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We develop a simple transfer-matrix formalism in order to obtain the dispersion relation of the
electromagnetic normal modes of an infinite insulator-metal (or highly doped semiconductor) super-
lattice, taking into account the presence of plasma waves, spatial dispersion, and retardation. We
also calculate the p-polarized reflectance and give analytical expressions for the surface impedance,
reflection amplitude, and the dispersion relation of the surface modes of a semi-infinite superlattice.
We find resonant features corresponding to the propagation of guided plasma waves in the metal
layers coupled by transverse fields in the insulating layers. This coupling also yields new bulk modes
in regions where propagation would not be allowed without spatial dispersion.

I. INTRODUCTION

When p-polarized light is incident on a conductor, the
component of the electric field normal to its surface
pushes the conduction electrons towards or away from the
surface, creating an excess of charge. If the frequency w
is greater than the plasma frequency w, of the conductor,
this density fluctuation may propagate as a longitudinal
wave, taking along energy from the incident wave. Thus,
p-polarized light may couple to bulk plasmons at inter-
faces, modifying the reflectance away from its Fresnel
value.! Although the effect of plasma waves on the opti-
cal properties of a semi-infinite conductor is usually
small,? it is resonantly enhanced in thin films near fre-
quencies at which the film thickness is a half integer mul-
tiple of the plasmon wavelength. This resonant coupling
with guided plasma waves in thin films was first predicted
by Farrell® and Stern,* and was first observed by Lindau
and Nilsson® and by Anderegg et al.® The importance of
nonlocality or spatial dispersion for the correct under-
standing of this coupling was first pointed out by Melnyk

and Harrison.”” Numerous studies of this effect have
been performed using hydrodynamic,®~'° semiclassical,'!
12—14

and microscopic many-body theories.

Since the coupling of longitudinal and transverse waves
is an interface effect, it may be further enhanced in super-
lattices in which the interfacial area is proportional to the
volume.”® Technological advances in epitaxial growth
have permitted the synthesis of high-quality heterostruc-
tures made up of alternating thin layers of lattice matched
semiconductors, a few nanometers thick. Their novel
electronic properties have been the subject of extensive
studies.'®

The alternating layers of a superlattice originate a
periodic modulation of the crystalline potential, which
constrains the electronic motion in one direction and ori-
ginates a series of two-dimensional (2D) bands. By popu-
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lating only the first 2D band, a quasi-two-dimensional
electron gas is produced near each potential minimum.
This gas behaves as a 2D conductor since the electrons
can move freely along a plane, but a finite amount of en-
ergy is required for them to oscillate along the superlat-
tice.!” Similar results hold for holes.

The collective modes of an isolated, as well as those of
infinite and semi-infinite, periodic array of a quasi-2D
electron gas, have been studied recently using hydro-
dynamic'® and many-body theories.!””'*?® The results
show that each 2D conductor can sustain a 2D plasmon
which propagates parallel to the interfaces with wave vec-
tor Q and frequency w «< V' Q. Its electric field extends
beyond the electron gas, coupling the 2D plasmons of dif-
ferent layers and giving rise to bulk and surface plasmons
for the infinite and semi-infinite superlattice. Its disper-
sion relation changes from 2D-like to 3D-like as the
strength of the coupling is increased.

Qualitatively different systems, not as extensively stud-
ied, are obtained by increasing the density of carriers, ei-
ther by heavy doping®""?? of a semiconducting superlattice
or by fabricating a metallic superlattice.”> Then, either
one or both kinds of layers comprising the heterostructure
may behave as a 3D conductor. The normal modes of
these systems have a rich structure and they include the
following: (i) surface plasmons propagating on each inter-
face and coupled among themselves by the tails of their
evanescent fields, giving rise to Bloch waves, (ii) guided,
internally reflected, transverse waves in the more dense
layers coupled by the evanescent field in the less dense
layers, (iii) extended transverse waves in both kinds of
layers coupled at their interfaces, (iv) guided plasmon
waves in metallic layers coupled by evanescent or propa-
gating transverse waves in dielectric layers, etc.

The first modes mentioned above and their interaction
with external probes such as Raman scattering®* have
been studied in the nonretarded limit for finite,?® infinite,

1088 ©1987 The American Physical Society



and semi-infinite superlattices.?®=2® The propagation of
transverse waves in multifilm systems is well understood
and is of importance in the design of dielectric mirrors,
interferometers, and antireflection coatings for optical ele-
ments.!

