Refraction and light transport in turbid colloids: Is the Poynting vector ill defined?

Rubén G. Barrera Instituto de Física, UNAM Mexico

ETOPIM 8

In collaboration with:

Luis Mochán

Augusto García

Felipe Pérez

Edahí Gutierrez

refractive index of milk

critical angle $\sin \theta_c = \frac{n_2}{n_1}$ milk n_2

...but is white...and turbid...

Absorption

$$\vec{S} = \vec{E} \times \vec{H}$$
 $\vec{H} = \frac{\vec{B}}{\mu}$

Inhomogeneous wave

Colloidal systems

continuous	disperse		
phase	phase	name	examples
liquid	solid	sol	Milk, paints, blood, tissues
liquid	liquid	emulsion	oil in water
liquid	gas	foam	foam, whipped cream
solid	solid	solid sol	composites, policrystals, rubys
solid	liquid	solid emulsion	milky quatz, opals
solid	gas	solid foam	porous media
gas	solid	solid aereosol	smoke, powder
gas	liquid	liquid aereosol	fog

"Ordered" colloids

Photonic crystals

Metamaterials

Effective medium

IN TURBID COLLOIDAL SYSTEMSTHE EFFECTIVE MEDIUM **EXISTS** BUT IT IS **NONLOCAL**

the probability density Is homogeneous

$$\left\langle \vec{J}_{ind}(\vec{r};\omega) \right\rangle = \int \vec{\sigma}_{eff}(|\vec{r}-\vec{r}'|;\omega) \left\langle \vec{E}(\vec{r}',\omega) \right\rangle d^3r'$$

total

Spatial dispersion

$$\left\langle \vec{J} \right\rangle^{ind} (\vec{k}, \omega) = \vec{\sigma}_{eff} (\vec{k}, \omega) \cdot \left\langle \vec{E} \right\rangle (\vec{k}, \omega)$$

. Phys. Rev. 75 (2007) 184202 [1-19].

Probability density is homogeneous and isotropic

LT scheme

$$\vec{\sigma}_{eff}(\vec{k};\omega) = \sigma_{eff}^{L}(k,\omega)\hat{k}\hat{k} + \sigma_{eff}^{T}(k,\omega)(\hat{1} - \hat{k}\hat{k})$$

generalized effective nonlocal dielectric function

$$\vec{\varepsilon}_{eff}(\vec{k};\omega) = \vec{1}\varepsilon_0 + \frac{i}{\omega}\vec{\sigma}_{eff}(\vec{k};\omega)$$
$$\varepsilon_{eff}^L(\vec{k},\omega) \qquad \varepsilon_{eff}^T(\vec{k},\omega)$$

Long wavelength
$$(ka \to 0)$$
 "local limit"
 $\varepsilon^{L}(k,\omega) = \varepsilon^{[0]}(\omega) + \varepsilon^{L[2]}(\omega) \frac{k^{2}}{k_{0}^{2}} + \dots \qquad \varepsilon^{T}(k,\omega) = \varepsilon^{[0]}(\omega) + \varepsilon^{T[2]}(\omega) \frac{k^{2}}{k_{0}^{2}} + \dots$

 $\hat{k} \equiv \frac{\vec{k}}{k}$

Phys. Rev. 75 (2007) 184202 [1-19].

1 Hyo. 100 (2)

Poynting Theorem

$$\nabla \cdot \frac{1}{2} \operatorname{Re} \left(\vec{E} \times \frac{\vec{B}^{*}}{\mu_{0}} \right) = \frac{1}{2} \operatorname{Re} \left(\frac{\vec{B}}{\mu_{0}} \cdot \left(\nabla \times \vec{E}^{*} \right) - \vec{E} \cdot \left(\nabla \times \frac{\vec{B}^{*}}{\mu_{0}} \right) \right) \qquad \text{Math}$$

$$= \frac{1}{2} \operatorname{Re} \left(-\frac{\vec{B}}{\mu_{0}} \cdot \frac{\partial \vec{B}^{*}}{\partial t} - \vec{E} \cdot \left(\vec{J}^{ext^{*}} + \vec{J}^{ind^{*}} \right) - \varepsilon_{0} \vec{E} \cdot \frac{\partial \vec{E}^{*}}{\partial t} \right)$$

$$\nabla \cdot \frac{1}{2} \operatorname{Re} \left(\vec{E} \times \frac{\vec{B}^{*}}{\mu_{0}} \right) + \operatorname{Re} \frac{\partial}{\partial t} \left(\frac{\varepsilon_{0}}{2} |E|^{2} + \frac{|B|^{2}}{2\mu_{0}} \right) = \underbrace{-\frac{1}{2} \operatorname{Re} \left(\vec{J}^{ext} \cdot \vec{E}^{*} \right)}_{W_{ext}} - \underbrace{\frac{1}{2} \operatorname{Re} \left(\vec{J}^{ind} \cdot \vec{E}^{*} \right)}_{Q}$$
Plane wave
$$W_{ext} \rightarrow Q$$

