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Abstract. We address the problem of measuring the refractive index of biological materials. We limit 
our analysis to the case of colloids and consider the use of common automatic critical-angle 
refractometers to measure their effective refractive index. We provide rough guidelines to when these 
refractometers will incur in large errors and thus alternative techniques should be used.  

Introduction 

The refractive index (RI) of materials can be used to obtain information on their chemical 
composition and microstructure. Many biological materials are optically inhomogeneous on a scale 
comparable to the wavelength of visible light, and thus they are optically turbid. Two questions arise 
when dealing with biological media: What does the effective refractive index of a turbid medium 
means? and how can we measure it? To answer properly these questions we must recall that light 
propagation in turbid media is divided in two components: the coherent and the diffuse components. 
The coherent component corresponds to the average field whereas the diffuse component 
corresponds to the light fluctuations around its average. By average one usually means the 
configurational average of the system. Diffuse light gives a turbid appearance to the material. It has 
been shown by many researchers that the coherent wave in a turbid medium propagates with an 
effective wavevector. From it, one can assign an effective refractive index to the medium. This 
effective refractive index is in general complex and its imaginary part takes into account attenuation 
of the coherent wave due to absorption and scattering by the inhomogeneities.  

The effective refractive index in colloidal media 

Let us now restrict our discussion to colloidal media. A colloid is defined as a suspension of 
particles in a homogeneous phase which we call the matrix. Many biological materials are in fact 
colloids. A clear example of a biological colloid is blood. But, many tissues can be modeled optically 
to some extent as colloidal media as well. In recent years, we have developed a Coherent-Scattering 
model for the coherent light propagation and reflection from dilute colloidal media and tested it 
experimentally [1,2]. We have found that in general we can not use without restrain the effective 
refractive index of a turbid colloid as we would do in the case of a homogeneous substance. For 
instance, when the size parameter of the colloidal particles is not small compared to one, the coherent 
reflection of light from a turbid colloidal medium is not properly described by the usual Fresnel 
reflection coefficients. This fact indicates that one may incur in sizable errors when measuring the 
effective refractive index of colloidal media by optical reflectance methods. More recently we have 
come to realize that the effective medium associated with a turbid colloidal medium has a non-local 
character, that is, it is spatially dispersive, and this explains why the Fresnel reflection coefficients are 
not readily applicable [3].  



 

For dilute colloids, in which the volume fraction occupied by the particles (f) is small compared to 
one, the effective refractive index can be well approximated by the so-called van de Hulst formula 
[3]. If we assume all colloidal particles have the same refractive index and are spherical, all with the 
same radius a, the van de Hulst formula takes the form,  
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where nm is the RI of the matrix medium which is assumed to be a transparent homogeneous 
substance, S(0) is the forward scattering amplitude of a colloidal particle of radius a immersed in the 
matrix and it is a function of the particles’ RI (np) and that of the matrix (nm), xm is the so-called size 
parameter and is given by xm = nmk0a where k0 = 2π/ λ and λ is the wavelength in vacuum.  

In Fig. 1 we plot the real and imaginary parts of the effective RI increment per unit 
volume-fraction f as a function of the relative particle size, a/λ, for a few examples. We assumed the 
particles are immersed in water (nm = 1.33) and considered particles with refractive index np= 1.4, 1.6, 
1.8 and 2.0. 
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We can see from Fig. 1 that the RI increment due to the particles is at most of order f, but it is 
generally smaller. This means that in dilute colloids (f << 1) the contribution of the particles to the RI 
is small. Nevertheless, relevant information of many materials is commonly found in small variations 
of the RI. Note that as the particle radius increases, both, the real and imaginary parts of the effective 
RI increment reach a maximum value and then decreases to zero. Note also that the real part 
decreases faster than the imaginary part. This means that for sufficiently large particles the effective 
refractive index becomes equal to the RI of the matrix, that is neff → nm even if it looks turbid.  

Measurement of the effective refractive index of colloidal media 

In some cases, we may be interested in measuring the absolute value of the effective refractive index. 
In some other cases, we may be interested in measuring accurately the refractive index increment due 
to the particles, that is ∆neff = neff –nm.   

Automatic critical-angle refractometers. The most common way to measure the refractive 
index of liquid media is to use a critical-angle refractometer (C-AR) of the Abbe type. Modern 
automatic refractometers are based on measuring the reflectance (R) versus angle-of-incidence (θi) 
curve around the critical angle (θc) in an internal reflection configuration. In fact, critical-angle 
measurements are being applied to biological tissue [4,5,6]. In a critical angle refractometer, the 
sample is placed in contact with the base of a prism of higher refractive index, n. The critical angle is 
defined by θc = sin-1(n2/n1) where n2 and n1 are the refractive indices of the sample and of the prism 
respectively and are supposed to be real quantities. At the critical angle the reflectance curve has a 
sharp 90o bend to total-internal-reflection and its angle-derivative iR∂ ∂θ  is discontinuous. Modern 
automatic critical-angle refractometers reflect a divergent monochromatic beam from the base of a 
prism in contact with the sample and project the reflected light onto a linear array of photodetectors as 

Fig. 1.  Plot of the 
effective refractive 
index increment per 
unit of volume 
fraction f. (a) real, and 
(b) imaginary parts. 
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Fig. 2 Schematic illustration of a modern critical 
angle refractometer 

depicted in Fig. 2. The signals from the photodetector array generate directly a reflectance versus 
angle of incidence curve and the critical angle is located.  

