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Abstract. We present a scattering theory model for the coherent reflectance of light from a 
turbid colloid in an internal reflection configuration. We compare with experimental 
measurements obtained with turbid suspensions of spherical latex particles and irregularly 
shaped TiO2 particles. When the colloidal particles are not small compared to the wavelength of 
radiation, the reflectance curve as a function of the angle of incidence predicted by the scattering 
theory model, differs appreciably from that predicted by Fresnel’s relations with an effective 
refractive index. Therefore, when the particles size is comparable or larger than the wavelength, 
one can not determine the effective refractive index in the usual way using a critical angle 
refractometer.  We provide some insight to why Fresnel’s relations do not work with turbid 
media.  

INTRODUCTION 

When light propagates through a random, turbid medium, its description is 
commonly divided into a coherent component and a diffuse one. The coherent 
component corresponds to the configurational average of the optical fields, whereas 
the diffuse component is related to the fluctuations about this average. A medium can 
be regarded as homogeneous when the power carried by the diffuse component is 
negligible, whereas a medium is considered turbid when the power carried by the 
diffuse component can be easily detected. In a homogenous medium, that is, when 
only the coherent component is important, one assigns a refractive index to the 
medium which corresponds to the ratio of the wavevector inside the medium to the 
wavenumber in vaccum. In this case the wavevector inside the medium actually 
corresponds to the effective wavevector of the coherent light, in general it is a 
complex vector, and its real and imaginary parts are the only observable components. 
Now, when light propagates within a turbid colloid made of particles which are not 
small compared to the wavelength of the incident radiation (large particles), the  
power carried by the diffuse component may be even larger than the one carried by the  
coherent component. Nevertheless, the coherent component still travels through the 
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turbid medium with an effective wave vector,  [1-8]. Therefore, one may still 
assign a refractive index to the turbid medium given by the ratio of the magnitudes of 
the real and imaginary parts of the effective wave vector to the wavenumber in 
vacuum, k

effk

0; but, in this case one refers to an effective refractive index. The effective 
refractive index is generally a complex number even if the medium is not absorbing. 
In this case, the imaginary part of the effective refractive index comes only from the 
loss of power out of the coherent component which is transferred to the diffuse one. 
Although such a definition of an effective refractive index is a natural extension of the 
concept a refractive index of a homogeneous material, it has been noted by several 
authors that such an effective refractive index cannot be treated in the same way as the 
refractive index of a homogeneous material [1-3,6,8]. For instance, when light is 
transmitted through a slab of a turbid colloid made of large particles, the coherent 
wave suffers a phase lag according to the effective refractive index in the same way as 
if the light had traversed a slab of an equivalent homogeneous medium. Also, when a 
light beam is incident to a flat interface of a turbid colloid, the coherent component is 
transmitted and reflected. The transmitted beam refracts according to Snell’s law and 
the effective refractive index [9]. However, the reflected and transmitted amplitudes 
do not obey the Fresnel relations with the effective refractive index [1,2]. Therefore, 
one can measure the effective refractive index of a turbid colloid from the phase lag or 
the refraction of the coherent wave in the usual way, as if one were dealing with an 
equivalent homogeneous medium. However, the measurement of the effective 
refractive index by light reflection cannot be done, in general, in the same way as for 
homogeneous media, because the Fresnel relations are no longer valid. The physical 
reason of why Fresnel relations are no longer valid for turbid media is an interesting 
and relevant question, essential to understand the validity and limitations of extending 
effective-medium theories to systems of large particles. 

Now, when measuring the refractive index of liquids, it is common to use a critical-
angle refractometer, also known as Abbe-type refractometers. Modern critical-angle 
refractometers are based on light reflection in an internal-reflection configuration. 
Critical-angle refractometers offer a high sensitivity, even though they are based on 
reflection measurements. The widespread use of critical-angle refractometers in the 
industry and research laboratories with all types of liquids, demands a thorough 
analysis of the errors and limitations of their use, in particular with colloids. G. H. 
Meeten and collaborators have studied experimentally the use of critical-angle 
refractometers with absorbing media and turbid colloids [10-13]. The errors incurred 
by an automatic critical-angle refractometer when used with absorbing media can be 
corrected in a simple way by considering the Fresnel relations with a complex index of 
refraction. However, in the case of turbid colloids it is not the case. G. H. Meeten and 
collaborators, have found experimentally that the effective refractive index of turbid 
colloids can be measured with a critical angle refractometer if the particles are not too 
large. However, when particles are large, there are inconsistencies that may lead to 
large errors.  

