Volume 113, number 1 CHEMICAL PHYSICS LETTERS 4 January 1985

AN IMPROVEMENT TO THE COMPARISON EQUATION METHOD
FOR SOLVING THE SCHRODINGER EQUATION

J. GIRALDO
Departaniento de Frsica, Universidad Nacional de Colombia, Bogotd, D.E., Colombia

R.G. BARRERA
Institute of Physics, University of Mexico, Mexico 20, D.F., Mexico

and

G.A. ESTEVEZ

Department of Mathematics, Chemistry, Physics and Computer Science, Interarnerican University,
San Germdn, Puerto Rico 00753, USA

Received 29 June 1954
A systematic improved comparison equation method to solve the Schrodinger equation is described. The method is use-

ful in quantum mechanjcal calculations invuiv L. “w0 or more transition or turning points and js applicable to real poten-
tials with continuous derivatives. As a computatior :1 example of the method, a study of the bound-state problem using

the Morse potential 1s given.

1. Intreduction

Several problems in chemical physics are reduced
to the solution of a system of NV coupled linear second-
order differential equations, the quantum mechanical
equations of motion for the different kind of colli-
sions being one of the most remarkable examples
[1—2].-This problem, and the single one-dimensional
Schrodinger equation (with some exceptions) cannot
be solved exactly by analytical methods. Indeed, com-
pletely analytical solutions to the Schrodinger equa-
tion have been obtained for only a handful of prob-
lems; in atomic and molecular physics these consist
of a few one- and two-electron systems One has thus
to resort to an approximate analytical met/od or to
direct numerical solution of the Schrodinge. equa-
tion. It appears that the close-coupling approach is
currently the most accurate method to treat multi-
channel problems [1,2]. Its solutions are obtained
mainly computationally, although, in principle, there
are always two ways of solving the problem: the ana-

lytical and the numerical

Major strides have been made during the past fif-
teen years in the development of highly efficient
and accurate numericai integrators to solve the NV
coupled channel problem [1,2,4—8]. Nevertheless, as
the experimental techmques are further developed to
discern among the various fine effects present in the
scattening phenomena, e.g_, rotational, vibrational and
electronic excitations, it has proved necrssary to in-
clude an increasinply large number of channels (see,
for instance, the expository article by Secrest 1n ref.
[11), thus causing the compuiational time to escalate.
Indeed, the computational time grows as V3, NV being
the number of coupled equations to be solved.

Among the various computational methods referred
to above, the approximate-potential approach [1,2],
pioncered and implemented on different grounds by
Gordon (4] and by Light [5], have come into prom-
inence in recent years [6—9]. To have a tractable (ap-
proximate) form of the reference equatior: (a particu-
lar comparison form, as will be seen soon), orly the
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first terms in a Taylor series expansion of the poten-
tial need be considered.

The uniform approximation treatment [10], based
on the Miller—Good transformation [11], 1s an analyt-
ical tool to solve the Schrédinger equation asymptot-
ically [12]. It is a semiclassical approximation, belong-
ing to the comparison equation procedures [13], in
which two similar-structure homogencous-like equa-
tions are compared.

It 1s the main purpose of this report to present a
new method to solve the Schrodinger-like equation,
partly analytically, partly numerically, ridden from
semiclassical approximations and without severe re-
strictions regarding the way by which the comparison
(reference) potential adapts to the original one. The
new approach seems to be highly efficient when a
great accuracy 1s required and a great number of chan-
nels have to be included, it is also amenable to several
approximations, which reduce significantly computa-
tional efforts in various situations. To some extent it
1s an analytical generalization on the potential treat-
ment given in ref. [4], implemented computationally
using any of the various techniques actively being
developed

2. Derivation

The basic methodology of the approach here pro-
posed will be illustrated by considering the usual one-
dimensional stationary Schrodinger equation An ex-
tension of the denvation to include many-channel
problems is straightforward.