Very recently Eliasson et al.*! have studied the modes
arising from the coupling of guided and evanescent
plasmons in a spatially dispersive metal-metal superlattice
ignoring retardation. The effects of spatial dispersion
have also been considered by Agranovich and Kravstov,!*
who obtained expressions, within an effective-medium ap-
proximation, for the macroscopic dielectric tensor of a su-
perlattice made of very thin layers of excitonic semicon-
ductors. However, to our knowledge, the modes arising
from the coupling between plasmons and transverse elec-
tromagnetic waves in superlattices have not been investi-
gated previously.

The purpose of this paper is the study of the elec-
tromagnetic modes and the optical properties of metal- (or
heavily doped semiconductor) insulator superlattices, tak-
ing into account retardation, the spatial dispersion of the
metallic layers, the propagation of bulk plasmons, and
their coupling with transverse waves at the interfaces. We
use a novel approach to the problem, consisting of the
construction of a 22 transfer matrix which relates the
electromagnetic field at one interface to the field in the
next equivalent interface. This transfer matrix differs
from the standard transfer matrices appearing in multi-
film optics in that it accounts for the plasma waves inside
the metal. The dispersion relation of the bulk and surface
modes of the superlattice, as well as its optical properties
such as reflectance, are all written simply in terms of the
elements of the transfer matrix without any need for fur-
ther calculations. Since in this paper we concentrate our
attention on the propagation of plasmons and their cou-
pling to transverse waves at metallic surfaces, we use a
simple hydrodynamic model and a particular additional
boundary condition (ABC) of nonelectromagnetic origin.
Therefore we ignore several surface-related phenomena®
which might also be enhanced in superlattices and which
should be considered in more realistic calculations. The
results of the present paper can be considered the zeroth-
order term of a perturbative calculation, where the pertur-
bation parameter is the size of the small surface region
where our description of the fields is not accurate.>

The present paper is organized as follows. In Sec. IT we
construct the transfer matrix and we show how to obtain
from it the bulk and surface modes and the optical prop-
erties of the superlattice. In Sec. III we study our results
in different limiting situations, and we compare them to
those of local theories and of effective-medium theory.
The results of calculations for a model superlattice are
presented in Sec. IV, and Sec. V is devoted to our con-
clusions.

II. THEORY

Let us consider the superlattice, shown in Fig. 1, con-
sisting of alternating insulating and metallic layers of
widths a and b, respectively, stacked along the Z direc-
tion, on which p-polarized and longitudinal waves propa-
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FIG. 1. Metal-insulator superlattice. The wave vectors of the
transverse and longitudinal waves and their projection onto the
interface planes are shown, together with those of the incident
and the reflected light. The coordinate system used and the po-
sitions of the left and the right boundaries of a dielectric and a
metallic layer are indicated.

gate. All waves have the same frequency w, and their
wave vectors lie on the XZ plane with a common X com-
ponent Q. We will construct the transfer matrix of the
superlattice by steps: first we will obtain the transfer ma-
trix of the insulator, then the transfer matrix of the metal,
and finally we will join them making use of appropriate
boundary conditions. We do not consider s-polarized
waves since they do not couple to plasmons.

A. Insulator

Although the transfer matrix of an insulator is well
known, we will show how to construct it in this section in
order to introduce our notation and to show a simple pro-
cedure which will be generalized in the next section, where
we obtain the transfer matrix of a metal.

Given w and Q, and since we are not considering s-
polarized light, there are only two p-polarized waves
propagating in the insulator towards the right and left
with wave vector q+=(Q,0,+q); the z component +g of
the wave vector is determined by the wave equation

w2

’=e—5—0%, (1)
c

where ¢ is the speed of light in vacuum and ¢; is the
insulator’s local dielectric function, whose dependence on
o is left implicit. Then, the electromagnetic field any-
where inside a dielectric layer is determined by any two
independent field components at one point, such as E,(z)
and B,(z), the components of the electric and magnetic
field parallel to the interface. These are in turn related to
the right and left moving contributions to the magnetic
field, B (z) and B_(z), through

E, B,
—4 : @
By z B-— z
where
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4= 1 1 ’ (3)
and
z, =2 (@)
€10

is the surface impedance of the insulator. Here, we have
left implicit the dependence e‘‘@* =" of all field quanti-
ties.