In this work, we provide an alternative formula for the coherent reflection of light 
from a flat interface of a turbid medium consisting of a random suspension of large 
particles. We limit our analysis to the case of spherical particles, although extensions 
to randomly-oriented, non-spherical particles, are possible. We also provide some 
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experimental results obtained by laser reflection from suspensions of latex and TiO2
particles in water in an internal-reflection configuration. We compare them with the
results of our alternative formula. Finally, we provide physical insight into why
Fresnel relations are no longer valid when the particles in a turbid colloid are not small
compared to the wavelength of incident radiation.

SCATTERING-THEORY MODEL

In a previous paper we have used electromagnetic-scattering theory to derive the
half-space coherent reflection amplitude of a random system of spheres in the dilute
limit [1]. In this derivation it is assumed that a collection of identical, non-magnetic
spheres of refractive index np are embedded in a non-absorbing homogenous matrix of
refractive index nm, forming a half-space of particles within an otherwise
homogeneous matrix (see Fig. 1). The z-axis is chosen perpendicular to the plane
interface of the system and pointing towards the half-space of particles. The coherent
reflection amplitude for an incident plane wave is given by,

where keff might be interpreted as playing the role of an effective propagation
wavevector, whose z-component is given by

kf = J(k?)2-2jak?+p2-a.2 . (2)
Here

Sj(K-2QJ (3)

where Qm is the angle of incidence, k™ = nmk0cosQm, ko is the wavenumber in
vacuum,

"%•
f is the volume fraction occupied by the particles, xm = nm ko is the size parameter in
the matrix material, and the coefficients Sj denote the components of the scattering
matrix of an isolated particle embedded within the matrix material. These coefficients
can be calculated exactly using Mie theory. The scattering matrix relates the
components of electric field of an incident plane wave with those of the scattered
electric wave in the far- field region. That is,

^l expQ-faoteo) 54(e)YEn
s
far,) -ikr U(9) Sl(0)J^E'J'

where Ey and E± are the components of the electric field parallel and perpendicular
to the plane of scattering, that is, the plane formed by the wave vector of the incident
wave and the Poynting vector of the scattered waves. For spherical particles we have
that S3 = S4 = 0 and S(0) - S\(Q = 0) - S2(Q = 0). In Eq. (3) we have that j = I and 7 - 2
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denote a TE and a TM polarized incident wave, respectively. Writing the reflection 
coefficient in full gives, 

( ){ }1/ 22 2 2 2 2

( 2 ) cos

cos cos 2 (0) cos (0) ( 2 ) (0) cos

j m m
hs

m m m j m

S
r

i i i S S S S m

γ π − θ θ
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⎡ ⎤θ + θ + γ − γ θ − π − θ − γ θ⎣ ⎦

 (6) 

As discussed in Refs. [1,2] this expression is not equivalent to the reflection 
amplitude obtained by using Fresnel’s relations with an effective index of refraction. 
In those references, the second order terms in γ were dropped in the denominator of 
the latter expression. For angles of incidence not too close to grazing these terms 
contribute negligibly to the reflection amplitude for systems with a low-density of 
particles. However, near grazing angles they may contribute more noticeably, as it will 
be explained below in relation to the internal-reflection configuration used in our 
measurements. 

y
m
−k

 
FIGURE 1.  Schematic illustration of reflection of light from a half space of  spherical particles. The 
dotted line represents the surface of the half-space; the particles’ center lie to the right of it. 