To overcome some of the limitations of the JWKB
method [14] * to solve the Schrodinger-like equation,
Muler and Good [11] have proposed to utilize a con-
venient simultaneous non-singular transformation of
the wavefunction and the spatial coordinate to trans-
form the homogeous-like equation

[d2/dx? + p2(x)] ¥(x) =0, 1)
into a similar relation:
[d2/de? +q¥ (D1 e(H) =0, @)

where ‘h%dG is a comparison potential to be adequately

* The literature on the JWKB approximation is now large
and we cite here only one recent reference.
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selected. Usually, an analytic expression for q%lc(rg

is chosen such that it resembles the real function 7= (x)
[11]. Miller and Good used a modulating amplitude
factor 7= (¢')—1/2, where t'= dt/dx so that

v = () 2e(r) . )

Comparing egs. (1) and (2) and using eq (3), Miller
and Good obtained the following relationship to deter-
mine the new spatial coordinate r.

()? = [p%2ex) — 53 {t. xH /ey ® @

The second term within the square brackets on the
right-hand side of eq. (4) involves the Schwartzian
denvatives [11,12,15].

{t,x}=t""r —3@"I1")? . )

It can be seen that eq. (4) is a non-linear third-order
differential equaticn. Given the involved structure of
eq- (5), the odds that eq. (4) can be solved analytically
are rather slum, while 1t must be a Herculean task to
solve eq. (4) numerically To obtain approximate ana-
lytical solutions, perturbational approaches have been
advanced by Hecht and Mayer [15], and more recent-
ly by Pechukas [16]. The present approach implements
the Miller—Good transformation so that the
Schwartzian derivatives term does not appear explicitly
in the differential equation which defines .

Instead of the homogeneous-like equation (2), the
inhomogeneous form

[a2/de? + q%(D)] ¢() = H(D)O(2) , ©)

is considered here, where k(¢) is a perturbation-like
potential term [7]. After performing the Miller—Good
transformation given by eq. (3), it is seen that eq. (1)
is cast in the form of eq. (6) when the following iden-
tification 1s made.

RO =32¢)"2{s, x}, @
in which case
)2 =p2™)q%() . ®)

It can be noted in passing that eq. (4) reduces to the
simpler form given by eq. (8) if {¢, x} is taken to be
zero. This particular case is equivalent, within the
present scheme, to approximating eq. (6) to the homo-
geneous form eq. (2). Superficially, the difficult prob-
lem of solving eq. (4) has been transformed to solving
another difficult one, eq. (6). This is not so as alterna-
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tive techniques, such as the standard Green function
method [17], exist to deal with-inhomogeneous-like
equations, whereas the involved mathematical struc-
ture of eq. (4) 15 hardly manageable, ever in supposed-
ly simple situations. Furthermore, within the present
scheme, once an appropriate comparison momentum
q2(r) has been selected, the transformation ¢ = #(x)
can be determined exactly by using the following
equations [10]:

[ 1@ dr= [ 1@ ©)
to *o

and

f1+1 Xj+1

| 1@P@PPar= [ 122 bk, (10)
U xi

where ¢ is an arbitrary integration constant, arising
from the solution of the first-order differential equa-
tion (8); ¢, is a classical transition or turning point of
the transformed potential, set in correspondence with
the classical turning point x; of the true potential.
The quantity q>{r) involves the determination of

n — 1 parameters from eq. (10), r being the number
of classical turning points.

Where in the conventional treatments of comparison-
equation and uniform approximations [10-12,15,16],
several semiclassical approximations are made to ob-
tain egs. (9) and (10), within the present scheme they
are exact relationships. The one-to-one correspondence
between the classical tuming pomnts of true and trans-
formed potentials guarantees the continuity of the
transformation for real potentials.

Once 7 = 1(x) has been determined exactly, one
turns to the solution of eq. (6) for @{¢). From knowl-
edge of r and ¢(r) there follows from eq. (3) the value
of y, the solution to eq. (1). There are currently avail-
able alternative analytical techniques [17,18], and
numerical methods [1—9], which make use of the
homogeneous form

