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ABNORMAL BOSON OCCUPATION IN ALPHA MATTER 
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A specific example of abnormal boson occupation is gwen whereby a vacuum state energy lower than the normal one 
for the case of Ah-Bodmer alpha particle matter is found at physical densities. 

The microscopic treatment of  an in te rac t ingN 
boson system, like 4tle alpha matter  in its ground 
state, has developed along two general lines: 1) per- 
turbation theory [1 ] based mainly on the infinite 
partial summation of  one class or another of  diagrams 
and 2) variational methods [2] based originally on 
the use of  Bl j l -Ding le - Jas t row correlation functions 
and evolving to the latest "hypernet ted  chain" tech- 
niques [3].  Both lines of approach, however, have 
restricted themselves exclusively to the imtial starting 
point of  a "normally occupied vacuum state",  i.e.. 
to the (fully-symmetric) permanent of  plane-wave 
single-particle states all in the zero momentum state. 

Although diverse theories Involving abnormal 
boson occupation have appeared [4],  little if any 
attention has been directed to the question of  the 
opt imum unperturbed vacuum state to be employed 
in a given N boson problem. The "normal"  vacuum 
state mlmmizes the ground state expectat ion value 
for the ideal Bose system but  there is no a priori 
reason why it should also do so for the fully-interact- 
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ing case focused imtially on an independent-particle 
scheme. And indeed, it would appear very strange i f  
it did. 

In this note we wish to emphasize this fact by a 
specific example of  abnormal occupation within the 
context  of  alpha matter,  a hypothetical  system that 
has attracted continued interest [5] because of  its pos- 
sible relevance to alpha-clustering [6] in the nuclear 
surface. Our motivation hes in the usefulness of pro- 
vidlng an (energetically) improved and more realistic 
starting point for the more refined subsequent corre- 
lation-energy studies of  the many-boson problem via 
either perturbational or vibrational approaches. 

The ground state of  the N boson system, described 
by  the hamlltonian 

H = t + v '  t - - 2 m ~ = l  V2,  v - ~ v i / '  (1) 
i<l 

is given, at the independent-particle level, by the single 
permanent of  plane waves 

perm[e iki'r/] nkl , (2) 

where the occupation numbers n k may take on any of  
the non-negative integer values 0, 1, ..., N,  and are 
otherwise restricted to obey the obvious condit ion 

n k = N .  (3) 
k 
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The ground state expectation energy with (2) (which is 
a Hartree-Fock energy since plane-wave orbltals, under 
usual periodic-boundary conditions, always satisfy the 
Hartree-Fock equations) is, 

E = <t> + <u>, (4) 

where 

<t> ~ 0 e 0 =-l~2k2/2m (5) 
= C k t/k , 

k 

and for N >> 1, 

1 ~ ( 1  1 <V) = ~ -- ~Sk,k2)nkank2 
klk2 

X (klk2[Ul2 Ik lk  2 + k 2 k l ) ,  (6a) 

(klk21Ol2lk'lk'2)= _ 17 -2 f d3rl f d3r2 
X e -~kl "r~e-lk2"r2 ' " ' "r2 vl2etkl rl e lk2 , (6b) 

with 1/" the normalization volume. For normal occupa- 
tmn, n k = NSk, 0, one finds immediately that 

<v} = ½NPu(O), (7a) 

p =-N/V ,  v(q) - f d 3 r  e -lq .r v(r),  (7b) 

so that the energy per particle for normal occupation 
is just 

Cno~m,~ = ~pv(0).  (s) 

This being a rigorous upper bound to the exact energy 
per particle by the Raylelgh-Ritz variational principle, 
allows one to conclude that (the volume integral of 
the interaction) v(0) > 0 is a necessary condition to 
avoid collapse of the N-body system to infinite binding- 
per-particle and density. 

