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LETTER TO THE EDITOR 

Long-range order HF states in the deformable jellium model? 
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Instituto de Fisica, UNAM and Facultad de Ciencias UNAM, Mexico 20, D F  
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Abstract. We display three different kinds of HF-type orbitals with spatial long-range order 
which, at low densities and/or strong coupling, are stabler than the well-known HF self- 
consistent plane-wave homogeneous density solutions in the deformable jellium model of 
the electron gas. 

The appearance of long-range order in the electron gas has been a topic of fruitful discus- 
sions (Edwards and Hillel 1968, Shuster and Kozinshaya 1971, Isihara 1972, Crandall 
1973, Care and March 1975) since the suggestion of Wigner (Wigner 1934, 1938) about 
the existence of an electronic crystalline phase in the jellium model. On the other hand, 
the role played by the exchange interaction in the onsct of charge density waves in free- 
electron-like metals has been discussed by Overhauser in a series of papers (Overhauser 
1962, 1967, 1968, 1971% 1971b, 1976, 1978, Bishop and Overhauser 1977, 1978), Thcsc 
calculations, as well as others (Yoshimori 1961, Barrera et al 1979), have been based on a 
HartreeeFock (HF) scheme assuming a delta function potential between electrons. In 
this Letter we use the true Coulomb interaction between electrons in the calculation of 
the HF energy with orbitals displaying long-range order in the one-particle density. 

We use three different kinds of orbitals of simple analytical form which have been 
shown (Aguilera-Navarro et a1 1977, de Llano and Plastin0 1976) to belong to a wider 
class of orbitals which satisfy the HF matrix equations for occupied states and also give 
spatial long-range order. With the chosen orbitals the calculation is fairly simple, and we 
show that for the deformable jellium model (with Fermi sphere occupation) these orbitals 
are stabler than the well-known self-consistent plane-wave solutions in the low-density 
regime. 

The jellium model consists of a system of N electrons imbedded in a homogeneous 
background of equal positive charge so as to preserve charge neutrality. It is given by the 
Hamiltonian 

N N 

where V,, and V,, describe the electrostatic interaction of the positive background with 
itself and with the electrons respectively. 
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The HF Hamiltonian associated with equation (1) can then be written as 

H,, = - (h2/2m)v2 + VD + + K b  + K b  (2) 
where VD and VEX are the direct and exchange parts of the interparticle interaction The 
deformable jellium model is then defined through the following condition: 

VD + 5, + K b  = 0 (3) 
which means that the positive background ‘deforms’ itself in order to provide local 
neutrality, a feature resembling the polarisation of the ionic lattice in a real metal. In 
this model the HF energy is therefore given simply by 

EH, = 1 (k l - (h2/2nI )V’ lk )  - $  1 <k1k,le2/r1,1k,k1) (4) 
k(occ)  ki, h z ( o c c )  

where the sum runs over occupied HF orbitals labelled by k = (k, a). We now consider 
the following three families of N orthonormal orbitals: 

C, exp(ik. ~)[1 + aexp(-iq. Y)] k . q , O  (54 

&(Y) = C,exp(ik. ~ ) [ 1  + aexp(-iq. Y ) ] ~  k . q > O  (5b) 

C,exp(ik.v)(l + a c o s q . v )  (54 

(54 c, = [V(1 + a 2 ) ] - 1 / 2  

C, [ ~ ( i  + 4 2  + a4)1-1/z (54 

c, [V(1 + a2/2)]-‘/2 (5f 1 

i 
with 

where V is the volume upon which one imposes periodic boundary conditions. These 
orbitals have been shown (Aguilera-Navarro et a1 1977, de Llano and Plastin0 1976) to 
satisfy the matrix HF equations for occupied states for q > 2k, where kF = (37~’p,)~/~ 
= ( ~ ~ T ~ N / V ) ~ ’ ~  is the Fermi sphere radius and q and a are variational parameters. 