 

The Effective Refractive Index 

The y-component of the effective wave vector, k , must be equal to  [1,2], and 

the magnitude of the effective wave vector is given by, . Then 

one could define an effective index of refraction through  and get a closed 
expression for it, as 
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We may note that β inside the square root in Eq. (7) is a function of the angle of 
incidence. However, for dilute systems at normal incidence, the second order terms 
inside the square root in Eq. (7) are in general negligible and we may simply drop 
them. Expanding the square root in powers of γ and dropping second order terms and 
higher, yields  

   [2 2
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which is independent of the angle of incidence. This expression coincides with the one 
derived long time ago by van de Hulst [14] for the index of refraction of the bulk of a 
colloidal suspension. This expression is frequently referred to in the literature as van 
the Hulst’s formula.  

Nevertheless, numerical evaluation of Eq. (7) shows that the second order terms 
2 2

0( ) kβ − α 2  inside the square root may contribute significantly to , for large 
particles at large angles of incidence, even in case the density is low. But the effective 
refractive index with the inclusion of the second order terms depends now on the angle 
of incidence. If the system were boundless with uniformly distributed random 
inclusions, all directions should be equivalent, that is, the system must be isotropic, 
and the effective refractive index should not depend on the direction of propagation. In 
relation with this pretending inconsistency, please note that the expression given in 
Eq. (1) does not come from an effective-medium approach, it comes rather from the 
solution of multiple-scattering equations, where the expression for  given in Eq. 
(2) can be regarded as an auxiliary function in the calculation and it is actually 
deprived of precise physical content. Therefore, the use of Eq. (6) in the interpretation 
of our experimental data does not imply the utilization of an effective-medium 
concept, and the inconsistency mentioned above appears when one tries to view the 
auxiliary function as the one corresponding to the propagation wavevector in a 
true effective- medium approach.  

effn

eff
zk

eff
zk

In order to clarify the source of these so called inconsistencies with the concepts 
related with an effective-medium approach, below we perform a thorough analysis of 
the electromagnetic response of a colloidal system and we conclude that for large 
inclusions this response is actually non-local, and that not recognizing this fact has 
been the main source of all problems related to the mishandling of effective-medium 
concepts in these kind of systems.     

The Isotropic Effective-Medium Model 

 We will compare the results obtained from Eq. (6) with those coming from the 
simplest effective-medium approach which is the use of Fresnel relations for non-
magnetic media with the effective refractive index given in Eq. (8), that is, 

   
( )
( )

2 2 2

2 2 2

cos 1 sin

cos 1 sin

m m eff m eff mTE
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m m eff m eff m
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r

n n n n
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,   (9a) 

and    
( )
( )
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cos 1 sin

eff m m m eff mTM
iso

eff m m m eff m

n n n n
r

n n n n

θ − − θ
=

θ + − θ
.   (9b) 

When the particles radii are very small compared to the incident wavelength, the 
particles scatter light isotropically. One can show that for dilute systems of particles, 
when these are small enough, Eq. (6) reduces to Eqs. (9a) and (9b) for j = 1 and 2, 
respectively [1]. However, for particles with radii not small compared to the 
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wavelength, rhs differs appreciably from  for both polarizations [1,2]. We will refer 
to the approximations in Eqs. (9a) and (9b) as the isotropic effective- medium model. 

isor

 

The Coherent Reflection Coefficient in an Internal-Reflection 
Configuration  

In an internal-reflection configuration we have an additional interface, namely, the 
incident-medium – matrix interface as shown in Fig. 2. Let us assume that the 
incidence medium is non-absorbing and has a refractive index, n1. We denote by g the 
distance between the incidence-medium – matrix interface and the interface with the 
half-space of particles. We may regard the system as a three-media system, media 1 
corresponds to the incidence medium, medium 2 corresponds to the matrix alone, and 
medium 3 is the composite medium made of particles embedded in the matrix. Then 
we can solve the reflection at the compound interface using the well known formula 
for reflection from a film on a substrate. 

0 ˆexp( )r
rrE i ⋅k r e  

θm 

θi 

nm n1 0 ˆexp( )i
iE i ⋅k r e  

  
g

FIGURE 2.  Geometry in the internal reflection configuration. 
 

