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Abstract

We show the nonlocal nature of the effective electromagnetic response of a colloidal system with large
particles and derive closed expressions for both, the effective nonlocal electric permittivity and the magnetic
susceptibility.

Introduction

The effective-medium concept has been extremely useful for the electromagnetic treatment of colloidal and
granular systems when the size of the inclusions is much less that the wavelength of the incident radiation [1].
When particles are not small compared to this wavelength the system becomes optically turbid. That is, in
addition to the coherent field there is also a diffuse field. In this case there have been attempts [2] to derive
an effective refractive index of a system consisting of randomly located identical spheres, in order to describe
the propagation of the coherent beam. This effective refractive index turns out to be complex, in general,
and the imaginary part takes account of both, optical absorption by the colloidal particles and scattering off
the incident beam. One of the main assumptions in this derivation is that in case of nonmagnetic colloidal
particles embedded in a nonmagnetic matrix, the effective medium is also nonmagnetic. In this case the full
electromagnetic response of the system will be given only in terms of the effective electric permittivity εeff , or
equivalently, in terms of its square root: the effective index of refraction ñeff .

Here we consider a boundless colloidal system composed by nonmagnetic identical spheres embedded in a
nonmagnetic matrix and show, that in the case of particles whose size is comparable or larger that the wavelength
of the incident radiation (large particles), the corresponding effective medium has a magnetic response. Thus,
the full description of the electromagnetic response of the system for the coherent beam requires of both, the
effective electric permittivity εeff and the effective magnetic permeability µeff . Besides providing explicit
expressions for these quantities we show first that the effective medium is nonlocal (spatially dispersive), that is,
the effective response functions εeff and µeff depend not only on the frequency of the incident beam but also on
its wavevector. The importance of the results derived on this paper lies on the fact that in many applications in
colloidal systems with large particles one finds that the concept of an effective medium is used rather carelessly.

Formalism

We consider a boundless colloidal system made of identical spherical nonmagnetic particles characterized by
a radius a and frequency-dependent electric permittivity εS(ω). We also assume that on the average the system
is homogeneous and isotropic. For simplicity in the presentation we will assume that the embedding matrix is
vacuum. Our starting point is the equation for the electric field

∇×
(
∇× �E

)
− k2

0
�E = iω µ0

�J ind (1)

where i =
√−1, k2

0 = ω2ε0µ0 and �J ind is the total current density induced in the colloidal system by an external
electromagnetic field oscillating with a single frequency ω. By total we mean all possible induced currents, and
this includes not only conduction and polarization currents but even those closed currents that give rise to
magnetic effects. We are using the SI system of units, thus ε0 and µ0 correspond to the permittivity and
permeability of vacuum.

If one considers that the currents are induced in each of the N spheres of the colloidal system, the above
equation can be written as

�E(�r; ω) = �Eext(�r; ω) + iωµ0

N∑
p=1

↔

G0(�r, �r
′; ω) · �J ind

p (�r ′; ω) d3r′ (2)
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where �E is the total electric field (coherent plus diffuse),
↔

G0 is the free dyadic Green’s propagator and the sum

over p runs over all the particles in the system. The transition (dyadic) operator
↔

T (T-matrix ) is now defined
as

�J ind
p (�r; ω) =

1

iωµ0

∫
↔

T (�r − �rp, �r
′−�rp; ω) · �EE

p (�r ′; ω) d3r′ (3)

where �rp is the position vector of the p-th sphere and �EE
p is the field that excites it (exciting field). This field

is defined as the external field plus the field scattered by all other particles but the p-th particle. We now
use the effective-field approximation (EFA) in which the exciting field at each particle is approximated by the

total average field, that is, �EE
p ≈

〈
�E
〉
, where 〈...〉 denotes configurational average. The EFA is valid when the

colloidal system is dilute.