[d2/dr + g%()] dg(DH =0, an

to solve the inhomogeneous-like equation (6). The
cemparison method adopted in this Letter is sirmlar

in some respects to, but somewhat more general than,
Gordon’s reference potential method. To keep the par-
allelism with Gordon’s approximate potential ap-
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proach (a propagator procedure), the advantages of
the preceding scheme will be illustrated using the varia-
ation of parameters treatment (special method of per-
turbations) [18]. In this case, if A(¢) and B(¢) are

two analytically exact linearly independent solutions
of eq. (11), the most general solution of eq. (6) is then
expressible in the form

o(6) =a(r) A(e) + B(D) B(1) , (12)

where o(r) and [(r) are functions of f to be determined
[17,18]. The constraint

&A+fB=0, (13)

where & = dafdt and f§ = dB/dz, will be adopted in this
paper [4,5]. Substituting eq- (12) into eq. (6), and
using eqgs. (11) and (13), yields:

&(r) = —~W; [A4, B1Bh(:)[2A4 +AB] ,
B(ry = w;l[4,B] Ak(t) [aA +6B] ,

where W, [4,B] denotes the Wronskian of the two
real independent solutions to eq. (11) and is a constant.

(14a)
(14b)

3. Test calculation

The Morse potential is written as [19]

U(x)=D expla(gg — x)] {expla(ty — x)] — 2}, (15)

where D and z are empirical parameters and Eg is the
equilibrium distance paramncter. The Morse potential
has been an excellent test case for the zffectiveness
of several numerical methods for bound states. As is
well known the radial Schrodinger equation correspond-
ing to the Morse potential (0 < r < ) is not exac*ly
solvable analytically [20]; its one-dimensional ana-
loque (—ee < x < o) is, however, of a particularly
tractable form analytically, yet it must receive a care-
ful numerical treatment. Slightly different versions
of the Morse potential have been used to model dou-
ble well potential [21,22] and other rather broad
problems [23,24].

Over a certain range of conditions, the Morse po-
tential in the one-dimensional case is seen to describe
well the perpendicular motion of atoms ©r molecules
incident on a solid surface [25] ** This particular
multichannel problem will be the subject of a forth-

** For a recent review, see ref. {26], also, see, e.g. ref. [27].
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coming article [28]. The potential described by eq.
(15) (—oo << x <=) is regarded as a good candidate
to test the proposed method.

In the notation of ref. [19] the exact bound-state
eigenenergies for the Morse potential are given by {19]:

k2 =2mE/m?, K2=-1a2p?, (16)

where b= — 1,8=2(a+d),d = (2mD)Y/2/fz. In eq
{16) K2 represents the square wavevector.

The exact wavefunctions are given in terms of con-
fluent hypergeometric senies [29]. The series become
polynomials when =0, —1, —2, etc. Also, for bound
states, b must be positive definite. Using atomic units
throughout the next and takinga=3,d=7/3 and m
= 1000, there are just two eigenstates with correspond-
ing energy levels: £ = —0.4114 €V and £y = —0 0850
eV. These are derived from the expression for the eigen-
energies for the Morse potential:

E, = —(1/2m) Gafi)’ [2(d — n) — 112 . a7n

In solving the Schrodinger equation for the Morse
function within the present approach, the reduced
quadratic reference potential v(f) = § 12 was employed
[4,11,30]. This approximation to the true potential
gives rise to Weber’s canonical equation [29,31]

d%golds® + (e —3 2)py =0, (18)

where €is an as yet undetermined parameter, indepen-
dent of r. Two exact linearly independent solutions

to the homogeneous form eq (11) in terms of con-
fluent hypergeometric functions are given by [29]

A@ = [T +1)] exp(-52) M(e, £;46%),
{19a)

B(®) = [@m)'2/T(a’)] exp(—§1%) tM(a’ +1,3;172),
(19b)

with a' = (1 — 2€)/4. Two stationary solutions of eq.
(18) are obtained with &’ = 0, —1 and the € values so
obtained are zeroth-order soiutions to the “eigenvalue”
problem of the homogeneous form corresponding to
eq. (6).

Using the zeroth-order solutions as a first approx-
imation, eqs. (14) may be solved iteratively between
two points suitably removed from the turning points,
where the wavefunction approaches zero. One may
then seek a solution where the nuinber of zeroes is 1n

40

CHEMICAL PHYSICS LETTERS

4 January 1985

agreement with the oscillation theorem. Instead, eqgs.
(14) were numerically integrated, utilizing a solver
from the open literature and using eqs. (19) as inde-
pendent solutions to eq. (18); the initial conditions
were chosen such that the approximate wavefunctions
matched the exact ones at the point where the inte-
gration began.

