J. Phys: Condens. Matter 15, 5969 (2003).

  24. Analytic expressions for the vertex coordinates of quasiperiodic lattices, G.G. Naumis, J.L. Aragón, Z. Kristallogr. 218, 397 (2003).

  25. Phonon localization in Quasiperiodic Systems, F. Salazar, C. Wang, A. Gelover-Santiago, A. Zentella-Dehesa, G.G. Naumis, J. Talamantes, J. of Non-Cryst. Solids. 329, 167 (2003).

  26. "A multigrid approach to the average lattices of quasicrystals", J.L. Aragón, G.G. Naumis, M. Torres, Acta Cryst. A58, 352-360 (2002).

  27. "Average lattice and the long-wave length behavior of quasicrystals", G.G. Naumis, J.L. Aragón, M. Torres, J. of Alloys and Compounds 342, 210-215 (2002).

  28. "Coherency of phason dynamics in Fibonacci chains", G.G. Naumis,Ch. Wang, M.F. Thorpe, R.A. Barrio, Phys. Rev. B59 (1999) 14 302.

  29. "Use of the trace map for evaluating localization properties", G.G. Naumis, Phys. Rev. B59, (1999), 11315-11321.

  30. "The density of states and first spectral moments of a quasiperiodic lattice", G.G. Naumis, J. Phys: Condens. Matter 11 (1999) 7 143-7 154.

  31. "The influence of phason disorder on the electronic spectrum and eigenstates of Fibonacci lattices", G.G. Naumis, J.L. Aragón: Physics Letters A 244 (1998) 133.

  32. "Sustitutional disorder in Fibonacci lattices: resonant eigenstates and instability of the spectrum", G. G. Naumis, J.L. Aragón, Phys. Rev. B54, (1996) 15 079.

  33. "Effects of frustration and localization of states in the Penrose lattice", G. Naumis, R. Barrio, Ch. Wang, Phys. Rev. B50, (1994) 9834.

  34. "Renormalization group of random Fibonacci chains", J.C. López, G. Naumis, J.L. Aragón, Phys. Rev. B48, (1993) 12 459.



    Fluids, Energy Landscape and Biology

  35. "How the overlap of excluded volume determines the configurational energy landscape and thermodynamics in the one to five hard disks in a box system", A. Huerta, J.Q. Toledo-Marin, Gerardo G. Naumis, Physica A, 123666 (2019)

  36. "Beyond Phylogenetics: Darwinian Evolution of Actin", Marcelo A. Moret, Gilney Zebende, James C. Phillips, J.Q. Toledo-Marín and G.G. Naumis, Rev. Mex. de Ingeniería Biomédica, Vol. 40, No.1, pp 1-11, (2019).

  37. "Short time dynamics determine glass forming ability in a glass transition two-level model: A stochastic approach using Kraemers’ escape formula", J.Q. Toledo, G.G. Naumis, J. of Chem. Phys., 146, 094506 (2017).

  38. "Use of the cage formation probability for obtaining approximate phase diagrams", A. Kraemer, G.G. Naumis, J. of Chem. Phys., 128, 134516 (2008).**

  39. "Energy landscape and rigidity", G.G. Naumis, Phys. Rev. E 71, 026114 (2005).

  40. "Monte Carlo rejection as a tool for measuring the energy landscape scaling of simple fluids", G.G. Naumis, Phys. Rev. E 71, 056132 (2005).

  41. "Attraction-driven disorder in a hard-core colloidal monolayer", A. Huerta, G.G. Naumis, D.T. Wasan, D. Henderson, A. Trokhymchuk , J. of Chem.-Phys. 120, 1506 (2004).

  42. "Role of rigidity in the fluid-solid transition", A. Huerta, G.G. Naumis, Phys. Rev. Lett. 90, 145701 (2003).



    Glasses and Glass Transition

  43. "Space-time rigidity and viscoelasticity of glass forming liquids: The case of chalcogenides", H. Flores Ruiz, J. Q. Toledo, C. Moukarzel, G.G. Naumis,, Journal of Non- Crystalline Solids X 15(9):100117 (2022).

  44. “Phase diagram for a model of spin-crossover in molecular crystals” J.Q. Toledo-Marín, C. Rodríguez, Y. Plasencia Montesinos, G. Naumis, Physica A 559, 125069 (2020).

  45. “Glass transition and rigidity in the aging linear harmonic oscillator model”, H. Flores-Ruiz, G.G. Naumis, M. Micoulaut, J. of Non-Crystalline Solids, Volume 54015, Article 120127 (2020).

  46. "Viscoelasticity and dynamical gaps: rigidity in crystallization and glass-forming liquids", J. Q. Toledo-Marín and G. G. Naumis, Journal of Non-Crystalline Solids: X (2019) 100030.

  47. "Testing Rigidity Transitions in Glass and Crystal Forming Dense Liquids: Viscoelasticity and Dynamical Gaps", J. Q. Toledo-Marín and G. G. Naumis, Frontiers in Materials 6 (2019) 164.

  48. "Minimal cooling speed for glass transition in a simple solvable energy landscape model", J. Q. Toledo-Marín, I. Pérez Castillo and G. G. Naumis, Physica A 451 (2016) 227-236.