The average induced current density within the EFA can be written as

〈
�J ind

〉
(�r; ω) =

N

iωµ0

∫
〈T 〉(�r − �r ′; ω)

〈
�E
〉

(�r ′; ω) d3r′ (4)

where
〈

↔

T
〉

(�r − �r ′; ω) ≡
〈

1
N

N∑
p=1

↔

T (�r − �rp, �r
′ − �rp; ω)

〉
is a function of |�r − �r ′| because we have assumed that

the system is, on the average, homogeneous and isotropic. Let us recall that in this context
〈

�E
〉

is also called

the macroscopic electric field. Eq. (4) shows explicitly the nonlocal nature of the electromagnetic response of
the colloidal system; one of the main results of our work. Eq. (4) looks like a nonlocal Ohm’s law with the

kernel (N/iωµ0)
〈

↔

T
〉

(�r − �r ′; ω) playing the role of an effective nonlocal conductivity.

We now transform the above relation into the momentum representation ( p-representation), and write

〈
�J ind

〉
(�p; ω) =

1

iω µ0
n0

↔

T (�p, �p; ω) ·
〈

�E
〉

(�p; ω) (5)

Here �p is the wavevector associated to the Fourier transformation in the momentum representation,
↔

T (�p, �p ′) =∫
d3r

∫
d3r′ exp[−i�p · �r] ↔

T (�r, �r ′) exp[−i�p ′ · �r ′] , we have taken
∑

p → (N/V )
∫

d3rp in the calculation of the
configurational average, where V is the total volume of the system, and n0 ≡ N/V . Note that in the EFA the
average induced current density depends only on the transition operator of a single, isolated sphere. Also, we
will be using the same symbol for quantities in the r- and p-representation, the difference being only in the
arguments.

The transition operator
↔

T (�p, �p; ω) can be decomposed as

↔

T (�p, �p; ω) = T L(p, ω)p̂p̂ + T T (p, ω)[
↔

1 − p̂p̂] (6)

where the scalar functions T L(p, ω) and T T (p, ω) are called the longitudinal and transverse projections of
↔

T .
Here p̂ ≡ �p/p is a unit vector along �p , thus p̂p̂ corresponds, in the momentum representation, to the longitudinal
projection operator.

We now split the total induced current density as �J ind = �JP + �JM where �JP = −iω �P and �JM = i�p × �M
are defined in terms of the usual polarization and magnetization fields, �P and �M . Then, the effective nonlocal
electric permittivity and magnetic susceptibility of the colloidal system εeff (p, ω) and µeff (p, ω) are defined

through �P = (εeff − ε0)
〈

�E
〉

and �M = (µeff/µ0 − 1) �H , where �H is the usual H-field that obeys i�p × �H =

�Jext − iωεeff

〈
�E
〉
. Note that all quantities here are in the p-representation. It is straightforward to show that

the relationship between the pair of functions εeff (p, ω) and µeff (p, ω), and T L(p, ω) and T T (p, ω) is given by

ε̃eff (p, ω) = 1 +
n0

k2
0

T L(p, ω) and µ̃eff (p, ω) =
1

1 − n0

p2

[
T T (p, ω) − T L(p, ω)

] (7)
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Thus a legitimate, bona fide magnetic response appears in the colloidal system whenever T T (p, ω) �= T L(p, ω).
The idea that a colloidal system with nonmagnetic components might have a magnetic response was first pointed
out by Bohren [3].

Calculation of the Transition Operator

In this section we calculate the longitudinal and transverse components of the transition operator. Although

a calculation procedure for solving the integral equation for
↔

T (�p, �p ′; ω) in a spherical basis has been devised

by Tsang and Kong [5], here we calculate
↔

T (�p, �p ′ = �p; ω) directly by using an alternative procedure. We do
this by considering in Eq. (3) a single, isolated sphere excited by a plane wave with wavevector �p, that is,
�EE

p (�r ′; ω) = �Eext = �E0 exp[i�p · �r]. Then it is possible to show that in the p-representation one can write

�J ind(�p; ω) =
1

iω µ0

↔

T (�p, �p; ω) · �E0 (8)

where
↔

T (�p, �p; ω) is given at once in terms of �J ind(�p; ω) . Note that the external plane wave is not a free
electromagnetic wave but rather a plane wave that has associated, in general, an external charge density and
an external current density.