Since B_(z) and B_(z) are plane waves propagating
with wave vectors g and — g, respectively, they are related
at different points z and z’ inside the insulator through

Pl Cpee |2 (5)
= —2Z N
B_ |, ~&1Y% B_ |,
where

Ti(z —z')=diag(e’?'? =%, ¢~z =2") | (6)

and diag(---) denotes a diagonal matrix constructed
from the arguments (- - ). Finally, from (2) and (5) we
immediately obtain the transfer matrix

cos(gqa) iZ;sin(qa)

1=AT(a)4A " '= , (7

iYysin(ga)  cos(ga)

which relates the electromagnetic field at zf, the right
boundary of the insulator, to the field at zf, its left boun-
dary (see Fig. 1), through

EX EX
By z,RzMI By ZIL, (8)

where a =zR—z} is the insulator’s width and ¥, =1/Z;
its surface admittance.

B. Metal

The transfer matrix of the metal layers is obtained fol-
lowing the steps of the preceding section. However, be-
sides a right and a left moving p-polarized wave with
wave vectors K, =(Q,0,+k) obeying

™~

kzzeM(w)w—2 —-Q?,
c

9

we include a right and a left moving longitudinal wave
with wave vector I, =(Q,0, +]) obeying

ev(l4,0)=0, (10)

where €, is the transverse and €4y the longitudinal dielec-
tric function of the metal. It is assumed that anywhere
inside the metals the field is given by a superposition of
these four waves, that €;, is a local response depending
only on w, and that efu is a nonlocal response which is
function of 12 having only one zero for each w. These as-
sumptions are known as the plasmon pole approximation,
which does not yield a very accurate description of the
fields near metallic surfaces since it neglects several
surface-related effects such as electron-hole pair excita-
tions.”’ However, this is the most simple model to con-
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tain the effects of plasma waves, which constitute the sub-
ject of this paper, and it yields analytical results which are
useful in order to gain physical insight. Where appropri-
ate, we will point out how we expect our results to be
modified by more realistic calculations.

Since there are four waves in the metal, the field any-
where inside the metallic layer is determined by any four
independent components at one point, such as E,(z),
B,(z), E,(z), and #(z), where ¢ is the scalar potential in
the Coulomb gauge. These are in turn related to the right
and left moving contributions to the magnetic field and to
the scalar potential B, (z), B_(z), ¢,(z), and ¢_(2)
through

Ex B+
B, B_
=G , (11
Ez - ¢+
¢ ). o |;
where
Zy —Zy —iQ —iQ
1 1 0 0
G=\_w, —wy —il il |’ (12)
0 0 1 1
Zy = K¢ (13)
Epq@

is the surface impedance of the metal in the absence of
plasma waves, and

Qc

Ep@O

Wy = (14)

is a geometric factor that insures transversality of the
electric field in the absence of plasma waves.

Since B, (z) and B_(z) are transverse, and ¢ (z) and
¢ _(z) are longitudinal plane waves propagating with wave
vectors k, —k, I, and — I, respectively, they are related at
different positions z and z’ inside the metal through

B, B,
B_ B_
¢, | TDulz=201g 1 e
é_ |, ¢ .
where
Ty(z —z')=diag(e® =2, ¢ k(=2
eilz=2) o —illz=2)y (16)

Finally, from (11) and (15) we immediately obtain the
4 X 4 transfer matrix

My =GTy(b)G™', (17

which relates the electromagnetic fields at zjy, the right
boundary of the metal, to the fields at zj, its left boun-
dary, through
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E, E,

B)’ By

g | =Mu|g | - (18)
¢ ) ¢ e

where b :z,f}—z,{} is the metal’s width. We omit the ex-
pressions for the matrix elements of M), since they are
cumbersome and they are obtained straightforwardly.

C. Boundary conditions

In order to join the metal’s 4 X4 transfer matrix with
the dielectric’s 2 X2 transfer matrix, we have to point out
that although E,, By, E,, and ¢ are independent quanti-
ties in an infinite metal, this is not the case in a thin me-
tallic film bounded by an insulator. The four fields are
linearly dependent since they should obey boundary condi-
tions of nonelectromagnetic origin called additional boun-
dary conditions or ABC’s.3""3? There is still some contro-
versy over which are the “correct” ABC’s;>3*3* different
ABC’s correspond to different assumptions about the
structure of the nonlocal dielectric response €p(z,z’) in
real space.’>*® True microscopic models of €y(z,z') do
not suffer from these ambiguities.'?

Given the Coulomb and statistical repulsion between
the conduction electrons in the metal, it is reasonable to
demand that there be no singularities in their charge den-
sity. This, together with Gauss’s law implies that E,
should be continuous at the metal’s surface. For simplici-
ty we adopt this ABC and we ignore the discontinuity of
E, due to the accumulation at the surface of bound
charges. Notice that in the model calculation of Sec. III
there are no bound charges. We will take them into ac-
count elsewhere.