  49. "Low-frequency vibrational modes anomalies and rigidity: a key to understanding the glass and the electronic properties of flexible materials from a topological perspective", Gerardo G. Naumis, Frontiers in Materials (2015).

  50. "Ab initio study of Si doping effects in Pd–Ni–P bulk metallic glass", J.A. Reyes-Retana and Gerardo G. Naumis, Journal of Non-Crystalline Solids, 409 (2015) 49-53.

  51. "The effects of Si subtitution on the glass forming ability of Ni-Pd-P system, a DFT study on crystalline related clusters ", J.A. Reyes-Retana and Gerardo G. Naumis, Journal of Non-Crystalline Solids, 387 (2014) 117-123.

  52. "The transverse nature of the Boson peak: A rigidity theory approach", Hugo M. Flores-Ruiz and Gerardo G. Naumis, Physica B, 418 (2013) 26-31.

  53. "Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition", Gerardo G. Naumis, PHYSICAL REVIEW E 85, 061505 (2012).

  54. "Mean-square-displacement distribution in crystals and glasses: An analysis of the intrabasin dynamics", Hugo M. Flores-Ruiz and Gerardo G. Naumis, PHYSICAL REVIEW E 85, 041503 (2012).

  55. "Thermal conductivity in a rigidity transition", Gerardo G. Naumis, F. Salazar, Physics Letters A 375 (2011).

  56. "Boson peak as a consequence of rigidity: A perturbation theory approach", Hugo M. Flores-Ruiz and Gerardo G. PHYSICAL REVIEW B 83, 184204 (2011).

  57. Bifurcation of stretched exponential relaxation in microscopically homogeneous glasses", G.G. Naumis, J.C. Phillips, Journal of Non-Crystalline Solids 358, March 2012.

  58. "Heating through the glass transition: A rigidity approach to the boson peak",H. Flores-Ruiz, G.G. Naumis, J. C. Phillips, Phys. Rev. B (2010).

  59. "The problem of glass formation and the low frequency vibrational modes anomalies", G.G. Naumis, R. Romero-Arias, Rev. Mex. Fis. 56, 97-105 (2010).**

  60. "Excess of low frequency vibrational modes and glass transition: A molecular dynamics study for soft spheres at constant pressure", H. Flores-Ruiz, G.G. Naumis, J. Chem. Phys. 131, 154501 (2009)

  61. "Low frequency vibrational modes anomalies and glass transition", G.G. Naumis, H. Flores-Ruiz, Phys. Rev. B 78, 094203 (2008).**

  62. "Glass transition phenomenology and flexibility: An approach using the energy landscape formalism", G.G. Naumis, Journal of Non-Crystalline Solids 352, 4685-4670 (2006).

  63. "Variation of the glass transition temperature with rigidity and chemical composition", G.G. Naumis, Phys. Rev. B 73 (Brief Report), 172202 (2006).

  64. "Rigidity aspects of glass transition", A. Huerta, G.G. Naumis, J.of Non-Cryst. Solids. 329, 100 (2003).

  65. "Evidence of a glass transition induced by rigidity self-organization in a network forming fluid", A. Huerta, G.G. Naumis, Phys. Rev. B66, 184204 (2002).

  66. "Relationship between glass transition and rigidity in a binary fluid", A. Huerta, G. Naumis, Phys. Lett. A 299, 660-665 (2002).

  67. "Models of disorder", R.A. Barrio, G.G. Naumis, Glass Phys. Chem. 26, (2000) 325-330.

  68. "Contribution of floppy modes to the specific heat jump and fragility in chalcogenide glasses", G.G. Naumis, Phys. Rev. B61 Rapid Communications (2000) R9205.

  69. "Stochastic matrix description of glass transition", R. Kerner, G.G. Naumis, J. of Phys: Condens. Matter 12 (2000) 1641-1648.

  70. "Glass transition temperature variation, cross-linking and structure in network glasses: A stochastic approach", M. Micoulaut, G.G. Naumis, EuroPhys. Letters 47 (3), (1999) 568-574.

  71. "Stochastic Matrix description of glass transition in ternary chalcogenide glasses", G.G. Naumis, R. Kerner, J. of Non-Cryst. Solids 231 (1998) 111.

  72. "Boroxol rings and the stochastic matrix method", G. G. Naumis, R.A. Barrio, R. Kerner, M. Micoulaut, Rev. Mex. de Física 44 S3, (1998) 80-84.



    Soft Matter

  73. "Scaling to zero of compressive modulus in disordered isostatic cubic networks", C. Moukarzel, G. G. Naumis,, Phys. Rev. E 106, 035001 (2022).

  74. "Comment on "Penrose Tilings as Jammed Solids"", C. F. Moukarzel and G. G. Naumis, Phys. Rev. Lett. 115, 209801 (2015).



    Condensed Matter

  75. "Electronic Goos-Hänchen shifts in phosphorene" , Parisa Majari, Gerardo G Naumis, Physica B: Condensed Matter 668 (2023).