WORK

$$\vec{J}^{ind} = i\omega\varepsilon_0 (n^2 - 1)\vec{E} \quad \text{free-propagating mode}$$

$$W_{ind} = \frac{1}{2} \operatorname{Re} \left(\vec{J}^{ind} \cdot \vec{E}^* \right) = \frac{1}{2} \operatorname{Re} \left[i\omega\varepsilon_0 (n^2 - 1)\vec{E} \cdot \vec{E}^* \right]$$

$$= \frac{\omega}{2} \varepsilon_0 \lim_{Q} n^2 |\vec{E}|^2 \quad \lim_{Q} n^2 > 0$$

dispersion relation

Inhomogeneous wave

$$k^{2} = \vec{k} \cdot \vec{k} = \left(\vec{k}' + i\vec{k}''\right)^{2} = k_{0}^{2}n^{2}$$
$$k'^{2} - k''^{2} = k_{0}^{2}\operatorname{Re} n^{2}$$
$$2\vec{k}' \cdot \vec{k}'' = k_{0}^{2}\operatorname{Im} n^{2} > 0$$

Negative refraction is impossible

Science 316, 430 (2007)

Negative Refraction at Visible Frequencies

Henri J. Lezec, 1,2* / Jennifer A. Dionne, 1* Harry A. Atwater 1

Nanofabricated photonic materials offer opportunities for crafting the propagation and dispersion of light in matter. We demonstrate an experimental realization of a two-dimensional negative-index material in the blue-green region of the visible spectrum, substantiated by direct geometric visualization of negative refraction. Negative indices were achieved with the use of an ultrathin Au-Si3N4-Ag waveguide sustaining a surface plasmon polariton mode with antiparallel group and phase velocities. All-angle negative refraction was observed at the interface between this bimetal waveguide and a conventional Ag-Si3N4-Ag slot waveguide. The results may enable the development of practical negative index optical designs in the visible regime.

Induced current

$$J_{\alpha}^{ind}(\vec{r},t) = \exp[i(\vec{k}\cdot\vec{r}-\omega t)] \Big\{ -i\omega\Big(\varepsilon_{\alpha\beta}(\vec{k},\omega) - \varepsilon_0\delta_{\alpha\beta}\Big) E_{0\beta}(r,t) \Big\}$$

$$-\omega \frac{\partial \varepsilon_{\alpha\beta}(\vec{k},\omega)}{\partial k\gamma} \frac{\partial E_{0\beta}(\vec{r},t)}{\partial x\gamma} + \left[(\varepsilon_{\alpha\beta} - \varepsilon_0 \delta_{\alpha\beta}) + \omega \frac{\partial \varepsilon_{\alpha\beta}(\vec{k},\omega)}{\partial \omega} \right] \frac{\partial E_{0\beta}(\vec{r},t)}{\partial t} \right\}$$
$$\vec{\varepsilon}_{eff}(\vec{k};\omega) = \vec{1}\varepsilon_0 + \frac{i}{\omega}\vec{\sigma}_{eff}(\vec{k};\omega)$$

$$\frac{1}{2} \operatorname{Re} \left(\vec{J}^{ind} \cdot \vec{E}^* \right) \qquad \text{long wavelength} \quad ka \to 0 \qquad \text{``local''}$$
$$\varepsilon^L(k, \omega) = \varepsilon^{[0]}(\omega) + \varepsilon^{L[2]}(\omega) \frac{k^2}{k_0^2} + \dots \qquad \varepsilon^T(k, \omega) = \varepsilon^{[0]}(\omega) + \varepsilon^{T[2]}(\omega) \frac{k^2}{k_0^2} + \dots$$
$$\operatorname{Im} \varepsilon^L \ll \operatorname{Re} \varepsilon^L \qquad \operatorname{Im} \varepsilon^T \ll \operatorname{Re} \varepsilon^T$$

Work on the induced currents

$$W_{ind} = \frac{\omega}{2} \left[\operatorname{Im} \varepsilon^{L}(k, \omega) \left| E_{0}^{L} \right|^{2} + \operatorname{Im} \varepsilon^{T}(k, \omega) \left| E_{0}^{T} \right|^{2} \right]$$

$$-\nabla \cdot \frac{1}{2} \operatorname{Re} \left[\frac{1}{\varepsilon_{0} \mu_{0}} \left(\vec{E}_{0} \times \vec{B}_{0}^{*} \right) \varepsilon^{T[2]^{*}}(\omega) + \frac{\varepsilon^{L[2]}(\omega)}{\omega \varepsilon_{0} \mu_{0}} \left(\vec{k} \left| E_{0}^{L} \right|^{2} + k E_{0}^{L^{*}} \vec{E}_{0}^{T} \right) \right]$$