Note that the interface with the half-space of particles corresponds to a plane 
for which the centers of all particles lie to the right of it. Then a particle on the surface, 
that is, with its center on the surface, extends one radius, a, to the left of the interface. 
Therefore, the minimum possible value of g is one particle radius. If the particles do 
not interact with the surface so that the probability density of finding the center of any 
sphere is uniform throughout the half-space, including the region near the surface, we 
can assume that g = a. Therefore, the coherent reflection coefficient, r, from a random 
half-space of particles in an internal-reflection configurations is,  

   12 2 0

12 2 0

( ) exp(2 cos )
1 ( ) exp(2 cos )

Fresnel
hs m m

Fresnel
hs m m

r r in k
r

r r in k a
+ θ θ

=
+ θ θ

a
,   (10) 

where  is the usual reflection coefficient at the 1-2 interface given by Fresnel’s 
relations, and 

12
Fresnelr
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m
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n

⎛ ⎞
θ = θ⎜

⎝ ⎠
i ⎟ .    (11) 

obeys Snell’s law. Numerical evaluation of Eq. (10) shows that if the second order 
terms in the denominator of the expression of rhs in Eq. (6) are dropped, the angle 
derivative of r becomes discontinuous at the critical angle of the interface between the 
incidence medium and the matrix alone, that is, at 1

1sin ( )i mn n−θ = , even in the 
presence of particles. The discontinuity increases as the particle radii increases.  The 
discontinuity is non physical and indicates that these terms must be kept in our model 
for an internal-reflection configuration.  
 Here again we may compare our approach with the isotropic effective-medium 
model. In the latter case, one assumes that Fresnel’s relations are valid for the 
interface between medium 1 and medium 3. Specifically, we write equations (9a) and 
(9b) but with nm replaced by n1. With regard to determining the effective refractive 
index with a modern critical angle refractometer, we have that errors may occur 
whenever the scattering theory model differs appreciably from the isotropic effective 
medium model.  

The scattering-theory model was derived for a monodispersed system of spheres. 
The half-space reflection coefficient in Eq. (6) can be extended to polydispersed 
systems of spheres and non-spherical particles simply by replacing the quantities: 

 and  by their average with respect to particle size and orientation. 
When a matrix surface is introduced to the model, the size distribution and orientation 
density of probability function will be affected close to the surface. However, in dilute 
systems of particles these surface effects may be neglected.  

(0)Sγ ( 2jSγ π − θ )m

EXPERIMENT 

To test the validity of our model we will compare the results derived from it 
directly with experiment. In this section we compare our experimental internal-
reflectance data from particles dispersed in water with both, the scattering-theory and 
the isotropic effective-medium models. 

Our experimental setup is drawn in Fig. 3. It consists of a glass (BK7) dove prism 
mounted on top of a high precision goniometer. The dove prism geometry is 
appropriate to measure the reflectance about the critical angle of a glass-water 
interface, where the contribution of the particles is expected to be largest. A plastic 
ring was clamped between the base of the prism and a glass slab to form the sample 
container. We used a red laser diode of wavelength λ0 = 0.633 µm. The index of 
refraction of the prism at this wavelength is n1 = 1.5151. The reflectance curves were 
taken by rotating the goniometer in steps of one degree. 

Initially, the container was filled with distilled water and the angle of incidence was 
fixed close to the critical angle. A reflectance curve with pure water was taken about 
the critical angle as a reference. Then, the water was replaced by the colloidal sample 
and a reflectance curve was taken over the same angular range. All reflectance curves 
were normalized with respect to the reflection signal just behind the critical angle with 
distilled water. The angle of incidence to the base of the prism, θi, was calculated 
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using Snell’s law of refraction at the entrance face of the prism. Corrections to the 
reflection signal at the different angles of incidence due to Fresnel reflection losses at 
the entrance and exit interfaces of the prism were done. Also, the contribution of 
diffuse light was checked to be negligible in all measurements. 

 
Photodetector Laser diode 

Dove prism
n0=1.515

λ=0.633 µm 

 
 
FIGURE 3.  Schematic of the experimental setup. 
 