  76. "Mechanical, electronic, optical, piezoelectric and ferroic properties of strained graphene and other strained monolayers and multilayers: an update" ,Gerardo G Naumis, Saul Herrera, Shiva P Poudel, Hiro Nakamura, Salvador Barraza-Lopez, Reports on Progress in Physics (2023).

  77. "Fubini–Study metric and topological properties of flat band electronic states: the case of an atomic chain with s− p orbitals" Abdiel de Jesús Espinosa-Champo, Gerardo G Naumis, Journal of Physics: Condensed Matter 36 (2023)

  78. "Topological origin of flat bands as pseudo-Landau levels in uniaxial strained graphene nanoribbons and induced magnetic ordering due to electron-electron interactions" , Elias Andrade, Florentino López-Urías, Gerardo G Naumis, Physical Review B 107 (2023).

  79. "3/2 magic angle quantization rule of flat bands in twisted bilayer graphene and its relationship to the quantum Hall effect", Leonardo A Navarro-Labastida, Gerardo G Naumis, Physical Review B 107 (2023).

  80. "Superconductivity", L. Navarro, Gerardo G. Naumis, Rev. Mex. De Física (2023).

  81. "Kekulé-induced valley birefringence and skew scattering in graphene", Elias Andrade, Ramon Carrillo-Bastos, Mahmoud M. Asmar, and Gerardo G. Naumis, Phys. Rev. B 106, 195413 (2022).

  82. "Interaction-enhanced topological Hall effects in strained twisted bilayer graphene", Pierre A. Pantaleón, Vo Tien Phong, Gerardo G. Naumis, F. Guinea, Phys. Rev. B, 106, L161101 (2022).

  83. "Synthetic dimensions in optical cavities and their analogies to two-dimensional materials", Giuseppe Pirruccio and Gerardo G. Naumis, Phys. Rev. B 106, 035155 (2022).

  84. “Why the first magic-angle is different from others in twisted graphene bilayers: Interlayer currents, kinetic and confinement energy, and wave-function localization” , Navarro-Labastida, Leonardo A., Gerardo Naumis, Physical Review B 105, 115434 (2022).

  85. “Dirac materials under linear polarized light: quantum wave function time evolution and topological Berry phases as classical charged particles trajectories under electromagnetic fields” VG Ibarra-Sierra, JC Sandoval-Santana, A Kunold, SA Herrera, G. Naumis, Journal of Physics: Materials 5 (1), 014002 (2022).

  86. “Multifractal wavefunctions of charge carriers in graphene with folded deformations, ripples, or uniaxial flexural modes: Analogies to the quantum Hall effect under random pseudomagnetic fields” , Champo, Naumis, Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics 39(6):062202 (2021).

  87. “Optoelectronic fingerprints of interference between different charge carriers and band flattening in graphene superlattices” , S.A. Herrera, Naumis. G.G., Phys. Rev. B104, 115424 (2021).

  88. “Electronic properties of 2D materials and its heterostructures: a minimal review” , G.G. Naumis, Rev. Mex. Física Volume 67. Issue5, Article Number 050102 (2021).

  89. “Reduction of the twisted bilayer graphene chiral Hamiltonian into a 2x2 matrix operator and physical origin of flat bands at magic angles” , G.G. Naumis, Leonardo A. Navarro-Labastida, Enrique Aguilar-Méndez, A. Champo, Phys. Rev B 103, 245418 (2021).

  90. “Electronic spectrum of Kekulé patterned graphene considering second neighbor-interactions” Elías Amezcua, G.G. Naumis, Ramón Carrillo-Bastos,Journal of Physics: Condensed Matter 33, 225301 (2021).

  91. “Dynamic polarization and plasmons in Kekulé-patterned graphene: Signatures of broken valley degeneracy” , Saúl A. Herrera and Gerardo G. Naumis, Phys. Rev. B 102, 205429 (2020)

  92. “Dynamical Floquet spectrum of Kekule-distorted graphene under normal incidence of electromagnetic radiation” , M. A. Mojarro, V. G. Ibarra-Sierra, J. C. Sandoval-Santana, R. Carrillo-Bastos, G.G. Naumis, Phys. Rev. B 102, 165301 (2020).

  93. “Floquet spectrum and electronic transitions of tilted anisotropic Dirac materials under electromagnetic radiation: Monodromy matrix approach”,A. Kunold, J. C. Sandoval-Santana, V. G. Ibarra-Sierra, and Gerardo G. Naumis, hys. Rev. B 102, 045134 (2020).

  94. “Floquet spectrum for anisotropic and tilted Dirac materials under linearly polarized light at all field intensities” ,J.C. Sandoval Santana, V. Ibarra-Sierra, A. Kunold, G. Naumis, Journal of Applied Physics 127, 234301 (2020).

  95. “Electron Transitions for Dirac Hamiltonians with flat bands under electromagnetic radiation: Application to the a-T3 graphene model” ,M.A. Mojarro, V.G. Ibarra, J.C. Sandoval, R. Carrillo-Bastos, G. Naumis, Phys. Rev. B 101, 165305 (2020).

  96. “Electronic and optical conductivity of Kekulé-patterned graphene: Intravalley and intervalley transport” ,S. Herrera, G.G. Naumis, Phys. Rev. B 101, 205413 (2020).