Since Ampere’s law implies that in the insulator
E,=—W;B,, where

W= Qe ) (19
€0
Eq. (18) can be written as
E, E,
B, B,
—W,B, =My | _ W,B, , (20)
¢ @ ¢ |

where we have also used the continuity of B,,.

Equating the third row with the second row of Eq. (20)
multiplied by — W;, a linear relation between ¢, E,, and
B, at z4; is obtained. Solving the resulting equation for
#(zj;) and substituting back in the right-hand side of Eq.
(20), its first two rows become a linear relation between
E, and B, at z,ﬁ and E, and B, at z,{,‘,. We write this re-
lation as

E,
B.V

E,

B,

=My 21

z Zy

Thus, we have used one ABC on each boundary of a me-
tallic layer in order to collapse its transfer matrix from a

4< 4 to the 2X2 matrix Mj,.

The details of the procedure above depend on the par-
ticular ABC chosen, although the reduction of the
transfer matrix’s rank can be performed for any choice of
ABC, as long as the layer is bounded by non-spatially-
dispersive media. By employing appropriate ABC’s our
calculations can be performed for other kinds of spatially
dispersive layers, such as excitonic semiconductors.3!"37
We are currently developing an alternative expression for
the 2 X2 transfer matrix of a metallic film in terms of its
even and odd surface impedances that can be used in or-
der to go beyond the plasmon pole approximation, i.e., it
can be used in situations where the fields are not simply a
superposition of a few plane waves.

The last step in the construction of the transfer matrix
M for a full superlattice period consists of joining M,
and M; using the electromagnetic boundary conditions,
i.e., continuity of E, and B,, which lead to the simple
product

M=MyM; . (22)

Here, M relates the fields E, and B, at z,f, +d, or
equivalently zF +d, to the fields at z&x or z{ through

Ey E,
B, |:f+a Y |B, |5 23

where d =a + b is the superlattice period. A similar ma-
trix that translates the fields one period starting from po-
sitions zi; or zF is obtained by permuting M; and M}, in
Eq. (22).

The final expressions for the elements of the transfer
matrix are

M, =cos(ga)[cos(kb)+puv/D]— Y,y sin(qga) ,

M, =iZ;sin(qga)[cos(kb)+uv/D]+iy cos(ga) , o
4)

M, =iY)ycos(ga)sin(kd)(1+pu /D)
+iY;sin(qa)[cos(kb)+uv/D] ,
M, =cos(ga)[cos(kb)+uv/D]
—Z;Yysin(qa)sin(kb)(1+u /D) ,
where
U=Q(W;— Wy, ) Yysin(kb) ,
v=cos(kb)—cos(lb) ,

in(lb 2 (25)
Yy =Zpsin(kb) — Q(W, — W),) ﬂ‘% 3],
D=!sin(lb)—pu ,
and
Yu=1/Zy .

D. Normal modes

According to Bloch’s theorem, the normal modes of a
periodic system can always be obtained in the form of
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Bloch waves. For an infinite superlattice, this means that
E,

B, , (26)

z

z+d y

where p is the 1D Bloch’s wave vector. Substituting Eq.
(26) in Eq. (23) we find that these modes can only exist
when M —1e™isa singular matrix, i.e., when

|
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det(M —1e?¥) =0, 27)

where 1 is the unit 2 X 2 matrix.
Since det(M ) =1, Eq. (26) can be written simply as

cos(pd)=+(M; +My,) , (28)
or, substituting Egs. (24) and (25), as

cospd = {cos(qa)[l sin(lb)cos(kb) — Q(W; — Wy ) Ypcos(lb)sin(kb)]

+sin(ga) |Q(W; — Wy )Y [1—cos(lb)cos(kb)]
Y,Y
—% ¥, Zyy +12; Yy + — 2

X [I'sin(lb) — Q(W; — Wy ) Yysin(kb)] ',

an expression from which p can be obtained analytically.
Notice that if p is a solution of Eq. (29), then p +27n and
— p +2mn are also solutions for any integer n.

E. Optical properties

We now turn our attention to the problem of the reflec-
tion of light from a semi-infinite superlattice occupying
the z >0 half-space (see Fig. 1). The reflection amplitude
is easily calculated once we obtain the surface impedance
Z =(E,/B,) of the superlattice. This in turn can be ob-
tained from the eigenvector equation

. Ex
(M—1e?) |p | =0, (30)
y Jo
and it is given by
M M,,—e??
Z= I — , (31)

My —eP . My

where, using Eq. (28),
ePl= L (M +Mp) [+ (M1 +Mn)?—11"2 . (32)

Since the transmitted Bloch wave decays away from the
surface or else it propagates towards the right, the correct
sign in Eq. (32) is that which makes |e®| <1 or, if
| 4| =1, that which makes Im(e??) > 0.

