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Abstract An alternative  and  somewhat  systematic 
definition of the  vector  spherical  harmonics,  in analogy 
with the  commonly  used  scalar  spherical  harmonics, is 
presented.  The  new  set of vector  spherical  harmonics 
satisfies the  properties of orthogonality  and  complete- 
ness.  and is compared  with  other  existing  definitions of 
vector  spherical  harmonics.  Some  applications  to  prob- 
lems  in  magnetostatics  are  illustrated. 

1. Introduction 
Vector  spherical  harmonics (VSH) have  been  used 
in the  expansion of plane waves to  study  the  ab- 
sorption  and  scattering of light by a  sphere  (see,  for 
example.  Bohren  and  Huffman  1983).  They  have 
also  been widely used in nuclear  and  atomic physics 
(see,  for  example,  Blatt  and  Weisskopf  1978). 

The  definitions of the  various  existing  sets of VSH 

in different fields of physics are  often  dictated by 
convenience.  For  example,  one  method of defining 
such  sets  makes  use of an  operator which is propor- 
tional t o  the  usual  orbital  angular  momentum 
operator of quantum  mechanics.  When  this 
operator  acts  upon  the  scalar  spherical  harmonics 
(SSH) function, it generates  one  (out of a  triad  of) 
VSH. The  purpose of this  note is to  develop  an 
alternate  set of VSH which is particularly  useful in 
classical electrodynamics. An alternative,  simple 
treatment  based on SSH uses  the  scalar  Debye 
potentials  (Gray  1978a,  Gray  and  Nickel  1978). 
The  layout of this  paper is as follows. In 52 we 
present  a brief review of SSH, 63 is devoted  to  the 
definition  and  formal  properties of VSH and finally, 
in $4, we illustrate  the  usefulness of the VSH 

defined in 8.3 with  several  examples  dealing  with 
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Zusammenfassung Eine  alternative  und  mehr sys- 
tematische  Definition  vektorieller  Kugelfunktionen, 
analog zu den  gewohnlich  verwendeten  skalaren  Kugel- 
funktionen wird vorgectellt. Der  neue  Satz  vektorieller 
Kugelfunktionen erfullt die  Orthogonalitats-  und 
Vollstandigkeitsbedingungen: er wird  verglichen  mit 
vorhandenen  anderen  Definitionen  vektorieller  Kugel- 
funktionen  und  zur  Veranschaulichung auf Probleme 
der  Magnetostatik  angewendet. 

magnetostatic  multipole  moments  and  related 
electromagnetic  problems. 

2. Review of scalar  spherical  harmonics 
This  review is intended  primarily  to  define  notation 
and  underscore  the  parallel  between  the use of SSH 
and  the VSH to  be  introduced in 83. Familiarity 
with  the  properties  and  uses of the SSH at  the  level 
of development  presented in the  standard  elec- 
tromagnetism  text of Jackson  (19751 will be  as- 
sumed.  Where  possible we will follow the  notation 
of Jackson. 

A crucial  property of the SSH. U,,,, ( 8 .  C$ I .  is the 
completeness  or  closure  relation.  i.e.  any  arbitrary 
function g of 8.6  can  be  expanded as 

g ( & + ) =  c Ao,,I'~,,l(8.+1. (2.1) 

Further. if g is a function of other  variables,  e.g. S 

and r. then  the  expansion coefficients A,,,, are  func- 
t ions of these  additional  variables.  The  computa- 
tion of the  expansion coefficients is made  relatively 
simple by the  orthogonality  condition 

f d.RY?,,(B. 4)I',,,J& 6 ) =  6 , d  ,,,,, (2 .2)  

I = ( l  P > >  = ~ I 
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where d R =  sin 8 dB d 4  and  the  integral J d R  is 
over  the  whole  range of angles 8, d. The coeffi- 
cients  are given by 

(2.3) 

The  evaluation of the coefficients is often  simp- 
lified  using the  symmetries of the SSH, namely, 

yi,(e, 4 + n )  = (-1)"'yI,,,(e. 4 )  
Y[, , , (~-  e. 4 )  = (-i)l*mYl,,,(e, 4 )  (2.4) 

Y l m ( n - ~ . ~ + n ) = ( - l 1 1 Y l ~ , ( 8 , 4 ~ .  