  97. “Electron Transitions for Dirac Hamiltonians with flat bands under electromagnetic radiation: Application to the a-T3 graphene model” ,M.A. Mojarro, V.G. Ibarra, J.C. Sandoval, R. Carrillo-Bastos, G. Naumis,Application to the a-T3 graphene model”, Phys. Rev. B 101, 165305 (2020).

  98. “Electronic and optical conductivity of Kekulé-patterned graphene: Intravalley and intervalley transport” ,S. Herrera, G.G. Naumis, Phys. Rev. B 101, 205413 (2020).

  99. "Kubo conductivity for anisotropic tilted Dirac semimetals and its application to 8-Pmmn borophene: Role of frequency, temperature, and scattering limits , Saul Herrera, Gerardo G. Naumis, Phys. Rev. B, 100, 195420 (2019).

  100. "Twisted Graphene Bilayers and Quasicrystals: A Cut and Projection Approach, José L. Aragón , Gerardo G. Naumis, and Alfredo Gómez-Rodríguez, Crystals, 9(10), 519, (2019).

  101. "Dynamical band gap tuning in anisotropic tilted Dirac semimetals by intense elliptically polarized normal illumination and its application to 8-Pmmn borophene", V. G. Ibarra-Sierra, J. C. Sandoval-Santana, A. Kunold, and Gerardo G. Naumis, Phys. Rev. B 100, 125302 (2019).

  102. "How water makes graphene metallic",M. Hernandez, A. Cabo Montes de Oca, M. Oliva-Leyva, Gerardo G. Naumis, Physics Letters A, Volume 383, 125904 (2019).

  103. "Multiflavor Dirac fermions in Kekulé-distorted graphene bilayers", David A. Ruiz-Tijerina, Elias Andrade, Ramon Carrillo-Bastos, Francisco Mireles, and Gerardo G. Naumis, Phys. Rev. B 100, 075431 (2019).

  104. "Metal-insulator transition in 8-Pmmn borophene under normal incidence of electromagnetic radiation", Abdiel E. Champo and Gerardo G. Naumis, Phys. Rev B 99, 035415 (2019).

  105. "Valley engineering by strain in Kekulé-distorted graphene", Elías Andrade, Ramón Carrillo Bastos and Gerardo G. Naumis, Phys. Rev B 99, 035411 (2019).

  106. "Toward an Accurate Tight-Binding Model of Graphene's Electronic Properties under Strain", Botello A., Obeso-Juridini J.C., Naumis, G., J. Phys. Chem. C 122, 27, 15753-15760 (2018).

  107. "Band Gaps and Wavefunctions of Electrons Coupled to Pseudo Electromagnetic Waves in Rippled Graphene", R. Carrillo-Bastos, G. Naumis, Physics Statu Solidi (RAPID RESEARCH LETTER), 1800072 (2018).

  108. "Landauer-Buttiker conductivity for spatially-dependent uniaxial strained armchair-terminated graphene nanoribbons", G. G. Naumis, Pedro Roman-Taboada and Abdiel E. Champo, Physica E, Vol. 102, 123-131 (2018).

  109. "Electronic and optical properties of strained graphene and other strained 2D materials: a review", G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva and H. Terrones, Rep. Prog. Phys. 9, 80 (2017).

  110. "Angle-dependent engineering in gated graphene superlattices", H. García-Cervantes, L. M. Gaggero-Sager, O. Sotolongo-Costa, G. G. Naumis and I.Rodríguez-Vargas, AIP ADVANCES 6, 035309 (2016).

  111. "Self-similar charge transmission in gapped graphene", D.S. Díaz-Guerrero, I. Rodríguez-Vargas, G. G. Naumis and L. M. Gaggero-Sager, World Scientific, Fractals, Vol. 24, No. 2 (2016) 1630002.

  112. "Effective Dirac Hamiltonian for anisotropic honeycomb lattices: Optical properties", M. Oliva-Leyva and G. G. Naumis, Phys. Rev. B 93, 035439 (2016).

  113. "Sound waves induce Volkov-like states, band structure and collimation effect in graphene", M. O. Oliva-Leyva and G. G. Naumis, J. Phys.: Condens. Matter 28 (2016) 025301.

  114. "Analytical calculation of electron group velocity surfaces in uniform strained graphene", W. A. Gómez-Arias and G. G. Naumis, Int. J. of Mod. Physics B, Vol. 30, No. 3 (2016) 1550263.

  115. "Spectral butterfly and electronic localization in rippled-graphene nanoribbons:Mapping onto effective one-dimensional chains", P. Roman-Taboada and Gerardo G. Naumis, Physical Rev B 92, 035406 (2015).

  116. "Generalizing the Fermi velocity of strained graphene from uniform to nonuniform strain", M Oliva-Leyva and Gerardo G Naumis, Physics Letters A (2015).

  117. "Tunable dichroism and optical absorption of graphene by strain engineering", M Oliva-Leyva and Gerardo G Naumis, 2D Mater. 2 (2015) 025001.

