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A systematic improved comparison equation method to solve the Schrijdinger equation is described. The method is use- 
ful in quantum mechanical calculations inv&~ -0 or more titian or turning points and is applicable to real poten- 
tials with continuol;s derivatives. As a computatior 4 example of the method, a study of the boundstate problem usinng 
the Morse potential IS given. 

l_ Introduction 

Several problems in chemical physics are reduced 
to the solution of a system of N coupled linear second- 
order differential equations, the quantum mechanical 
equations of motion for the different kind of colli- 
sions being one of the most remarkable examples 
[l-3] .~‘JIus problem, and the single onedtiensonal 
Schredinger equation (with some exceptions) cannot 
be solved exactly by analytical methods_ Indeed, com- 
pletely analytical solutions to the Schrcdinger equa- 
tion have been obtained for only a handful of prob- 
lems; in atomic and molecular physics these consist 
of a few one- and two-electron systems One his thus 
to resort to an approximate analytical method or to 
direct numerical solution of the Schrbdinge, equa- 
tion _ It appears that the closecoupling approach is 
currently the most accurate method to treat multi- 
channel problems [ 1,2] _ Its solutions are obtained 
mainly computationally, although, in principle, there 
ae always two ways of solving the problem: the ana- 

lytical and the numerical 
Major strides have been made during the past ffi- 

teen years in the development of highly efficient 
and accurate numerical integrators to solve the iV 
coupled channel problem [ 1,2,4--81. Nevertheless, as 
the experimental techruques are further developed to 
discern among the various fine effects present in the 
scattermg phenomena, e.g., rotational, vibrational and 
electronic excitations, it has proved necpssary to in- 
clude an mcreasir.gly large number of channels (see, 
for instance, the expository article by Secrest in ref. 
[l] ), thus causing the compu’rational time to escalate_ 
Indeed, the computational time grows as@, N being 
the number of coupled equations to be solved. 

Among the various computational methods referred 
to above, the approximate-potential approach [ 1.21, 
pioneered and implemented on different grounds by 
Gordon !4] and by Light [5], have come into prom- 
inence in recent years [6-g]_ To have a tractable (ap- 
proximate) form of the reference equation. (a particu- 
lar comparison form, as will be seen soon), only the 
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first terms in a Taylor series expansion of the poten- selected. Usually, an analytic expression for &(c 

tral need be considered. is chosen such that it resembles the real function p 2 (x) 

The uniform approximation treatment [lo], based 
on the Miller-Good transformation [ 1 I], IS an analyt- 
ical tool to solve the Schredinger equation asymptot- 
ically [ 12]_ It is a semiclassrcal approximation, belong- 
ing to the comparison equation procedures [I 31, in 

which two similar-structure homogeneous-like equa- 
tions are compared. 

[ 1 l] _ Miller and Good used a modulating amplitude 
factor T = (t’)-li2, where t’= dt/dx so that 

$(x) = (/)-‘/2@(r) - (3) 

Comparing eqs. (I) and (2) and using eq (3), Miller 

It 1s the main purpose of this report to present a 
new method to solve the Schrodinger-like equation, 
partly analytically, partly numerically, ridden from 
semiclassical approximations and without severe re- 
strictions regarding the way by which the comparison 
(reference) potential adapts to the orrginal one. The 
new approach seems to be highly efficient when a 
great accuracy 1s required and a great number of chan- 
nels have to be included, it is also amenable to several 
approximations, which reduce significantly computa- 
tional efforts in various situatrons. To some extent it 
1s an analytical generalrzation on the potential treat- 
ment given in ref. [4], implemented computationally 
using any of the varrous techniques actively being 
developed 

2. Derivation 

and Good obtained the following relationship to deter- 
mine the new spatial coordinate t. 