One of the  reasons why the SSH are useful  in 
physics is that  they  behave in an  exemplary way 
when  operated  upon by the  Laplacian V-: 

The  simplifications  that  can  be  achieved  with  spher- 
ical harmonic  expansions  are  evident in the  Poisson 
equation V'QE= -457~. Expanding  both @E and p, 

%(rl %41= c 1 C,,,(r)Ylm(0, 4 )  (2.6) 
I m 

the  Poisson  equation  becomes 

Since  the coefficients of the  expansion  for V'QE 
must  match  the coefficient for p we are  left with 

The  angular  dependences  have in  effect cancelled 
out  and  we  need  deal  only with an  ordinary 
differential  equation. 

To achieve  a  general  solution of the  differential 
equation given by equation  (2.9)  we  start by con- 
sidering  the  very  special  case pin? = 6 ( r  - r') and  the 
differential  equation 

For  r > r'  or r < r' the  right-hand  side of equation 
(2.10)  vanishes  and  the  solution is simple: 

f = C r '   r < r '  
f =Dr-tl*i1 r > r'. (2.11) 

Notice  that  we  have  chosen  only  solutions  that  are 
well behaved  at  the  origin  and  at infinity. Con- 
tinuity of f a t  r = r'  requires  that D = C(r')''+'. To 
obtain  the  remaining coefficient, C, the  differential 
equation  must  be  integrated  over  an infinitesimal 
range of r from r = r ' -  E to r = r '+  E .  This yields 
C = [ 4 ~ / ( 2 1 +  l)]r"".  Details of the  procedure  to 
obtain C are  to  be  found in Jackson  (1975.  $3.9). 
Introducing  the usual notation 

the  solution,  i.e.  the  Green  function,  can  be 
written 

To obtain  the  solution  to  equation (2.9) we  need 
only  recognise  that  any pi,,, can  be  written  as  a 
superposition of delta  functions. As is well known 

Therefore  the  solution  to  equation  (2.9)  must  be  a 
similar  superposition of f s  as given by equation 
(2.131: 

If we now  require  that  the  charge  distribution p 
be  bounded in extent,  and  we  ask explicitly for  the 
value of C,, at  a  value of r  outside  the  source, we 
have r = r, in the  integrand  and 

(d'x = r'dr  dR) which are  characteristic of the 
charge  distribution  are called its multipole moments, 
and  the  expression  that  results  from  substituting 
equations (2.161 and  (2.17)  back in equation  (2.6), 

= - 4 ~ 8 ( r ' - r ) .  (2.10) 
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is called  the  multipole  expansion  for  the  potential. 
Equations (2.17) and  (2.18)  provide  an  explicit 
straightforward  recipe  for  obtaining  the  potential 
outside  any  given  charge  distribution.  The  entities 
described as scalar  spherical  harmonics,  reviewed in 
this  section,  are  also  described as irreducible  ten- 
sors,  a  notation which describes  their  transforma- 
tions  under  rotation of axes. 

3. Definition and properties of vector  spherical 
harmonics 
We  begin  this  section by attempting  to  construct 
vector  functions  having  the  same  desirable  proper- 
ties,  namely,  orthogonality  and  completeness  as  the 
SSH. Perhaps  the  most  obvious way to   do this  would 
be  to  treat  each of the  three  components of a 
vector  as  a  separate  scalar  field: 

E ( r , 8 , ~ ) = E , E ' t 2 e E H + 2 m E ,  

Since  the SSH form  a  complete  set  such  an  expan- 
sion is permitted.  Whether  the  expansion is useful 
is a  separate  question.  Consider,  for  example,  an 
equation  like V E = f. We  might  hope  that  equa- 
tion  (3.1)  and  the  usual  scalar  spherical  harmonic 
decomposition of the  scalar  function f :  