  118. "Spectral butterfly, mixed Dirac-Schrödinger fermion behavior, and topological states in armchair uniaxial strained graphene", Pedro Roman-Taboada and Gerardo G. Naumis, PHYSICAL REVIEW B 90, 195435 (2014)

  119. "Mapping of strained graphene into one-dimensional Hamiltonians: Quasicrystals and modulated crystals", Gerardo G. Naumis and P Roman-Taboada, PHYSICAL REVIEW B 89, 241404(R) (2014)

  120. "Electron localization in disordered graphene for nanoscale lattice sizes: multifractal properties of the wavefunctions", J. E. Barrios Vargas and Gerardo G. Naumis, 2D Materials 1, 011009 (2014).

  121. "Anisotropic AC conductivity of strained graphene", M. Oliva-Leyva and Gerardo G. Naumis, JOURNAL OF PHYSICS: CONDENSED MATTER 26 (2014) 125302 (5pp).

  122. "Centered Honeycomb NiSe2 Nanoribbons: Structure and Electronic Properties", J.A. Reyes-Retana, Gerardo G. Naumis and Felipe Cervantes-Sodi, THE JOURNAL OF PHYSICAL CHEMISTRY C,(2014).

  123. "Understanding electron behavior in strained graphene as a reciprocal space distortion", M. Oliva-Leyva and Gerardo G. Naumis, PHYSICAL REVIEW B 88, 085430 (2013).

  124. "Pseudo-gap opening and Dirac point confined states in doped graphene", J E Barrios-Vargas and Gerardo G. Naumis, Solid State Communications, 162 (2013) 23–27.

  125. "Critical wavefunctions in disordered graphene", J E Barrios-Vargas and Gerardo G Naumis, J. Phys.: Condens. Matter 24 (2012).

  126. Bending and flexural phonon scattering: Generalized Dirac equation for an electron moving in curved graphene", Richard Kerner, Gerardo G. Naumis, Wilfrido A. Gómez-Arias, Physica B: Condensed Matter, In Press, February 2012.

  127. "Electrical conductivity and resonant states of doped graphene considering next-nearest neighbor interaction", J.E. Barrios-Vargas and Gerardo G. Naumis, Philosophical Magazine, July 2011.

  128. "Doped graphene: the interplay between localization and frustration due to the underlying triangular symmetry", J.E. Barrios-Vargas and Gerardo G. Naumis, J. Phys.: Condens. Matter 23 (2011).

  129. "Electric Fields on quasiperiodic potentials", F. Salazar. G.G. Naumis, J. Phys.: Condens. Matter 22, 115501 (2010).**

  130. "Graphene under perpendicular incidence of electromagnetic waves: Gaps and band structure", F. López-Rodríguez, G.G. Naumis, Phil. Mag. 90, Num. 21, 2977-2988 (2010).**

    "Mentioned as one of the 10 top most downloaded articles from the Phil. Mag. website, Editorial Taylor and Francis, U.K.".

  131. "Self-consistent calculation of transport properties in Si-d doped GaAs quantum wells as a function of the temperature", L.M. Gaggero-Sager, G.G. Naumis, M.A. Muñoz-Hernández, V. Montiel-Palma, Physica B: Physics of Condensed Matter 405, 4267-4270 (2010).

  132. "Design of graphene electronic devices using nanoribbons of different widths", G.G. Naumis, M. Terrones, H. Terrones, L.M. Gaggero-Sager, APPLIED PHYSICS LETTERS 95, 182104 (2009).(seleccionado para el número de Noviembre 23, 2009 de la Virtual Journal of Nanoscale Science & Technology publicada por el American Institute of Physics y la American Physical Society).

  133. "Analytic solution for electrons and holes in graphene under electromagnetic waves: Gap appearance and nonlinear effects ", F.J. López-Rodríguez, G.G. Naumis, Phys. Rev. B 78, (Rapid Communications), 201406 (2008).** (Este artículo fue seleccionado para su publicación en la “Virtual Journal of Nanoscale Science & Technology", Vol. 5 (2008), publicada por el American Institute of Physics y la American Physical Society.)

  134. "Reflectance distribution in optimal transmittance cavities: The remains of a higher dimensional space", G.G. Naumis, J.L. Aragón, R. Quintero, A. Bazán, M. Torres, Physica B 403, 3179-3184 (2008).

  135. "Internal mobility edge in doped graphene: frustration in a renormalized lattice", G.G. Naumis, Phys. Rev. B 76, Rapid Communications 153403 (2007).(Este artículo fue seleccionado para su publicación en la “Virtual Journal of Nanoscale Science & Technology", 22 de Octubre 2007, Vol. 16, Número 17, publicada por el American Institute of Physics y la American Physical Society.)



    Non-linear Systems (including quasicrystals and amorphous materials)

  136. "Escape time, relaxation and sticky states of a softened Henon-Heiles model: low-frequency vibrational modes effects", J. Toledo and Gerardo G. Naumis, Phys. Lett. E 97, 042106 (2018).