$$+ \frac{1}{2} \frac{\partial}{\partial t} \operatorname{Re} \left[\frac{\partial \omega \varepsilon^{[0]}(\omega)}{\partial \omega} \left| E_{0} \right|^{2} + \frac{k^{2}}{\varepsilon_{0} \mu_{0}} \left(\frac{\partial}{\partial \omega} \frac{\varepsilon^{L[2]}(\omega)}{\omega} \left| E_{0}^{L} \right|^{2} + \frac{\partial}{\partial \omega} \frac{\varepsilon^{T[2]}(\omega)}{\omega} \left| E_{0}^{T} \right|^{2} \right) - \varepsilon_{0} \left| E_{0} \right|^{2} \right]$$

$$\vec{E} \int \left[\int \left(\sqrt{\frac{k}{2}} \left| \frac{k^{2}}{\mu_{0}} \right|^{2} + \frac{\partial}{\partial t} \left(\frac{\varepsilon_{0}}{2} \left| \langle E \rangle \right|^{2} + \frac{1}{2\mu_{0}} \left| \langle B \rangle \right|^{2} \right) = -W_{ext} - W_{ind}$$

Transverse waves

$$\nabla \cdot \frac{1}{2} \operatorname{Re} \left[\frac{1}{\mu_0} \left(\vec{E}_0 \times \vec{B}_0^* \right) \left(1 - \varepsilon^{T[2]^*}(\omega) / \varepsilon_0 \right) \right] + \frac{1}{2} \frac{\partial}{\partial t} \operatorname{Re} \left[\frac{1}{\mu_0} \left| B_0 \right|^2 + \frac{\partial \omega \varepsilon^{[0]}(\omega)}{\partial \omega} \left| E_0 \right|^2 \right]$$

$$+\frac{k^{2}}{\varepsilon_{0}\mu_{0}}\frac{\partial}{\partial\omega}\frac{\varepsilon^{T[2]}(\omega)}{\omega}|E_{0}|^{2}\right] = -W_{ext} - \frac{\omega}{2}\operatorname{Im}\left[\varepsilon^{[0]}(\omega) + \frac{k^{2}\varepsilon^{T[2]}(\omega)}{\omega^{2}\varepsilon_{0}\mu_{0}}\right]|E_{0}|^{2}$$

$$\vec{S}_{trans} = \frac{1}{2} \operatorname{Re} \left[\frac{1}{\mu_0} \left(\vec{E}_0 \times \vec{B}_0^* \right) \left(1 - \varepsilon^{T[2]^*}(\omega) / \varepsilon_0 \right) \right]$$

$\epsilon \, \mu$ scheme

$$\vec{J}^{ind}(\vec{r},t) = \frac{\partial \vec{P}(\vec{r},t)}{\partial t} + \nabla \times \vec{M}(\vec{r},t)$$

NOT UNIQUE

quasi-monochromatic

$$\vec{J}^{ind}(\vec{r},t) = \vec{J}_0^{ind}(\vec{r},t) \exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right]$$
$$\vec{P}(\vec{r},t) = \vec{P}_0(\vec{r},t) \exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right]$$
$$\vec{M}(\vec{r},t) = \vec{M}_0(\vec{r},t) \exp\left[i\left(\vec{k}\cdot\vec{r}-\omega t\right)\right]$$

Response

$$\vec{J}^{ind}(\vec{r},t) = \frac{\partial \vec{P}(\vec{r},t)}{\partial t} + \nabla \times \vec{M}(\vec{r},t)$$

$$\vec{P}_{0}(\vec{r},t) = \left[\left(\varepsilon^{l}(k,\omega) - \varepsilon_{0} \right) \vec{P}^{L} + \left(\varepsilon^{t}(k,\omega) - \varepsilon_{0} \right) \vec{P}^{T} \right] \cdot \vec{E}_{0}(\vec{r},t)$$

$$\vec{M}_{0}(\vec{r},t) = \left[\frac{1}{\mu_{0}} - \frac{1}{\mu(k,\omega)} \right] \vec{B}_{0}(\vec{r},t)$$

CHOICE I

CHOICE II

 $\varepsilon^{t}(k,\omega) = \varepsilon^{t}(0,\omega)$ $\mu_{I}(k,\omega)$

$$\varepsilon^{t}(k,\omega) = \varepsilon^{l}(k,\omega)$$

 $\mu_{II}(k,\omega)$

The correct expression of the Poynting vector

$$\vec{S}_{trans} = \frac{1}{2} \operatorname{Re} \left[\frac{1}{\mu_0} \left(\vec{E}_0 \times \vec{B}_0^* \right) \left(1 - \varepsilon^{T[2]^*}(\omega) / \varepsilon_0 \right) \right]$$

 $\mathcal{E}^{T[2]^*}(\omega)$ is NOT a non-local correction This is the LOCAL limit

(i) We used the formalism developed for the treatment of the non-local effective medium associated to turbid colloids to find a general expression for the energy theorem, in the long wavelength limit, in terms of parameters associated to the non-local response of the system.

(ii) We found an explicit expression for the Poynting vector in terms of these non-local parameters and show that there are many ways of writing it in terms of the electric permittivity ϵ and the magnetic permeability μ , depending on the choice taken to define them.

(iii) This approach can be extended to finite wave vectors and non negligible dissipation as well as energy transport for free-propagating modes