(r’)2 = [P2(x) - 5 i r. x II /&&I (4) 

The second term within the square brackets on the 
right-hand side of eq. (4) involves the Schwartzian 
derivatives [11,12,15]. 

ft. x} = r “yr’ - $(r’/r’)2 _ (5) 

It can be seen that eq. (4) is a non-linear third-order 
differential equation. Given the involved structure of 
eq. (S), the odds that eq. (4) can be solved analytically 
are rather shm, while rt must be a Herculean task to 
solve eq. (4) numerically To obtain approximate ana- 
lytical solutions, perturbational approaches have been 
advanced by Hecht and Mayer 1151, and more recent- 
ly by Pechukas [ 163 _ The present approach implements 
the Miller-Good transformation so that the 
Schwartzian derivatives term does not appear explicrtly 
in the differential equation which defines t_ 

The basic methodology of the approach here pro- 
posed will be illustrated by considering the usual one- 
dunensional stationary Schrbdmger equation An ex- 
tension of the derivation to include many-channel 
problems is straightforward_ 

Instead of the homogeneous-like equation (2) the 
inhomogeneous form 

[d2/dp + s2(Ol #W = NOW) , (‘3 

To overcome some of the limitations of the JWKB 
method [14] * to solve the Schrbdinger-like equatron, 
Mdler and Good [ 1 l] have proposed to utihze a con- 
venient simultaneous non-singular transformation of 
the wavefunction and the spatral coordinate to trans- 
form the homogeous-like equation 

[d21h2 + ~~(41 G(x) = 0 , (1) 

is considered here, where h(r) is a perturbation-like 
potential term [7] _ After performing the Miller-Good 
transformation given by eq. Q), it is seen that eq. (1) 
is cast in the form of eq. (6) when the following iden- 
tification 1s made. 

h(t)=:(t')-qr, 2-j) 

in which case 

(7) 

(r’)’ = p2(W12(r) - @I 

into a sn-nilar relation: 

[d2/dg +~q~~~~)l NO = 0 > (2) 

where L&G is a comparison potential to be adequately 

l The. literature on the JWKB approtiation is now large 
and we cite here only one reczznt referen-. 

It can be noted in passing that eq. (4) reduces to the 
simpler form grven by eq. (8) if {r, X) is taken to be 
zero. This particular case is equivalent, within the 
present scheme, to approximating eq. (6) to the homo- 
geneous form eq. (2) Superficially, the difficult prob- 
lem of solving eq. (4) has been transformed to solving 
another difficult one, eq. (6). This is not so as alterna- 
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tive techniques, such as the standard Green function 
method [ 171, exist to deal withinhomogeneous-hke 
equatrons, whereas the involved mathematical struc- 
ture of eq. (4) 1s hardly manageable, even in supposed- 
ly simple situations. Furthermore, within the present 
scheme, once an appropriate comparison momentum 
42(r) has been selected, the transformation t = t(x) 
can be determined cractZy by using the following 
eqrlations [lo] : 

j ls2(#‘2 dr= i Ip’(E) II” dE 

r0 

and 

r,+1 xi+1 

J 
I~~(T)I~~ dr = I IP~(E)I~‘~ dE 2 m) 

li Xi 

where to is an arbrtrary Integration constant, arising 
from the solution of the first-order differential equa- 
tion (8); fz is a classical transition or turning point of 
the transformed potential, set in correspondence with 
the classical turning pomt Xi of the true potential. 
The quantity q*(r) involves the determination of 
n - 1 parameters from eq_ (lo), n being the number 
of classical turning points. 

Where in the conventional treatments of comparison- 
equation and uniform approximations [lo--12,15,16], 
several semiclassical approximations are made to ob- 
tain eqs. (9) and [lo), within the present scheme they 
are ewact relationships. The one-toone correspondence 
between the classical turning pomts of true and trans- 
formed potentials guarantees the continuity of the 
transformation for real potentials. 

Once t = t(x) has been determine exactly, one 
turns to the solution of eq. (6) for N(r)_ From knowl- 
edge oft and Q(f) there follows from eq. (3) the value 
of 9, the solution to eq. (1). There are currently avail- 
able alternative analytical techniques [17,18], and 
numerical methods [l-9], which make use of the 
homogeneous form 

[d2/dr + &)I a&) = 0 , 01) 

to solve the inhomogeneous-like equation (6) The 
ccqparison method adopted in this Letter is sirmlar 
in some respects to, but somewhat more genera1 than, 
Gordon’s reference potenQa1 method _ To keep the par- 
ahehsm with Gordon’s approximate potential ap- 

preach (a propagator procedure), the advantages of 

the preceding scheme will be rllustrated using the varia- 
ation of parameters treatment (special method of per- 
turbations) [ 181. In shis case, if A(f) and B(t) are 
two analytically exact linearly independent solutions 

of eq. (11). the most general solution of eq. (6) is then 
expressible u-r the form 

