Electromagnetic Forces in metallic nanoparticles induced by fast electron beams

A. Reyes-Coronado ${ }^{1}$, O. Pérez-González ${ }^{1,2}$, N. Zabala ${ }^{1,2,3}$, R. G. Barrera ${ }^{4}$, P.E. Batson ${ }^{5}$ and J. Aizpurua ${ }^{1,3}$
${ }^{1}$ Donostia International Physics Center, 20018 Donostia-San Sebastián, Spain.

Universidad del País Vasco
${ }^{2}$ Elektrizitatea eta Elektronika Saila, ZTF/FCT, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain. ${ }^{3}$ Centro de Física de Materiales, Centro Mixto CSIC-UPV-EHU, 20080 Donostia-San Sebastián, Spain. ${ }^{4}$ Instituto de Física, Universidad Nacional Autónoma de México, 01000 México D.F., México.
${ }^{5}$ IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA.

ABSTRACT

We present a study of the force induced on gold nanoparticles by fast passing electrons like those employed in transmission electron microscopes. Integrating the force over time we calculate the total momentum transferred from the electron to the particles. The calculation of the electromagnetic fields induced on the nanoparticles, which are resonant at the frequency of the localised plasmon of the system, is based on the solution of the Maxwell equations and thus the retardation effects are taken into full account. Numerical results are presented for two geometries: a pair of identical gold nanoparticles and a pair of two gold nanoparticles of different radii. The total impulse transmitted to the nanoparticle system could have a significant influence on the dynamics of the particles observed under scanning transmission electron microscopy.

INTRODUCTION AND MOTIVATION

Figure 1. Sequence of images of two gold nanoparticles where they remain apart for a long time (> 50 s), but then rapidly coalesce (less than
200 ms) leaving some atoms behind. 00 ms) leaving some atoms behind.
Two main behaviours are observed:

- Few atoms in the cluster \rightarrow the electron probe tends to destroy the cluster.
- Big particles ($>1 \mathrm{~nm}$ in diameter) \rightarrow they tend to coalesce (as shown in Figs. 1 and 2).

Images courtesy of Dr. P. E. Batson, IBM New York.
As in optical forces ${ }^{1,2}$, where forces induced on particles by light are strong to manipulate them, the forces induced on nanoparticles by fast electrons could also move them.

A detail analysis of motion of gold nanoparticles using a transmission electron microscope has been recently published ${ }^{3}$.

Figure 2 Sequence of images of 2 . gold nanoparticles. They remain apart for a long time ($>20 \mathrm{~s}$), but then coalesce rapidly when the current density is increase by a factor of four.

REFERENCES

[1] H. Xu and M. Käll, "Surface-Plasmon Enhanced Optical Forces in Silver Nanoaggregates", Phys. Rev Let. 89, 246802, 2002.
[2] A. J. Hallock, P.L. Redmond and L. E. Brus, "Optical forces between metallic particles", Proceedings of the National Academy of Sciences of the United States of America 102, 1280-1284, 2005. [3] P. E. Batson, "Motion of Gold Atoms on Carbon in the Aberration-Corrected STEM", Microsc. and Microanal. 14, 89-97, 2008.
[4] P. B. Johnson and R. W. Christy, "Optical constants of the noble metals", Phy. Rev. B 6, 4370, 1972 [6] F. J. Garcia de Abajo, "Momentum transfer to small particles by passing electron beams", Phys. Rev, B 70, 115422, 2004.