  137. "Thermal conductivity, relaxation and low frequency vibrational modes in non-linear Hamiltonians: an application to glass modeling", J.R. Romero-Arias,F. Salazar Posadas, G.G. Naumis, G. Fernández-Anaya, Philosophical Transactions of the Royal Society A 367, 3173-3181 (2009).**

  138. "Thermal relaxation and low-frequency vibrational anomalies in simple models of glasses: A study using nonlinear Hamiltonians", J.R. Romero-Arias, Gerardo G. Naumis, Phys. Rev. E 77, 061504 (2008).**

  139. "Oscillations, harmony and sympathy", R. Quintero-Torres, M.A. Ocampo, B. Millán, J.L. Aragón, G.G. Naumis, Revista Mexicana de Física E 53, 67-81 (2007).

  140. "Phonon diffusion in harmonic and anharmonic one-dimensional quasiperiodic lattices", G.G. Naumis, F Salazar and C. Wang, Phil. Mag. 86, 1043-1049 (2006).

  141. "Efficient anharmonic phonon generation using a quasiperiodic lattice", I. Limas, G.G. Naumis, F. Salazar and Ch. Wang, Phys. Lett. A 337, 141-146 (2005).



    Non-linear Dynamics (Clouds, Hurracanes and Wheater)

  142. "Hurricane Season Complexity: the case of North-Atlantic tropical cyclones", E. Roca, G. Naumis, E. Madrigal-Solis ,K. Fraederick, E. Torres,, Int. Journal of Modern Physics C (2023).

  143. "Typhoon complexity: Northwest Pacific tropical cyclone season complex systems analysis", Elio Roca-Flores, Gerardo Naumis, Erick Flores, Klaus Fraedrich, Int. J. of Modern Physics C (2022).

  144. “Assessing statistical hurricane risks: non-linear regression and time window analysis of North Atlantic annual accumulated cyclonic energy rank- profile” , E. Roca, G. Naumis, Natural Hazards 108, 2455–2465 (2021).

  145. “Northeast Pacific annual accumulated cyclonic energy rank-profile” , Elio Flores-Roca, G. G. Naumis, International Journal of Modern Physics C, 2150083, (2021).

  146. “Description of mesoscale pattern formation in shallow convective cloud fields by using time-dependent Ginzburg-Landau and Swift-Hohenberg stochastic equations” , Diana L Monroy, Gerardo G. Naumis, Phys. Rev. E 103, 032312 (2021).





  147. Sociophysics and Spin Glasses

  148. "Heider balance, asymmetric ties, and gender segregation", M. J. Krawczyk, M. del Castillo-Mussot, E. Hernández-Ramirez, G. G. Naumis and K. Kulakowski, Physica A 439 66-74 (2015).

  149. "Three-body interactions and their role in coalition formation", G.G. Naumis, F. Samaniego, M. Del Castillo-Mussot, G. Vazquez, Physica A (2007).

  150. "Phase transition and diffusivity in social hierarchies with attractive sites", G.G. Naumis, M. Castillo-Mussot, L. Pérez and G. Vazquez, Physica A, Vol 369/2, pp 789-798 (2006).

  151. "Social Hierarchies with an attractive site distribution", G.G. Naumis, M. del Castillo-Mussot, L.A. Pérez and G.J. Vázquez, Int. J. of Mod. Physics C 17, 403 (2006).



    Topological Insulators and Superconductors

  152. "Flat bands, quantum Hall effect and superconductivity in twisted bilayer graphene at magic angles" , Leonardo Antonio Navarro Labastida, GG Naumis, Revista Mexicana de Física 69 (2023)

  153. "Two-atom-thin topological crystalline insulators lacking out of plane inversion symmetry", Salvador Barraza-Lopez, Gerardo G Naumis,, Journal of Physics: Condensed Matter 35 035502 (2023).

  154. "Higher-dimensional quasicrystalline approach to the Hofstadter butterfly topological-phase band conductances: Symbolic sequences and self-similar rules at all magnetic fluxes", Gerardo G. Naumis, Phys. Rev. B 100, 165101, (2019)

  155. "Topological flat bands in time-periodically driven uniaxial strained graphene nanoribbons", P. Roman-Taboada and Gerardo G. Naumis, Physical Rev B 95, 115440 (2017).

  156. "Topological phase-diagram of time-periodically rippled zigzag graphene nanoribbons", P. Roman-Taboada and Gerardo G. Naumis, Journal of Physics Communications, Vol. 1, 055023 (2017).

  157. "Topological edge states on time-periodically strained armchair graphene nanoribbons", P. Roman-Taboada and Gerardo G. Naumis, PHYSICAL REVIEW B 96, 155435 (2017).

  158. "Topological map of the Hofstadter butterfly: Fine structure of Chern numbers and Van Hove singularities", G. G. Naumis, Phys. Lett. A 380 (2016) 1772-1780.

  159. "Chern and Majorana modes of quasiperiodic systems", Indubala I. Satija and Gerardo G. Naumis, PHYSICAL REVIEW B 88, 054204 (2013).



    Quantum Mechanics

  160. "Method for Finding the Exact Effective Hamiltonian of Time-Driven Quantum Systems", Juan Carlos Sandoval-Santana, V.G. Ibarra-Sierra, José Luis Cardoso, Gerardo G. Naumis, Alejandro Kunold, Pedro Roman, Annalen der Physik. 20 May, 2019.