When the sample has a complex refractive index, that is, when n2 is not real, there is no longer a 
critical angle and the discontinuity on the derivative of the reflectance curve disappears. 
Nevertheless, when the imaginary part of n2 is not too large, a continuous but sharp bend of the 
reflectance curve is found and there is a clear maximum of the angle-derivative at the inflexion point 
of the reflectance curve (θmax). An automatic critical angle refractometer would locate the inflexion 
point as it would be a critical-angle for a transparent sample and would give the refractive index of the 
sample as Re(n2) = n1sinθmax. This, would actually be a good approximation in the case of absorbing 
homogeneous substances as long as Im(n2) is not too large [7]. 

However, if a C-AR is used with turbid 
colloidal media errors will occur even for 
small values of the imaginary part of neff. To 
estimate these errors and give some guidelines 
to when, and when we can not use a C-AR 
with colloidal media, we have calculated the 
reflectance curves in an internal-reflection 
configuration, using the Coherent-Scattering 
(C-S) model developed in references [1,2] and 
compared them with the curves predicted by 
the Fresnel reflection coefficients.  
     In Fig. 3 we show an example considering a monodispersed dilute colloidal-medium. We can 
appreciate in Fig. 3a that the curves calculated with the C-S model and with the Fresnel reflection 
coefficients are similar in shape but are clearly separated from each other. By looking only to the 
shape of the curve we may actually think we are dealing with a homogeneous medium with a complex 
refractive index, and this would lead us to sizable errors. In Fig. 3b we plot the corresponding 
derivative curves ( iR∂ ∂θ  vs θi). We can appreciate again the shape is similar but the location of the 
maximum, θmax, is different in both curves.  

Errors with C-ARs. We may define the relative error incurred by an automatic C-AR in 
obtaining the real part of the refractive index increment as, CS matrix F matrix

max c max c[1 ( ) ( )]E = − θ − θ θ − θ , 
where matrix

cθ  is the critical angle with the matrix alone (that is, without the colloidal particles), CS
maxθ  is 

the location of the inflexion point for the colloidal medium predicted by the Coherent-Scattering 
model, and F

maxθ  is the location of the inflexion point predicted by the Fresnel reflection coefficients.  
 
 

 
 
 
 
   
  
 
 
 
 
In Fig. 4 we plot the relative errors as a function the relative size, a/λ, for colloidal-particles 

dispersed in water for two values of their RI (np = 1.59 and 2.8) and for two values of the volume 
density (f = 1% and 5%). We can see from the graphs that for np = 1.59 the relative error is below 1% 
for a/λ < 0.3 up to f = 5%, and for np = 2.8 the relative error is below 1% only for a/λ < 0.1 up to f = 
1%. The limits just quoted give us some rough guidelines to when it is safe to use a C-AR. Thus, as 
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Fig. 3. (a) Reflectance and (b) 
derivative curves for TE polarization 
around the inflexion point in an 
internal reflection configuration with 
a colloid. The values of np, nm, n, a/λ, 
and f are shown in the inset.  



 

the RI contrast in the colloid and the volume density increases, the size of the colloidal particles for 
which we could use an automatic C-AR to estimate ∆neff and obtain correct results with reasonable 
accuracy decreases. Finally we may point out, that if particles are sufficiently large a C-AR would 
make a huge error in determining ∆neff, but since this is very small for very large particles (see Fig. 1), 
the measurement will be a good approximation to nm. 

Alternatives to measuring neff. We could 
basically use a C-AR and interpret the reflectance 
curves with the Coherent-Scattering model. From 
a best fit of the model to the experimental curve 
we could obtain microscopic information on the 
colloidal particles, and then calculate the effective 
refractive index [2]. But there are two other 
options that avoid light reflection. One option 
consists of measuring the phase delay of the 
coherent wave upon propagation through a known 
distance through the colloidal medium. This can 
be done by standard interferometric techniques 
[8]. The second option is to use light refraction at 
the interface between a colloid and a transparent 
homogeneous medium. If proper care is taken, the RI increment due to the particles can be measured 
accurately and obtain physical information from it [9].  

Conclusions 

The refractive index of a turbid material corresponds to the effective refractive index seen by the 
coherent wave. The imaginary part takes into account attenuation of the coherent wave due to 
scattering. This means that it can be non-zero even in the absence of optical absorption. The coherent 
reflection of light from a flat interface with a colloidal medium with particles of size parameter 
comparable to one or larger, do not follow the Fresnel reflection coefficient. This causes automatic 
critical-angle refractometers to measure erroneously the effective refractive index in many cases. In 
this case other methods based on light refraction or phase delay may be used. Finally when the size 
parameter of the colloidal particles is sufficiently small or sufficiently large, a C-AR will measure 
correctly the refractive index of the matrix medium. How small or how large should the particle be in 
this case will depend on their refractive index contrast.   
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Fig. 4. Relative error versus a/λ for two values 
of np and  f , and for nm =1.33 and n =1.515. 
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