would give us a  decomposition of V E = f from 
which the 'coefficients' El,,,, E:,,,, E L ,  fIm  could  be 
picked off and  related.  All  angular  variables  would 
be  swept  aside  and  the  problem  would  be  trans- 
formed  from  a  partial  differential  equation  to  an 
ordinary  differential  equation in r.  This,  however, is 
not  the  case. To see  this,  take  the  divergence of E 
in equation (3.1): in  spherical  polar  coordinates  we 
have 

l a  
V . E = - - ( r ' E ' ) + - - E *  1 8  

r 2  ar  r sin 8 84 

+--(sin BE'). (3.2) 
1 d  

r sin 8 d e  

If we  use  equation  (3.1)  for  the  second  term  on  the 
right,  we  obtain  a  term  proportional  to Yl,,Jsin 8. 
The  angular  dependence  for  the /m term is then 
not  simply Y,,,, and it is thus  not  possible  to  cancel 
all the Y,,,, in an  equation  like V E = f. Equation 
(3.1) is thus  not  useful.  Further,  an  attempt  to 
expand  the Cartesian components E", E', E' in 
terms of Yln, would  be  at  least  as  frustrating  and no 
more  rewarding.  This is due  to  the  fact  that  the 

components of a  vector field do  not  behave  as  a 
scalar field. 

The  above  exercise  seems  to  indicate  what  the 
correct  approach  should  be  to  require  from  the 
outset  that  operations  involving V give simple  ex- 
pressions.  In  quest of this  we  now  take  a  scalar field 

1=0 m="[ 

and  obtain  a  vector field by forming its gradient: 

Seeking simplicity we  require  that  the  gradient of 
a  spherical  harmonic  expansion  be itself a  spherical 
harmonic  expansion.  Equation  (3.4)  then is the first 
glimpse of a  vector  spherical  harmonic  expansion. 
Notice  that while the  radial  part of the  vector Of is 
expanded simply with Ylm (at  least  the first term in 
equation  (3.1)  was  right!)  the e,, 2, parts  are  ex- 
panded in terms of a  new  mathematical  object, 
VY,, , .  This  motivates  the  following  notation 

W[,,,(@, 4 ) = r V Y l , , , ( 8 ,  4).  (3.5) 
The r factor  helps  making W,,, like Y,,,,, dimen- 
sionless. 

Is this all there is? Consider  another  vector  equa- 
tion we might  encounter 

A = E ,  x B.  (3.6) 

Now if B = W,,,, (a  one-term  expansion)  we  have 

A 2, X W,,,,. (3.7) 

The  vector A cannot  be  expanded in terms  such as 
Y,,,,E,, the  reason  being  that A is orthogonal  to E , ;  
likewise, A cannot  be  expanded in terms of W[,,,, 
since A is orthogonal  to Wl,,,. There is no  alterna- 
tive  but  to  conclude  that E ,  X W,,,, is a new type of 
vector which will be  needed in the  expansion.  We 
thus  define 

a,,,, = E ,  X W,,,, = r X V Yfm. (3.8) 

If we  also allow ourselve5 to define  a  special  symbol 
for  the  radial  part  (e.g. in equation  (3.4)): 

We  now  have  three vector spherical harmonics. 
The  question  whether  our  set of VSH 

i Y,,, W,,,,, @,,, 1 is complete is not  a  simple  one  and 
will be  deferred.  There is a  triad of VSH for  each l 
and m. The  assumption is now made  that all three 
varieties of the VSH constitute  a  complete  set,  i.e. 
any  vector field can  be  expanded as follows: 
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where V;,,,. Vi: and Vi:: are  the  expansion coeffi- 
cients  analogous  to fit,, in equation  (3.3). 

In physics the  overwhelmingly  important  prop- 
erty of the VSH is the way they  are  related  to  the  C 
operator. Specifically, if we have  any  equation  in- 
volving the  C  operator  (as  gradient,  Laplacian,  curl, 
etc)  and if all functions  are  expanded in spherical 
harmonics  (scalars in scalar  spherical  harmonics, 
vectors in vector  spherical  harmonics),  then  the 
angular  dependence will ‘cancel  out’.  Towards this 
end  one  can  readily  confirm  the  relations  among 
scalar  and  vector  spherical  harmonics given in the 
following  compendium: 

--F(rl)Yl,n. l ( 1  r’ T 1) (3.14) 

A few  explicit values of the  vector  spherical 
harmonics Wlm are  presented in table 1. From  the 
definitions it is an  easy  matter  to verify that  the 
following  relations  are  satisfied: 

Yk,,  = (- l)’ny:,,, 
W k n ,  = (-l)t”W:,n (3.15) 
@l,-,,, = (- 1 )”‘@? 111. 