Q(r) = cr(r) A(r) + P(0 B(r) I (12) 

where o(f) and P(t) are functions oft to be determined 
[ 17,18]_ The constraint 

&A+pB=O, (13) 

where & = dctfdt and fi = apldt, will be adopted in this 

paper [4,5]. Substitutmg eq. (12) into eq. (6), and 
using eqs. (11) and (13), yields: 

&(r) = -W,’ [A, B] Bh(r) [d + pS] , (144 

&t) = ~yl[ABIA~(t) [QA +pB] , (lab) 

where iVr [As] denotes the Wronskian of the two 
real independent solutions to eq. (11) and is a constant. 

3. Tat calculation 

The Morse potential is wrrtten as [19] 

u(x) = D exp [a(& - x)1 C exp L&~-J - x>l - 2 I , (15) 
where D and cz are empirical parameters and go is the 
equilibrium distance parameter. The Morse potentral 
has been an excellent test case for the tffectiveness 
of several numerical methods for bound states. As is 
weLl known the radial Schrbdinger equation correspond- 
ing to the Morse potentral(0 <r < -) is not exactly 
solvable analytically 1201; its one-dimensional ana- 
loque (-- <x < -) is, however, of a particularly 
tractable form analytically, yet it must receive a care- 
ful numerical treatment_ Slightly different versions 
of the Morse potential have been used to model dou- 
ble wel! potential [21,22] and other rather broad 
problems [23,24]. 

Over a certain range of conditions, the Morse po- 
tential in the one-dimensional case is seen to describe 
well the perpendicular motion of atoms or molecules 
rncident on a solid surface [25] **_ This particular 
multichannel problem wiLl be the subject of a forth- 
-* For a recent review, see ref. [36], also. see. e.g. ref. [27]. 
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coming article {28] _ The potential described by eq. 
(15) (-- <x < -) is regarded as a good candidate 
to test the proposed method. 

In the notation of ref. [ 191 the exact bound-state 
ergenenerges for the Morse potential are given by [ 191: 

k2 = z&/E2 , k2 = _La21j2 , 
4 06) 

where b = j3 - I, 0 = 2(a + d), d = (2~)‘/‘/~. In eq 
(16) k2 represents the square wavevector. 

The exact wavefunctions are given in terms of con- 
fluent hypergeometric senes 1291. The series become 
poIynomials when cr = 0, -1, -2, etc. Also, for bound 
states, b must be positive definite. Using atomic units 
throughout the next and taking cr = 3. d = 7/3 and m 
= 1000, there are just two eigenstates w=ith correspond- 
ing energy levels: Eo = --0.4114 eV and El = -0 0850 
eV. These are derived from the expressron for the eigen- 
energ_res for the Morse potential: 

E, = -( 1/2m) (&Ii>2 [2(d - 12) - 11 2 _ (17) 

In solving the Schrodinger equation for the Morse 
function withm the present approach, the reduced 
quadratlc reference potential u(t) = 4 t2 was employed 
[4,1 X,30]. This approximatron to the true potential 
gives rise to Weber’s canonical equation 129.3 I] 

d’@d;L + (E -a r2)+u = 0 , (18) 

where E is an as yet undetermined parameter, indepen- 
dent of f. Two exact linearly independent solutions 
to the homogeneous form eq (11) in terms of con- 
fluent hypergeometric functrons are given by [29] 

A(t) = [rP2/JY(=’ + $)I exp(-$?) M(cr’, +; +?) , 
(194 

B(t) = [(2rr)“‘/r(*‘)] exp(-&r2) tILf(o’ + $, I; $?) , 
(19b) 

with or = (1 - 2e)/3. Two stationary solutions of eq. 
(18) are obtained with Q’ = 0, -1 and the E values so 
obtained are zero&order sohrtions to the “eigenvalue” 
problem of the homogeneous form ~orre~on~n~ to 
eq- (6). 

Using the zero&order so~utrons as a first approx- 
imation, eqs. (14) may be solved iteratively between 
two points suitably removed from the turning points, 
where the wavefunction approaches zero. One may 
then seek a solutron where the number of zeroes is m 
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agreement with the oscillation theorem_ Instead, eqs. 
(14) were numericahy integrated, utilizing a solver 
from the open literature and using eqs. (19) as inde- 
pendent solutions to eq. (18); the initial conditions 
were chosen such that the approximate wavefunctions 
matched the exact ones at the point where the inte- 
gration began. 