We performed measurements with two types of particles: i) spherical latex particles 
with a nominal value of the refractive index of np = 1.47-1.48 and a mean radius of 〈a〉  
= 234 nm; and ii) TiO2 crystallites (Rutile) with a refractive index of np ≈ 2.8 and a 
mean radius of 〈a〉 ≈ 112.5 nm. The particles size distribution for the latex was 
determined by dynamic light scattering using a commercial apparatus. The 
polydispersity was moderate in this case. The TiO2 particles we used had been 
previously characterized [15] by electron microscopy. The size distribution followed a 
log-normal distribution with σ ≈ 1.33.  In the preparation of the samples with TiO2 
particles a surfactant was added in order to prevent (or reduce) the formation of 
aggregates. 

Experimental reflectance data for latex particles and for two values of the filling 
fraction are shown in Fig. 4. Also shown in the figure are curves calculated with the 
scattering-theory model and the isotropic effective-medium model. To evaluate 
numerically both models we used Mie theory to calculate the scattering matrix 
elements. The values used for the theoretical curves were adjusted to fit best the 
experimental data. The parameters varied in the fitting procedure were a, np, nm, and f.  
The values of a, np and nm were restricted to be close to their nominal values of  ~1.47-
1.48, ~1.33, and 234 nm, respectively. Each parameter was adjusted individually by 
keeping the other parameters fixed close to its nominal value. The order in which the 
parameters were adjusted did not change appreciably the final result.   

We can appreciate that the scattering theory model reproduces fairly well the 
experimental data. The particle size corresponds to the average particle size 
determined by dynamic light scattering. The adjusted values of the refractive index of 
the matrix, 1.3333 and 1.3355 for f = 5.7% and 8.7%, respectively, differ from that of 
pure water at the laser wavelength, that is, 1.33128. The reason is that some monomer 
was left dissolved in the water after the polymerization reaction by which the particles 
were formed. To test this hypothesis we filtered one of the samples and measured the 
refractive index of the remaining transparent liquid. We found that it was indeed larger 
than that of pure water by an amount close to the one used in the adjusted values. We 

θi 

glass slab

Sample Goniometer
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also performed measurements of the beam attenuation due to scattering by
transmission through a 1 mm thick glass container filled with diluted samples. In this
case, the attenuation factor should be given by: exp[-2kolm(neff)], which is Lambert-
Beer's law. The measured values of the beam attenuation were correctly reproduced,
within the experimental uncertainty, by the factor Qxp[-2kolm(neff)] with neff calculated
using the values of a, np, nm obtained in Fig. 4, and a filling fraction,/, consistent with
the value of/ obtained in Fig. 4 reduced by the same factor by which the sample was
diluted.

1.0

0.8

0.2

0.0

TM polarization

1.0-

0.8-
0)o

0.6-

0)
DC

56 58 60 62 64 66
angle of incidence (deg.)

68

0.2-

0.0-

TM polarization

234 nm
= 1.48

56 58 60 62 64 66
angle of incidence (deg.)

68

FIGURE 4. Reflectance data for TM polarized light with latex colloid (stars); scattering theory model
(full line); reflectance with pure water (dotted line); isotropic effective-medium model (dashed line).

In Fig. 4 we also plot the reflectance curve predicted by the isotropic effective-
medium model. Noticeable differences can be appreciated over the whole angular
range shown. Attempts to adjust the effective medium model showed that it could not
reproduce the experimental data. We performed an additional experiment with the
latex particles at a filling fraction of/= 14%. In this case neither model were able to
reproduce the experimental data.

In Fig. 5 we show similar results for suspensions of TiC^ particles in water. In this
case the volume filling fraction was much lower since these particles disperse light
more efficiently than the latex particles. The particle suspensions were prepared
aiming to a somewhat larger value of the filling fraction. However, most probably not
all of the particles could be dispersed. To compare with the scattering theory model
and the isotropic effective approximation we assumed the particles were spherical. In
this case we adjusted only three parameters, a, np, and /. The refractive index of the
matrix was taken as that of pure water at the wavelength of the laser. We again see
that the scattering theory model reproduces well the experimental data. The particle
radius, a, was initially fixed close to the average particle radius determined by electron
microscopy, (a). The adjusted value of a remained close to (a) and the refractive index
of the particles agrees well with the refractive index of TiO2 - Rutile.
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FIGURE 5. Reflectance data for TE polarized light with TiO2 particle suspension (stars); scattering
theory model (full line); reflectance with pure water (dotted line); isotropic effective medium model
(dashed line).

