Electromagnetic Forces in metallic nanoparticles induced by fast electron beams

A. Reyes-Coronado¹, O. Pérez-González²,³, N. Zabala¹,²,³, R. G. Barrera⁴, P.E. Batson⁵ and J. Aizpurua¹,³

¹ Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.
² Elektrizitatea eta Elektronika Saila, ZTF/FCT, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain.
³ Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, 20080 Donostia-San Sebastián, Spain.
⁴ Instituto de Física, Universidad Nacional Autónoma de México, 01000 México D.F., México.
⁵ IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA.

Abstract

We present a study of the force induced on gold nanoparticles by fast passing electrons like those employed in transmission electron microscopes. Integrating the force over time we calculate the total momentum transferred from the electron to the particles. The calculation of the electromagnetic fields induced on the nanoparticles, which are resonant at the frequency of the localized plasmon of the system, is based on the solution of the Maxwell equations and thus the retardation effects are taken into full account. Numerical results are presented for two geometries: a pair of identical gold nanoparticles and a pair of two gold nanoparticles of different radii. The total impulse transmitted to the nanoparticle system could have a significant influence on the dynamics of the particles observed under scanning transmission electron microscopy.

Introduction and Motivation

As in optical forces¹,² where forces induced on particles by light are strong enough to manipulate them, the forces induced on nanoparticles by fast electrons could also move them.

A detailed analysis of motion of gold nanoparticles using a transmission electron microscope has been recently published³.

Theory

The total momentum transfer from the electron to the particle is given by the time integral of the equation of the conservation of momentum:

\[\Delta \vec{P}_{\text{tot}} = \int \frac{d}{dt} \vec{P}_{\text{net}}(t) \, dt = \int \vec{F}(\vec{r}, t) \cdot d\vec{a} \, dt, \]

where the corresponding part of the electromagnetic momentum does not appear, since it does not contribute to the total momentum transfer. Identifying the time derivative of the mechanical momentum \(\Delta \vec{P}_{\text{mech}} \) with the mechanical force \(\vec{F}_{\text{mech}} \),

\[\Delta \vec{P}_{\text{mech}} = \int \frac{d}{dt} \vec{P}_{\text{mech}}(t) \, dt = \int \vec{F}_{\text{mech}}(\omega) \, e^{\text{j} \omega t} \, d\omega = \vec{F}_{\text{mech}}(\omega = 0). \]

From the Fourier transform in space of the Maxwell Stress Tensor (MST), one can identify that the integral on time of the MST corresponds to

\[\int \vec{F}(\vec{r}, t) \cdot d\vec{a} = \vec{F}(\vec{r}, \omega = 0). \]

Since the components of the MST are products of fields (electric or magnetic), and using the Fourier transform in space for each field component, one can write for each product

\[\int \vec{E}(\vec{r}, t) \cdot \vec{E}(\vec{r}, t) \, dt = \int \frac{1}{2 \pi} \int \vec{E}(\vec{r}, \omega) e^{\text{j} \omega t} \, d\omega \frac{\text{d} \omega}{2 \pi} \vec{E}(\vec{r}, \omega) e^{\text{j} \omega t} \, d\omega \, dt = \frac{1}{4 \pi} \int \vec{E}(\vec{r}, \omega) \vec{E}(\vec{r}, \omega) \, d\omega. \]

Performing the same steps for each integral on time of the product of fields in the MST, one can write that the total momentum transfer is given by

\[\Delta \vec{P}_{\text{tot}} = \frac{1}{4 \pi} \int \vec{P}(\omega) \, d\omega, \]

with \(\vec{P}(\omega) = \int d\vec{a} \left(\vec{E}(\vec{r}, \omega) \vec{E}(\vec{r}, \omega) + \vec{B}(\vec{r}, \omega) \vec{B}(\vec{r}, \omega) + \frac{1}{2} \left[\vec{E}(\vec{r}, \omega) \times \vec{E}(\vec{r}, \omega) + \vec{B}(\vec{r}, \omega) \times \vec{B}(\vec{r}, \omega) \right] \right). \]

Numerical Results

Case A: Dimer with spheres of different radius

Case B: Dimer with identical spheres

Summary

- Electromagnetic fields and forces induced on pairs of nanoparticles are calculated.
- Systematic calculation of momentum transfer from electrons to nanoparticles for different electron trajectories and separation of particles.
- Calculations of force on nanoparticle pairs reveal different behaviour for different electron trajectories and separation of the particles.
- We observe different magnitudes in the induced forces on a dimer than in the case of one single sphere³.

References