Further,  from  the  defining  equations  (3.5)  and 
(3.8)  we  have 

which greatly simplify the  tabulation of the explicit 
values. 

To  gain confidence  that  our  mathematical  arsenal 
does fill our  needs we turn  back  to  the  problem  at 
the  beginning of this section.  Utilising  equations 
(3.31. (3.10)  and  (3.11) we have 

therefore 

Notice  that  the  angular  dependence  has  cancelled 
out  as  expected;  one is thus  left  with  an  ordinary 
differential  equation. 
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Other  definitions of VSH have  been  given,  for 
example, by Hill  (1954)  who  defines  a  set 
[V,,,,, W,,, X,,,] and by Blatt  and Weisskopf (1978) 
who  define  a  set [ Y;yh.I 1 where (Y - I = O , +  1. The 
connection  between  these  and  the  present  vector 
harmonics is as follows: 

Konopinski  (1981)  and  Morse  and  Feshbach  (1953) 
present in their  popular  books  two  more  definitions 

We  remark  that  with  the  use of group  theory,  the 
discussion by Blatt  and Weisskopf and  the  explicit 
equivalences  (3.19)  between  their  spherical  har- 
monics  and  the  present  ones  should  convince  the 
reader  that  the  vector  spherical  harmonics  do  in- 
deed  form  a  complete  set. A simple proof of com- 
pleteness  based on the  Debye  potentials  has  been 
recently  reported  (Gray  and  Nickel  1978). 

We will now  show  that  the VSH are  orthogonal in 
the  same  sense as the SSH, and  that  the VSH have 
useful  symmetry  properties. 

First of all we note  that  at  a  point,  for  the  same 
values of I, m, there is a  trivial  orthogonality which 
follows  from  the  definition of Yl,,,, W,,,, and a,,,,. 

Of VSH. 

Yl,,, * W[,,, = 0 
YIP,, * ah,,, = 0 (3.20) 

W[pm a,, = 0. 
More  relevant  ale  the  orthogonality  properties 
analogous  to  equation  (2.2),  and valid for all I .  l ' ,  
m.  m' .  

= dRW,,,, a:,, = 0. 

Although  equations  (3.21)  are  not  obvious,  they  are 
easily verifiable  from  equation  (2.2)  and  the  defini- 
tions of the SSH. We  mention in passing  that  the 
factor I ( l  + 1) in equations  (3.21)  could  have  been 

incorporated in the  definitions of W,,, and a,,,, to 
make  the  vector  spherical  harmonics  orthonormal. 

Using  the  above,  the  expansion coefficients in a 
vector  spherical  harmonic  expansion  are  relatively 
straightforward,  namely, 

with the coefficients V;,,,, Vi::, V;:: being 

V;,,, = d R V  * Y;",, 5 

4. Magnetostatic multipole moments 
Our goal here is to  develop  a  formalism  for  multi- 
poles of the  magnetic  induction  field, B.  similar to 
that  (see  $2)  for  those of the E field.  This will be 
possible because  for no current ( J =  current  den- 
sity)  at  the field point 

(4.1) 
C 

and  therefore  there  exists  a  function QM, the 
magnetic  scalar  potential,  from which we can find 
the  magnetic  induction field as 

B = -V@.,. (4.2) 

This  scalar  :unction  can  be  expanded in a  manner 
precisely  an .logous to  the  expansion in equation 
(2.18) 

since  this is the  general well behaved  solution of 
C B = -T2QM = 0 ;  the  quantities MI,,, are  the  mag- 
netostatic  multipole  moments  for  the  field. 

Notice  that in general we cannot  use Q., directly 
to relate M,, ,  to  the  current  sources J ,  the  reason 
being  that 0, has  meaning  only  where J =  0. 