The experimental results support the validity of the scattering-theory model and
confirm that Fresnel relations are not satisfied with a turbid medium when the particles
are not small compared to the wavelength. Nevertheless, the experiments also show
that the high sensitivity to changes in the effective refractive index of the reflectance
in an internal reflection configuration and about the critical angle is still there. This
means that, in practice, it is still convenient to obtain reflectance curves about the
critical angle; but, instead of obtaining the effective refractive index from the inflexion
point of the reflectance curve based on the Fresnel relations, one should fit the
scattering-theory model to the reflectance curve and obtain a, np, nm, and /. Once
knowing these values, if desired, one can calculate the effective refractive index using
the van de Hulst formula Eq. (8).

NON-LOCAL EFFECTIVE RESPONSE

We may ask ourselves at this point, what is the physical reason why Fresnel
relations are not valid at the interface of a turbid medium. To deal with this question
we must take from the start an effective-medium approach and look into the nature of
the effective-medium response of the system when particles are not small compared to
the wavelength of radiation. We should recall that the effective medium refers only to
the behavior of the coherent component of light. We start by writing the scattered field
of an isolated particle illuminated by an arbitrary exciting field, Eexc, in terms of the so
called transition operator T(r,rf) [3],

E5(r;co)-Jj3r'Jj3r"G.(r,r».T(rf,r";co).E^(r";co). (12)

where CD denotes the Fourier component in frequency space. We will assume, for
simplicity in the presentation that the matrix is vacuum, thus here G denotes the free
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Green’s function propagator. Also we will omit in the following the explicit 
dependence on ω unless it becomes necessary or illustrative.  

Now, let us consider an ensemble of N particles illuminated by an incident wave, 
Einc. The incident wave is multiply scattered between the particles. Therefore, the 
exciting field to any specific particles is the incident wave plus the field radiated from 
all other N - 1 particles. It is possible to set up a system of N coupled equations 
relating the exciting field of each particle to the exciting field of all other particles plus 
the incident wave. Once solving for the exciting field for each particles one may 
calculate the total field as the incident field plus the field radiated by all the particles, 

 3 3

1

( ) ( ) ' '' ( , ') ( ' , '' ) ( '')
N

inc exc
p p p

p

d r d r
=

= + ⋅ ⋅ − − ⋅∑∫ ∫E r E r G r r T r r r r E r  (13) 

where rp is the position of the center of the p-th particle and  is the field exciting 
the p-th particle. The sources of the scattered electric field are the induced currents 
within the particles. One could actually write the scattered field as,  

exc
pE

    3
0( ) ' ( , ') ( ')S

indi d r= ωµ ⋅ ⋅∫E r G r r J r ,  (14) 
and recognize that the induced current density is given by 

   3

10

1( ) '' ( ' , '' ) ( '')
N

exc
ind p p p

p
d r

i =

= − −
ωµ ∑∫J r T r r r r E r⋅ .  (15) 

Now, let us look at the solution of this problem in the so called effective-field 
approximation [3]. In this case one assumes that the exciting field to each particle is 
equal to the average of the total field, that is, 

    ( ) ( )excE r E r  .      (16) 
The average field, that is, the coherent wave, at any point in space is obtained by 
taking the configurational average of Eq. (13). Then, in the effective-field 
approximation, the coherent wave satisfies the following integral equation 

 3 3

1
( ) ( ) ' '' ( , ') ( ' , '' ) ( '')

N
inc

p p
p

d r d r
=

= + ⋅ ⋅ − − ⋅∑∫ ∫E r E r G r r T r r r r E r , (17) 

and the induced currents that give rise to the coherent scattered field are given by 