Consider now, merely by way of illustration, ab- 
normal occupation given by 

n k = N [ ~ J k ,  0 + ( 1  -~)Sk,ko ] , 0 < ~ < 1 .  (9) 

Namely, one depletes the k = 0 state to a fraction 
and populates macroseopteally with the remaining 
pamcles, the single point in k-space gwen by the vec- 
tor k 0, where ~ and k 0 will be variational parameters 
to be chosen so as to mimmize the energy at a given 
density. (Clearly, the total momentum of the proposed 
state is non-zero - a defect easily remedied by also 
occupying at k = - k  0. But that only complicates the 

analysis which at any rate will lead to a variational 
state superior to the normal one.) Using (5) and (9) 
one has 

(t) = N(1 - ~)e0o . (10) 

If the interaction potential u12 is the same in all 
partial waves of relative orbital angular momentum 
(i.e., is l-independent), then (6b) and (7b) lead to 

( k l k 2 [ V l 2 i k l k  2 + k2k 1} 

= V - I  [u(0) + u(Ik 1 - k2[)] (11) 

and subsequently, via (6a), to 

(v)/N = ½pv(0) + ~(1 - ~)pv(ko) ,  k 0 > 0 .  (12) 

Thus, the energy difference between the abnormally- 
and normally-occupmd states is just 

Ae =- e -- enormal = (1 -- ~)e0 ° + ~(1 -- ~)ov(ko) .  (13) 

We first briefly examine two examples of  (l-Indepen- 
dent) two-body interactions, both of  which must of  
course satisfy the non-collapse condition v(0) > 0 
stated above. 1) The purely repulswe gaussian interac- 
tion 

v(r) = VO e-x2rz , o 0 > 0 ,  (14) 

having a non-negatwe Fourier transform u(q) for all q, 
can never make tile energy difference (I 3) negative. 
However, ii) the repulsive square barrier 

v(r) = voO(a-  r ) ,  v 0 > 0 ,  (15) 

for which 

v(q) = 4fro0 a3/'1 (qa) (16) 
qa 

will make (13) negative for some value of  p and ~ if the 
value of  k 0 is picked, say, to correspond to the first 
(negatwe) minimum of (16) and ooa3 is sufficiently 
large. Therefore, we have here an exphclt example of 
an abnormally-occupied vacuum state which is lower 
m energy than the normal one. 

A less trivial as well as more realistic example is 
provided by alpha pamcle matter interacting via a pair- 
wise,/-dependent Ah-Bodmer  potential [ 1 ] 

o12 = ~ vt(r12)ll>(tl, (17a) 
/=0,2,4 
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~2 r 2 
vl(r ) -~ ~ V h e -  li , (17b) 

t=A,R 

where II) is an eigenstate of  relative orbital angular 
momentum I, the indices A and R stand for "attrac- 
tive" and "repulsive" and the parameters Vli, ~li refer 
to the set labelled "d"  in ref. [7]. To evaluate the cor- 
responding potential energy expectation value one 
uses the following integral [8] 

c o  

f drr2/2(Qr)e -x~r~ 
o 

= (Tr/aQX 2) e-QZ/2x~ I1+1/2(Q/2),2), (18) 

where l l (X) are the spherical Bessel functions and 
Iv(z ) the modified Bessel functions defined [8] by 

0o 

Iv(z ) = ~ (z/2) 2s+v 
, ~  sip(v + s + 1) 

---* [r(v + 1)] -1  (z/2)~ (19) 
z < l  

> e Z / ~  
z>l  

or, alternatively, by the Rayleigh formula 

Ii+l/2(z ) = (2z/rt) 1/2 zl(z -1 d/dz) l z - I  sinh z .  (20) 

Defining the relative linear momentum for two parti- 
_ _ 1  des as k = ~(k 1 - k2) , one finally obtains from (6b) 

for the Al i -Bodmer potential (17) that 

(k lk2lOl21klk  2 + k2k  1 ) = 2V -1 ~(k) ,  (21) 

where 

r¢ 2 
b'(k) --57. ~ ~ (2l + 1) Vt, X~ 2 

'~ i=A,R /=0,2,4 

X e -k2/2~t Ii+1/2(k2/2~ 2) 