    Articles of vulgarization

  1. Materiales vítreos y su modelaje mediante modelos estocásticos, G.G. Naumis, TIP Revista especializada en Ciencias Químico-Biológicas 2 (2): 27-30, 1999.

  2. Nuevos materiales que surgen del desorden: los materiales amorfos, Ciencia: Revista de la Academia Mexicana de Ciencias 54 4-10, Enero-Marzo (2003).

  3. GARCÍA NAUMIS, Gerardo. "Ser flexible o rígido: un dilema de la naturaleza". Revista Digital Universitaria [en línea]. 10 de julio 2005, Vol. 6, No. 7. Disponible en Internet: http://www.revista.unam.mx/vol.6/num7/art66/int66.htm, ISSN: 1607-6079.

  4. G.G. Naumis, "Simetrías exóticas: de cuasicristales y otros sistemas políticamente incorrectos", Artículo por invitación en la Revista Iberoamericana de Física, . (Real Sociedad de Física, España) Vol 2/1, pp. 40-47, (2007).



    Writings in Proceedings

  5. Electron gaps and localization of states in 2D quasicrystals, G. Naumis, R.A. Barrio, C. Wang, Proc. of the 5th. International Conference on Quasicrystals, (World Scientific, Singapour, 1995), p.p. 431-436.

  6. The effect of phason disorder in the electronic propierties of Fibonacci lattices, G.G. Naumis, J.L. Aragón, Proceedings of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 645-650.

  7. Phason-Neutron coupling in quasicrystals, G.G. Naumis, R.A. Barrio, Chumin Wang, M. Thorpe, Proc. of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 727-733.

  8. Discerning phason coherency in quasicrystalline systems, G.G. Naumis, Chumin Wang, R.A. Barrio, MRS Symposium Proc., ed. por J.M. Dubois, P.A. Thiel, A.P. Tsai, K. Urban, (MRS, Boston, 1999) p.p. 147-152.

  9. Using the renormalization group for the evaluation of electronic localization, G.G. Naumis. Proceedings of the XXIV International Coloqium on Group Theoretical Methods in Physics". Inst. Phys. Conf. Ser. No. 173: section1, ed. por J.P. Gazeau, R. Kerner, S. Métens, (Bristol,IOP,2003), ISBN 0 7503 0933 4.

  10. The effect of phason disorder in the electronic propierties of Fibonacci lattices, G.G. Naumis, J.L. Aragón, Proceedings of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 645-650.

  11. Phason-Neutron coupling in quasicrystals, G.G. Naumis, R.A. Barrio, Chumin Wang, M. Thorpe, Proc. of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 727-733.

  12. Discerning phason coherency in quasicrystalline systems, G.G. Naumis, Chumin Wang, R.A. Barrio, MRS Symposium Proc., ed. por J.M. Dubois, P.A. Thiel, A.P. Tsai, K. Urban, (MRS, Boston, 1999) p.p. 147-152.

  13. Using the renormalization group for the evaluation of electronic localization, G.G. Naumis. Proceedings of the XXIV International Coloqium on Group Theoretical Methods in Physics". Inst. Phys. Conf. Ser. No. 173: section1, ed. por J.P. Gazeau, R. Kerner, S. Métens, (Bristol,IOP,2003), ISBN 0 7503 0933 4.

  14. The effect of phason disorder in the electronic propierties of Fibonacci lattices, G.G. Naumis, J.L. Aragón, Proceedings of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 645-650.

  15. Phason-Neutron coupling in quasicrystals, G.G. Naumis, R.A. Barrio, Chumin Wang, M. Thorpe, Proc. of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 727-733.

  16. Discerning phason coherency in quasicrystalline systems, G.G. Naumis, Chumin Wang, R.A. Barrio, MRS Symposium Proc., ed. por J.M. Dubois, P.A. Thiel, A.P. Tsai, K. Urban, (MRS, Boston, 1999) p.p. 147-152.

  17. Using the renormalization group for the evaluation of electronic localization, G.G. Naumis. Proceedings of the XXIV International Coloqium on Group Theoretical Methods in Physics". Inst. Phys. Conf. Ser. No. 173: section1, ed. por J.P. Gazeau, R. Kerner, S. Métens, (Bristol,IOP,2003), ISBN 0 7503 0933 4.

  18. Phason-Neutron coupling in quasicrystals, G.G. Naumis, R.A. Barrio, Chumin Wang, M. Thorpe, Proc. of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 727-733.

  19. Discerning phason coherency in quasicrystalline systems, G.G. Naumis, Chumin Wang, R.A. Barrio, MRS Symposium Proc., ed. por J.M. Dubois, P.A. Thiel, A.P. Tsai, K. Urban, (MRS, Boston, 1999) p.p. 147-152.

  20. Using the renormalization group for the evaluation of electronic localization, G.G. Naumis. Proceedings of the XXIV International Coloqium on Group Theoretical Methods in Physics". Inst. Phys. Conf. Ser. No. 173: section1, ed. por J.P. Gazeau, R. Kerner, S. Métens, (Bristol,IOP,2003), ISBN 0 7503 0933 4.