These orbitals give rise to long-range order in the one-particle density, since 

1 + [2a/(1 + a”] cos q . Y 

1 + pa(i + .,)/(I + 4 2  + .4),1 cos q .  + [22/(1 + 4 2  + a4)~cos2q. 
(64  

(6b) 

(64 

P ( Y ) / P ,  == I 
I 1  + [2a/(1 + 2 / 2 ) ]  cos q .  Y + [(a2/2)/(1 + a2/2)] cos2q. Y 

which represent density oscillations along the direction of q (‘corrugated-sheet’ type 
density). 

We then calculate the HF energy of the system by introducing the following dimen- 
sionless variables : 

r ,  = (3/47~p,)’/~/a, 
E E ( ~ / ~ ) / ( e ’ / 2 a ~ )  

p = u 2 .  

(a, = k2/me2) 

and 

Defining the HF  energy difference 
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we obtain for the three different orbitals of equations (50) .  (5b)  and (5c)  respectively 

f(Qh P Q(14.72Q - 11.04) 1.22 
Ae1 = - 

1 + P  r2 rs (1 + PI2  

where Q = 4/2 2 1, all of which clearly vanish for p = 0, and 

(84 

is a monotonic decreasing function It has the special values 

f(Q = 0) = 4.5 

f ( Q  = 1) = 0.190 

f(Q = 2) = 0.043 

f(Q + CO) = 0.699/Q2. 

Now we extremise A€ with respect to the variational parameters. We find, by inspection, 

Figure 1. Energy difference in Rydbergs (equation (3)) between three non-trivial HF states, 
as a function of the dimensionless variable r ,  (equation (7u)), which resulted from minimising 
theHFenergyasdiscussedin thetext: Acxp{ik.u[l + acos(q.v)]) ;Bexp{ik.r[ l  + clexp 
(-iq . I , ) ] ] ;  C expjik. r [  1 + cl exp( -iq , r ) ] } ,  
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that for given P, the minimum in Q occurs for Q = 1; thus we require only to solve 

(a/ab)A~(Q = 1,P;r,)l13=ao = 0 

(a2/aPZ)A4Q = 1, P ;  r,)ID=o,, ’ < 0. 

Pol = (0*232r, - 3.68)/(0*232rs + 3.68) 

Po3 = 2(0.463r, - 14.72)/(0201rs + 14.72) 

(9) 

(10) 

(114 

(1W 

and to determine the sign of 

For orbitals (54  and (54 ,  equation (9) can be solved analytically, yielding respectively 

which must then be substituted back into equation (8) in order to find the extreme values 
of A€ as a function of r,. Since Po 2 0, equations (11) impose minimum values for r, 
which in both cases turned out to give maxima in A€. The calculation of A6 for orbitals 
of equation (5b) had to be done numerically. Our results are shown in figure 1 in which we 
plot the energy gain A6 against r,. It can be seen that for values of r, greater than a critical 
value (low-density regime) there is always an energy gain. Although the energy gain is 
small, it is significant to show explicitly the role that the exchange interaction is able to 
play in the appearance of long-range order in the condensation of the electronic system. 
In figure 2 we show the values Po which minimise A€ as a function of r,. 

Figure 2 The order parameter Po = (a:) corresponding to the three different orbitals (equa- 
tion (5 ) ) ,  which minimises the HF energy for each value of r5 :  A exp{ik. Y [  l + a exp( - i q .  Y)]}: 
Bexpjik.  if1 + acos(4 .  r)]};Cexp{ik. ~ [ 1  + aexp(-iq. Y)]}. 
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Since to our knowledge there are no true self-consistent eigensolutions in the low- 
density regime (strong coupling), we believe it has been worthwhile showing that it is 
possible to find in a variational calculation HF-type orbitals which are stabler than the 
homogeneous solution, because this in itself proves the existence of such eigensolutions. 
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