> O ( k - 2 ) ,  (22) 
k.--,, o0 

where the last result follows from (19). We also note 
by direct calculation from (22) that 

V'(0) = rr 312 ~ V0, ~,Ot 3 , (23) 
t=A,R 

coincides with v(0), as defined in (7b) , for  the s-wave 
alone. The corresponding normally-occupied-state 
energy per particle is then just 

enormal = {Or'(0), (24) 

where, as was to be expected, only the s-wave interac- 
tions enter. Furthermore, the Ah-Bodmer  force is 
found to satisfy the non-collapse (necessary) condinon 
Y(0) > 0, as of  course it should. Higher partial-waves 
come into play for the abnormally-occupied case (9), 
leading eventually to the energy difference 

ae  = (1 - ~)e° ° + ~(1 - ~)O[2Y(ko/2 ) - ~(0)] , (25) 

which is our mare result. Now, in view of  the rapid 
fall-off of  Y(k0/2 ) for k 0 large enough, by (22), the 
energy difference (25) can become negative for some 
P and ~ provided only that v'(0) be suffimently large 
so as to compensate for the increased kinetic energy. 

The latter indeed turns out to be the case, as shown 
below. But first let us mention that the/-dependent 
repulsive gaussian interaction case - for winch no 
energy decrease was found above for the abnormal 
relative to the normal state - is recoverable from our 
final result (25) if for Y(q) in (22) one considers the 
force parameters VI, X/to be independent of  l, sums 
over all even l (since odd- I states do not contribute 
to the matrix element in (6a)) and applied the sum 
rule [8] 

o o  

Or/2z) 1/2 ~ (2l+ l ) I i + l / 2 ( z ) = c o s h z .  (26) 
l even 

In such a case, 

~-(q)- - i Iv(0) + v(Zq)] (27) 

and (25) reduces to (13). Clearly then, an Ali-Bodmer 
s-wave interaction equally in all (even) partial waves 
gives no lowering of  the energy for the new occupa- 
tion numbers (9). The situation is completely different 
for the "true",  i.e.,/-dependent, Al l -Bodmer interac- 
tion as we now proceed to report. 

A direct-variation of  (25) was carried out numerically 
with respect to the two variational parameters 0 -<< 

I and k 0 > 0, for several alpha matter densities p, 
in order to determine 
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Ftg. 1 Energy difference (25) between the abnormally- and 
normally-occupied vacuum states, minimized m variatmnal 
parameters ~ and ko, for the All-Bodmer/-dependent alpha- 
alpha interaction The energy difference is negative for all 
densities beyond the critical value of 0 0415 fm -3 (which is 
roughly half of equlhbrmm density). 
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Fig 2 Values of ~ (left scale) and/~o (right scale) which mini- 
mize the energy at each density Note the relatively small 
varmtion in/S o over relevant physical densities of alpha matter. 

mm e(~, k 0 ; p) -= e(~, ko ,  p ) .  
0 ~ <  1,ko>0 

The results are shown m figs. 1 and 2. A critical density 

o f  P0 = 0.0415 fm - 3  (above which the abnormal ly  oc- 
cupied state is stabler, i.e., lower m energy)  was found.  

We note  that recent variational calculat ions [9] place 

the alpha mat te r  equdlbr ium densi ty at around 

0.08 fin --3, so that  the densities for whxch abnormal  

occupat ion  is relevant are indeed of  physical interest.  

The above example  by no means exhausts  the ap- 

proach suggested here for the study of  the general 

many-boson problem since a) an improved occupat ion  

n k and/or  b)  use of  non-plane-wave orbltals (gwing 

rise to,  say, spaUal lnhomogeneltaes may  give an even 

lower vacuum state energy These posslbdities are 
presently under  s tudy 
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