The  vector  potential is related  to  the  current 
sources  through  the  equation 

C X B = V X ( D X A ) = - J .  (4 .4)  

From  equation  (4.4)  the  differential  equation  for 
A:? is seen to be: 

4 a  
C 
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where  equations (3.121 have  been  used.  Equation 
(4.5) is identical in form  to  equation (2.9) so that 
the  solution is found similarly. For  the  delta  func- 
tion  source, Ji:= 6(r-r '),  we obtain  the  Green 
function: 

For  a field point r outside  the  source ( r  larger  than 
any r') the  solution of equation (4.5) is then 

which for  now is written  as follows 

(4.8) 

The  last  equation  above  can  be  formally  used  to 
calculate  the  magnetic  induction  field: 

(4.9) 

a  result which is in agreement  with  equation (4.2). 
A comparison of equations (4.2),  (4.3) and (4.7)- 
(4.9) yields 

therefore 

(4.10) 

We  point  out in passing that  the  multipole  ex- 
pansion of B can  be  derived  directly,  without using 
A, utilising either  the  simple  Debye  potential  treat- 
ment  (Gray 1978a), or  the  simple  radial  component 
r B (Gray 1978b). A magnetostatic  multipole  ex- 
pansion using the  scalar  potential  approach  and 
employing  Cartesian  tensors  has  been  recently  re- 
ported  (Gray 1979). 

Using  the  definition  and  properties of Q[,,,, it can 
be  readily  shown  that  equation (4.11) can  also  be 
written in the  alternative  form 

a  result which can  be used without  any  reference  to 

VSH. It is worth  noting  that  the  expression  for MI,, 
given  in equation (4.12) has  been  derived  for  the 
static  problem by Bronzan (1971, see  also  Bronzan 
1982), using the  magnetic  scalar  potential.  Bron- 
zan's  derivation  has  been  greatly simplified by Gray 
(1978b1, who  proceeds  directly  from  the Maxwell 
equations. 

Consider  as  a first example  the  familiar  case of a 
circular  wire  loop of radius R carrying  current I. 
Far  from  the  loop  the  magnetic  induction field will 
be  predominantly  a  dipole field (lBI - F 3 ) .  We 
place  the  loop in the xy plane  with  its  centre  at  the 
origin,  and  compute  the  dipole ( 1  = 1) coefficients 
from  equation (4.11) and  from  the  vectorial  current 
densitv 

Notice  that  the  'radial'  delta  function  has  the  di- 
mension of an inverse  distance.  The 'R '  in the 
denominator of equation (4.13) serves  then  to  en- 
sure  that  the  current  density  has  the  right  dimen- 
sions. 

The  multipole coefficients of J are 

- 6 ( r - R )  dRk,. 
I 
" 

2R J 
a l a  {"z Yt,-$" sln 8 Y?,,,]S (cos 8 )  

- I S ( r - R J 1 ,  
;leY?,n1R=712d4. 
a -_  

2R 
(4.14) 

The  dependence of Y k  is exp(-im4)  and 
J;"exp(-im$~) d 4  = 0 so the  integral in equation 
(4.14) vanishes unless m = 0. i.e., 

r:2:, = 0 
~ ' ~ ~ ~ = 2 ~ 6 ( r - R ) 2 r r - Y ? ~ , 1 , = , , ~  I a (4.15) 

a0 

TI 
R 

=---6(r-R)(3/4n)"?. 

It can  be  readily verified from  equation (4.11) that 
MI _, = 0. Also. 