The exact normalized bound-state wavefunctions
are shown as solid lines in figs. 1a and 1b. The com-
puted approximate wavefunctions corresponding to
the exact eigenenergies are represented in the draw-
ings by dashed lines. They are graphically indistinguish-
abie from the exact solutions up to values about r==2 0
in fig la, and up to vahies about r =~ 2.5 in fig. 1b.
The numerical results are most encouraging. Indeed,
up to those values of r the agreement was more than
99_8%. Dotted and dash-dotted curves illustrate
the solutions obtained when the energy values were
chosen to be about 4% less than (dotted) or greater
than (dash-dotted) the exact eigenenergies. In the
former case the wavefunctions do not turn down as
much, failing te match the node to the right of the
first (second) turning point in fig. 1a (fig. 1b); for
large distances the “wavefunctions™ go to +eo. This
behavior is to be expected from an analytical treat-
ment of the problem. In the latter case the “wavefunc-
tions™ peak sooner and they descend more rapidily
than the corresponding exact wavefunctions It can
be noted, again as expected, that: () the “wavefunc-
tions” exhibit more nodes than required, and (b) the
‘““wavefunctions’ to go —oo,

The best matching of boundary conditions of the
computed wavefunctions yields Eg(oomp) = —0.4115
eV and £y (comp) = —0.08B51 eV, these values are in
good agreement with the exact energy levels.

The perturbation-like inhomogeneous term A(z)
defined in eq. (7) was evaluated numerically (restlts
not shown) using the defining eqs. (5) and (8). It was
seen to contribute order 1% through the main range
of integration. In the very near transition points re-
gions where the zeroes of pz(x) are located, it was
found to be dominant, as expected from physical
considerations Further, 1t took its largest value well
away to the right of the second classical turning point,
where the Morse function differs substantially from
the quadratic comparison potential given by eq (17).
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Fig. 1. Comparison of the results of the analytical and numerical methods of calculation of normalized eigenfunctions, correspond-
1ing to the two siationary states of the Morse potentizl for the parameters given in section 3. (a) Eg = —0.4114 eV, (b), E, = —0.0850
eV. Solid lines: analytical solutions; dashed lines: numecrical solutions generated using the exact eigenenergy value. The agreement
of the computed and the exact bourid-state eigenfunctions is excellent even for the lowest eigenvalue. Dotted (dash-dotted)

lines: numedcal solutions obtained using an energy value lower (higher) than the ¢xact one by about 4%
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4. Discussion

In this Letter, a judicious amalgamated scheme to
solve the Schrodinger equation, has been presented
and applied to a model calculation using the Morse
potential. Wherc other methods involve the semiclas-
sical approxarmation, in which the Schwartzian deriva-
tives term 1s negleted, and have limitations on the size
of the integration steps (for proper adjustments to
the true potential), in this method such drawbacks
are removed.

In principle, one could further elaborate on pur-
suit of thz analytical solution of the inhomogeneous-
like equation (6) if the Schwartzian derivatives were
easy to evaluate analytically. This 1s not, however,
the case, the reason being that the new spatial coor-
dinate r is not expressible in terms of elementary
functions of the old spatial coordinate x. Nevertheless,
whenever the true potential has an analytical well be-
haved form, the Schwartzian derivatives are quite
readily evaluated numerically.

Since the comparison potential may be properly
selected for large integration regions, the integration
step lengths that can be used in the calculations have
no great limitations. Moreover, boundary conditions
are to be matched only at the beginning and at the
end of the integration region, v-ith great speed advan-
tage in the computational work. An extension to mul-
tichannel problems, where this approach is seen to be
most useful, 1s the subject of a forthcoming paper [32]
An application of the present scheme to inelastic
atom—solid surface scattering where order one hundred
channels are involved, and using more general poten-
tials, is currently in progress. Finally, it 1s hoped that
the ideas and results outlined in this Letter will stim-
ulate further discussion.
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