Therefore, in order to calculate �J ind(�p; ω) we start by exciting a single, isolated sphere with an electromag-

netic field �Eext (and Hext), and then calculate the fields within the sphere (internal fields) using a spherical
basis. In this calculation, the external and scattered fields are expanded in the usual way [4] but the appropriate

expansion for the internal electric field, �EI , looks like

�EI(�r; ω) =

(
k2

S − k2
0

k2
S − p2

) ∞∑
n=1

En

(
cn

�M
(1)
o1n − idn

�N
(1)
e1n

)
+

k2
0 − p2

k2
S − p2

�Eext (9)

with a similar expression for the internal H-field. Here En = inE0(2n + 1)/n(n + 1), the vector functions �M
(1)
α

and �N
(1)
β are the vector spherical harmonics [5], kS = ω

√
εSµ0, and the coefficients cn and dn are determined

by imposing boundary conditions at the surface of the sphere, yielding

cn =
jn(xi) [x0hn(x0)]

′ − hn(x0) [xijn(xi)]
′

jn(xS) [x0hn(x0)]
′ − hn(x0) [xSjn(xS)]′

; dn =
xijn(xi) [x0hn(x0)]

′ − x2
0hn(x0)

1

xi
[xijn(xi)]

′

xSjn(xS) [x0hn(x0)]
′ − x2

0hn(x0)
1

xS
[xSjn(xS)]

′
(10)

where xi ≡ pa, x0 ≡ k0a, and xS = kSa are dimensionless variables and the prime denotes derivative with
respect to the argument. The last term in the rhs of Eq. (9) takes account of the presence of the external
sources associated to the external fields.

Since the induced current density within the sphere is given by �J ind = (εS/ε0 − 1) �EI , where εS is the
frequency-dependent electric permittivity of the sphere, one can use Eq. (8) to write

↔

T (�p, �p; ω) · �E0 = k2
0

(
εS(ω)

ε0
− 1

) ∫
d3r �EI(�r; ω) exp[−i�p · �r] (11)

We now perform this integral by using the expression of �EI(�r; ω) given by Eq. (9) and expand the exponential

exp[−i�p · �r] in a spherical basis in the usual way. By choosing �E0 first perpendicular and then parallel to �p one
obtains directly T T (p, ω) and T L(p, ω), respectively. After a long but straightforward algebra we obtain for the
transverse projection

T T (p, ω) =
4π

3
x2

0a

(
εS(ω)

ε0
− 1

)
(1 − ξ) + 2πx2

0a

(
εS(ω)

ε0
− 1

)
ξ

×
∞∑

n=1

(2n + 1)

{
cn I2(n, n) + dn

[
n + 1

xi
I1(n, n − 1) +

n

xi
I1(n + 1, n) − I2(n + 1, n − 1)

]} (12)

where
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I2(n, m) ≡
1∫

0

x2jn(xix)jm(xSx) dx; I1(n, m) ≡
1∫

0

xjn(xix)jm(xSx) dx

I2(n, n) ≡ 1

x2
i − x2

S

[xSjn(xi)jn−1(xS) − xijn−1(xi)jn(xS)] and ξ =
k2

S − k2
0

k2
S − p2

(13)

Following the same procedure, we obtain for the longitudinal projection

T L(p, ω) =
4π

3
x2

0a

(
εS(ω) − ε0

εS(ω)

) [
1 +

(
εS(ω)

ε0
− 1

) ∞∑
n=1

3n(n + 1)(2n + 1)dL
n

jn(xS)

xS

jn(xi)

xi

]

where

dL
n =

−x2
0hn(x0)

1

xi
jn(xi)

xSjn(xS) [x0hn(x0)]
′ − x2

0hn(x0)
1

xS
[xSjn(xS)]′

(14)

By inserting Eqs. (12)-(14) into Eq. (7) one obtains closed expressions for εeff (p, ω) and µeff (p, ω).

Conclusion

We showed that the effective medium for the electromagnetic response for the coherent beam of a colloidal
system with large inclusions is nonlocal (spatially dispersive), and that a colloidal system with nonmagnetic
components has a (nonlocal) magnetic response. The physical origin of this response are the closed currents
induced within the spheres. We also derive explicit closed expressions for both, the effective nonlocal electric
permittivity εeff (p, ω) and the magnetic susceptibility µeff (p, ω). A detailed numerical analysis of the spectral
and nonlocal dependence of εeff (p, ω) and µeff (p, ω), for a variety of colloidal and granular systems, will be
presented elsewhere.
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