MI,,=--(3/47r)  r'G(r--R)dr 
T I  

RC I 
=IR - - - ( 3 / 4 ~ ) " ~ .   ( 4 . 1 6 )  

C 

The  magnetostatic  potential,  to  dipole  order is, 
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therefore, a 

Equation  (4.17)  can  be  written  in  the  same  form as 
that of an  electrostatic  dipole 

@ M =  - m e r  
r 3  

(4.18) 

where m denotes  the  magnetic  dipole  moment 
which characterises  the field. The  correspondence 
of m and Mlo could  have  been  written  down  intui- 
tively. An  electrostatic  dipole coefficient  is as- Figure 1 
sociated with a  dipole  component  (see,  e.g.  Jackson 
1975  p 137) 

p ‘  = ($.x)”2q10. (4.19) l = 2 yields at  once 

It  follows  therefore  that M2.o = M2.*z = 0 

(4.20) 
c 

Consider  as  a  second  example  a  current  path 
consisting of two  D-shaped  rings  each of radius a,  
as  shown  in  figure 1. It is ‘intuitively obvious’  that 
there will be no net  dipole  moment  (the  dipole 
moment of the  two Ds cancel), so the  distant 
magnetic  induction field will be  at  most  a  quad- 
rupole field. 

We follow the  same  procedure  to find M z ,  as  we 
did  to find the  dipole coefficients of the  ring.  The 
current  distribution is 

The  leading  magnetic  induction field at  large  dis- 
tances  then  can  be  found  from  the  potential 

It is possible  to  describe  this field with a  symmet- 
ric quadrupole  tensor Q,  from  the  relations  (see, 
e.g.  Jackson  1975  p  137). 

4ia31 ( 1;) li2 - 1 ( 15)  
M,,=-? S ”_ - (Qxy - iQ,, 

Since e, * @L = 0, the  third  part of the  current gives 

the  other  contributions.  The  integration J J @L d 4  

3 8i-r 

no  contribution  to $2. Consider  the  integration  for M20 = 

- 
will have  the  form  Jzexp(-im4) d 4  - 
J:nexp(-imq5)d4. We  conclude  that m must  be (4.25) 

odd  for  a  nonvanishing $2 and  that,  for  odd m, For  this field, then,  the  only  nonvanishing  quad- 
{ exp(-imd) d 4  can  be  replaced by -4i/m.  rupole  component is 

to  arrive  at  equation  (4.14),  finding  now  that  4a’I 
We now take  precisely  the  same  steps  as  we  did 

Q =--, 
Y Z  (4.26) 

S ( r - a )  - Y ~ , J ~ = , , ~ .  (4 .22 )  The  magnetic  induction field, of course, will be 
3am ae precisely  the  same as an E field described by 

equation  (4.24). A simpler  example  where  the  lead- 
Substitution of this  result  into  equation  (4.11)  with ing multipole is the  quadrupole, is two  loops  of 

C 

p ,  = - - 2iI  a 
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equal  and  opposite  dipoles  (Gray  1979).  Introduc- 
tory  accounts of multipole  expansions, using both 
spherical  and  Cartesian  tensors  and  the  relations 
between  them  are  found in the  literature  (see,  for 
example,  Gray  and  Gubbins 19831. 

5 .  Concluding remarks 
The new results of this report  are  the  definitions of 
vector  spherical  harmonics  through  equations ( 3 . 5 ) ,  
(3.8)  and  (3.9).  We  emphasise  that  their  develop- 
ment  assumes  nothing  more  than  a  familiarity with 
the  properties  and  usage of the  scalar  spherical 
harmonics.  Indeed.  the  vector  spherical  harmonics 
are  formulated in analogy  to  the  scalar  spherical 
harmonics.  We  remark  that  provided  one is not 
going  to  do  transformations of axes,  one  can  have 
scalars  and  vectors as they  are in the  present  paper. 
but  as soon as transformations  are  introduced  the 
description given  in  this paper is not  adequate. 

Several  convenient  approaches  for  treating  radia- 
tion fields using vector  spherical  harmonics  have 
been  recently  reported  (Gray  1978a.  b,  1979,  Gray 
and Nickel 1978.  Lambert 19781. We  have  seen by 
way of illustrative  examples  that  certain  problems 
in magnetostatics  offer  straightforward  solutions in 
terms of vector  spherical  harmonics.  Furthermore. 
combining  the  approach by which the  vector  spher- 
ical harmonics  are  introduced in this  article with 
the  usual  expressions  for  the  multipole  expansion 
of a plane  wave.  standard  electromagnetic  scatter- 
ing problems can be easily worked  out.  These 
features  should  render this article useful to  senior 
undergraduate  and  graduate  students. 
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