   3

10

1( ') '' ( ' , '' ) ( '')
N

ind p p
p

d r
i =

= − −
ωµ ∑∫J r T r r r r E r⋅ . (18) 

If we now define a generalized average polarization field by,   
    ( ) ( )ind i= − ωJ r P r ,    (19) 

we can identify an expression for the effective electric susceptibility for the coherent 
wave. We call this polarization field: “generalized”, because its sources are all the 
induced currents, including those closed currents that might give rise to magnetic 
effects. The generalized polarization field is related to the average electric field 
through a generalized susceptibility kernel χ . In this case we have a linear relation of 
the form,   
   3

0( ') '' ( ', '') ( '')d r= ε ⋅∫P r χ r r E r ,    (20) 
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indicating that the generalized susceptibility is actually non-local. That is, the effective 
polarization vector at one point in space depends on the electric field at other points in 
space.  We can identify the non-local generalized susceptibility as, 

    
10 0

1( ', '') ( ' , '' )
N

p p
pi =

= −
ωµ ε ∑ −χ r r T r r r r .   (21) 

If the spatial distribution of particles is, on the average, translationally invariant, we 
have that ( ', '') ( ' '')= −χ r r χ r r . Then transforming Eq. (20) to momentum space and 
writing back the dependence on frequency, one has 

   0( , ) ( , ) ( , )ω = ε ω ⋅ ωP k χ k E k .   (22) 
This is the main result of this section: the effective response of a system of spheres is 
non-local and therefore it presents spatial dispersion. It can be seen that here the non-
local length is the radius of the spheres. One can project the non-local generalized 
susceptibility ( , )ωχ k  into a longitudinal and a transverse components and one can 
relate these components to the usual non-local dielectric ( , )kε ω  and magnetic 

( , )kµ ω  responses. This implies that one must accept the appearance of an effective 
magnetic susceptibility, even if the components of the medium are non-magnetic.  
 Unfortunately, when one introduces an interface, the system is no longer 
translational invariant and one cannot use Eq. (22) directly. It has been shown before 
in problems related to non-local optics that when a system has a non-local response 
the regular boundary conditions used in continuum electrodynamics are insufficient, 
and one actually requires additional boundary conditions [16]; thus Fresnel’s relations 
are no longer valid. This is the physical reason why the coherent wave does not satisfy 
anymore the Fresnel’s relations at a plane interface with a suspension of particles 
when these are not small compared to the wavelength. In future publications we plan 
to provide a detail account of the non-local response of a system of spheres and 
investigate the magnetic effects. 

CONCLUSIONS 

Here we provide a scattering theory model for light reflection from a turbid colloid 
in an internal reflection configuration. We compare the results of our model with 
experimental measurements of the coherent reflectance of light from a turbid 
suspension of latex and TiO2 particles in water, in an internal reflection configuration.  
We found that our model can reproduce the experimental data whereas an isotropic 
effective medium model based on the Fresnel relations with an effective refractive 
index cannot. Since the Fresnel relations are not valid for the coherent reflection of 
light from a plane the interface of a turbid colloid when particles are large we may 
conclude that it is not possible to determine the effective refractive index of a colloidal 
suspension of large particles by a critical angle refractometer. By large particles we 
mean particles which are not small compared to the wavelength of incident radiation. 
Nevertheless the high sensitivity of the reflectance about the critical angle of the 
incidence medium – matrix interface to variations of the effective refractive index is 
still there. Therefore, a possibly convenient method to characterize turbid colloids is 

73

Downloaded 01 Jun 2005 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



by measuring the coherent reflectance versus angle of incidence about the critical 
angle but instead of calculating the refractive index from the inflexion point of the 
curve, as it is regularly done with homogeneous media, one should fit the scattering 
theory model to the experimental curve to obtain the particles size, their refractive 
index, and the density of particles. Then, if desired, one may calculate the effective 
refractive index. We also show that the effective electromagnetic response of an 
ensemble of particles is actually no-local. This is the physical reason why the Fresnel 
relations do not describe the coherent reflectance of a turbid colloid when the particles 
are large.  
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