  21. The effect of phason disorder in the electronic propierties of Fibonacci lattices, G.G. Naumis, J.L. Aragón, Proceedings of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 645-650.

  22. Phason-Neutron coupling in quasicrystals, G.G. Naumis, R.A. Barrio, Chumin Wang, M. Thorpe, Proc. of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 727-733.

  23. Discerning phason coherency in quasicrystalline systems, G.G. Naumis, Chumin Wang, R.A. Barrio, MRS Symposium Proc., ed. por J.M. Dubois, P.A. Thiel, A.P. Tsai, K. Urban, (MRS, Boston, 1999) p.p. 147-152.

  24. Using the renormalization group for the evaluation of electronic localization, G.G. Naumis. Proceedings of the XXIV International Coloqium on Group Theoretical Methods in Physics". Inst. Phys. Conf. Ser. No. 173: section1, ed. por J.P. Gazeau, R. Kerner, S. Métens, (Bristol,IOP,2003), ISBN 0 7503 0933 4.

  25. The effect of phason disorder in the electronic propierties of Fibonacci lattices, G.G. Naumis, J.L. Aragón, Proceedings of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 645-650.

  26. Phason-Neutron coupling in quasicrystals, G.G. Naumis, R.A. Barrio, Chumin Wang, M. Thorpe, Proc. of Aperiodic 97, ed. por J.M. Verger, (Word Scientific, Singapour, 1998) p.p. 727-733.

  27. Discerning phason coherency in quasicrystalline systems, G.G. Naumis, Chumin Wang, R.A. Barrio, MRS Symposium Proc., ed. por J.M. Dubois, P.A. Thiel, A.P. Tsai, K. Urban, (MRS, Boston, 1999) p.p. 147-152.

  28. Using the renormalization group for the evaluation of electronic localization, G.G. Naumis. Proceedings of the XXIV International Coloqium on Group Theoretical Methods in Physics". Inst. Phys. Conf. Ser. No. 173: section1, ed. por J.P. Gazeau, R. Kerner, S. Métens, (Bristol,IOP,2003), ISBN 0 7503 0933 4.

  29. "Flexibilidad en sólidos y proteínas", G.G. Naumis. Memorias del V Congreso de la Sociedad Mexicana de Cristalografía. Ed. por Lauro Bucio. ISBN 970-9888-07-02, p. 179-187. (2005).





    Chapters in Books

  1. “Electronic properties of 2D Materials”, en el libro: “Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures, A volume in Micro and Nano Technologies”, ed, por: Eui-Hyeok Yang, Dibakar Datta. Junjun Ding, Grzegorz Hader , Elsevier,AE Amsterdam, Netherlands, Pages 77-109 (2020).

  2. “Transiciones de fase”, Gerardo G. Naumis, en el libro: “Analogías y conexiones en la física”, Editado por Karen Volke y Jorge Flores (2020). Ed. Copit Arxives UNAM, Trends in Science.

  3. "Física y sociedad", Gerardo García Naumis, Este es un capítulo separado que integra el libro Fronteras de la Física en el Siglo XXI, Octavio Miramontes y Karen Volke (Editores).

  4. "Gaps in non-periodic systems", R.A. Barrio, G. Naumis, Wang Ch., en: Current Problems in Condensed Matter: Theory and Experiment , Ed. by: J.L. Moran-López (Ed. Plenum Press, New York, 1997), p.p. 283-289.

  5. "Floppy modes effects in the thermodynamical properties of chalcogenides glasses", G.G. Naumis, en: Phase Transitions And Self-Organization In Electronic And Molecular Materials, Ed. by: J.C. Phillips, M. Thorpe, (Kluwer Academic/Plenum Publishers, New York, 2001) p.p. 161-170. ISBN 0-306-46568-X.

  6. "A new approach to the diffraction pattern of quasicrystals", G.G. Naumis, J.L Aragón, M. Torres, in: "Aplicaciones interdisciplinares en materiales", Ed. Por : P. Adrados, J.L. Aragón, M. Torres, (Ediciones de la Torre, Madrid, 2002) p.p. 106-114. ISBN 84-7960326-7.

  7. On the central role of local structure in determining the glass transition temperature in network materials, M. Micolaut, G.G. Naumis, in: Recent Research Developments in Non-Crystalline Solids, Ed. by S.G Pandalai, (Transworld Research Network, Kervala, India, 20002). ISBN: 81-7895-045-6.

  8. "Density of states in the quantum percolation problem", G.G. Naumis, R.A Barrio, en: Current Topics in Physics, (Imperial College Press, U.K., 2004) p.p. 363-587, ISBN 1-86094-550-3.



    In press:

  9. Los fractales: una nueva geometría para describir el espacio geográfico, G.G. Naumis, por aparecer en : La rurbanización de la corona de la ciudad de México, ed. por J. Delgado, UNAM-El Colegio de México.

  10. El arte y la ciencia como dos maneras de describir al mundo natural: los óleos turbulentos de Van Gogh, J.L. Aragón, G.G. Naumis y M. Torres, libro por aparecer en 2007.

acerca acerca acerca