The exact normalized bound-state wavefunctions 
are shown as solid lines in figs. la and lb. The com- 
puted approximate wavefunctions corresponding to 
the exact eigenenergies are represented m the draw- 
ings by dashed lines. They are graphically mdistinguish- 
ab;e from the exact solutions up to values about r m 2 0 
in fig la, and up to values about r =z 2.5 in fig lb. 
The numerical results are most encouraging. Indeed, 
up to those values of r the agreement was more than 
99-B%. Dotted and dash-dotted curves illustrate 
the solutions obtained when the energy values were 
chosen to be about 4% less than (dotted) or greater 
than (dash-dotted) the exact eigenenergies. in the 
former case the wavefunctions do not turn down as 
much, failing tc match the node to the right of the 
first (second) turning point in fig. 1 a (fig. lb); for 
large distances the “wavefunctions” go to +. This 
behavior is to be expected from an ~a~ytical treat- 
ment of the problem. In the latter case the ‘Xvavefunc- 
tions” peak sooner and they descend more rapidly 
than the corresponding exact wavefunctions It can 
be noted, again as expected, that: (a) the “wavefunc- 
tions” exhibit more nodes than required, and (b) the 
‘~avefunctions” to go --. 

The best matching of boundary conditions of the 
computed wavefunctions yieldsEoc,,,,P~ = -0.4115 

eV and El (mmp) = -0.085 1 eV; these values are in 
good agreement with the exact energy levels_ 

The perturbation-like inhomogeneous term h(t) 
defined in eq. (7) was evaluated numerically (results 
not shown) using the defining eqs. (5) and (8). It was 
seen to contribute order 1% +&ough the main range 
of integration. In the very near transition points re- 
gions where the zeroes of p2(x) are located, it was 
found to be dominant, as expected from physical 
considerations Further, it took its largest value well 
away to the right of the second classical turning point, 
where the Morse function differs substantially from 
the quadratic comparison potential even by eq (17). 
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b) 

Fq. 1. Comparison of the results of $e analyt%al and numerical methods of calculation of norm&ze.d eigenfunctioq correspond- 
mg to the two stationary states of the Morse potential for the parameters given iu se-011 3. (a) Eo = -0.4114 eV, (III), E1 = -0.U850 
eV. Sohd lines: analytical solutions; dashed lines: numcrid solutions generated using the exact eigenenergy value. ‘Ihe agreement 
of the computed and the exact botidstati eigenfunctiona is excellent even for the lowest eigenvalue. Dotted (da&dotted) 
lines: numtiel solctions obtained using an energy value lower Oligher) than the exact one by about 446 
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4. Discussion 

In this Letter, a judrcious amalgamated scheme to 
solve the Schrodinger equation, has been presented 
and applied to a model calculation using the Morse 
potentral. Where other methods involve the semiclas- 
sical approxrmation, in which the Schwartzian deriva- 
trves term IS negleted, and have limitations on the srze 
of the integration steps (for proper adjustments to 
the true potentral), in this method such drawbacks 
are removed. 

In principle, one could further elaborate on pur- 
suit of the analytical solution of the mhomogeneous- 
like equation (6) if the Schwartzian derivatives were 
easy to evaluate analytically. ‘Ihi; 1s not, however, 
the case, the reason being that the new spatial coor- 
dinate t is not expressible in terms of elementary 
functions of the old spatial coordinate x. Nevertheless, 
whenever the true potential has an analytical well be- 
haved form, the Schwartzian derivatives are quite 
readily evaluated numerically. 

Since the comparison potentral may be properly 
selected for large integration regions, the integration 
step lengths that can be used in the calculations have 
no great lunitations. Moreover, boundary conditions 
are to be matched only at the beginnmg and at the 
end of the integration region, with great speed advan- 
tage in the computational work An extension to mul- 
tichannel problems, where tis approach is seen to be 
most useful, 1s the subject of a forthcoming paper [32] 
An application of the present scheme to inelastic 
atom-solid surface scattering where order one hundred 
channels are involved, and using more general poten- 
tials, is currently in progress. Finally, it 1s hoped that 
the ideas and results outlined in this Letter will stim- 
ulate further discussion. 
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