The reflection amplitude is given in terms of the sur-
face impedance by

z,-Z
e , (33)
Z,+Z
where
2 2 172
z,= l1— g J =cosé (34)
w

QUW,; — W), )?

sin(/b )sin(kb)] J

(29

is the surface impedance of vacuum and 6 is the angle of
incidence. The reflectance R is simply

R=|r|2. (35)

Finally, the surface electromagnetic modes of the semi-
infinite superlattice are given by the poles of the reflection

amplitude,’®® so their dispersion relation is given impli-
citly by
Z,=—Z. (36)

III. LIMITING EXPRESSIONS

In this section we explore the expressions derived above
in various limiting situations, and we compare the results
obtained with those of previous workers. The local limit
corresponds to the case where the charge density is unable
to propagate through the metallic layers and is confined
in a region of infinitesimal width around the metal-
insulator interfaces. This does not mean that longitudinal
waves are absent in the metal, but rather, that their decay
distance is infinitely small, and therefore the imaginary
part of their wave vector is infinitely big. Taking the lim-
it Im(/)— « in Egs. (24) we obtain the local transfer ma-
trix:

M =cos(qa)cos(kb)— Y;Zysin(qa)sin(kb) ,

M, =iZsin(qa)cos(kb)+iZyscos(ga)sin(kb) , (37)
M, =iY;sin(qga)cos(kb) +iY,cos(ga)sin(kb) ,

M, =cos(ga)cos(kb) —Z; Yyysin(ga)sin(kb) .

Other equations such as Egs. (28), (31), (33), and (36)
remain valid in terms of the local transfer matrix. For ex-

ample, the dispersion relation of the bulk normal modes
(29) becomes
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cos(pd)=cos(ga)cos(kb)

emq €1k
€[k €pmq

1

2

sin(ga)sin(kb) . (38)

The nonretarded limit of the local dispersion relation is
obtained by taking the limit ¢— «, which leads to the
equality g =k =iQ according to Egs. (1) and (9), which
substituted in Eq. (38), yield the local nonretarded disper-
sion relation

cos( pd)=cosh(Qa)cosh(Qb)

L1
2

(3.4 T €
_+_—.

sinh(Qa)sinh(Qb) .  (39)
€r €M

The normal modes obtained from the relations (38) and
(39) have been recently studied in Refs. 26, 27, and 28.
They correspond to surface plasmons in each interface,
coupled to each other by the tail of their evanescent fields,
giving rise to a bulk plasma mode.

If the period of the superlattice is much smaller than all
the relevant wavelengths, then pd, ga, and kb << 1 and a
second-order expansion of Eq. (38) in these small quanti-
ties yields

2

P2d2=%(e1a +eyb)d —Q%era+epb) b
C

a
__+.___
€r 3.7

Isin(lb) | |p

ef 2
2__91 ef QZ fud d?— (€M—-61) Q4ab
EpMES 12

We did not attempt a power expansion in /b since longitu-
dinal waves typically have a much smaller wavelength
than transverse waves, except for a very short frequency
range around ,.

Several properties of the electromagnetic normal modes
of the superlattice can be obtained from a simple analysis
of the dispersion relation (45). First, we remark that for
propagation along the superlattice (Q =0), the normal
modes are either transverse waves propagating with the
speed c¢/(€)'/2 or standing plasma oscillations in each
metallic layer with frequencies w, such that ! =nw/b,
where n is an integer. Since each metallic region is isolat-
ed from the others by dielectric layers, their correspond-
ing plasmons do not interact between themselves and so
the frequency of the longitudinal modes is independent of
the wave vector p, their group velocity is zero, and there-
fore they cannot transport energy.

Notice that even if Q=£0, the even-numbered standing
plasmons whose wavelength fits an integer number of
times in the metal’s width b do not propagate (in the
long-wavelength approximation), since they solve Eq. (45)
for any value of p. The reason for this is that in each
metal they have an equal amount of positive and negative

This relation is equivalent to Fresnel’s dispersion relation

for a uniaxial crystal,*
2
)
pi="5el- 0%/ e, 41)
c

where the dielectric tensor €%f is given by effective-

medium theory; since Maxwell’s equations imply that E,
and D, are slowly varying functions of z, then

€ =(e;a+eyb)/d
and (42)
(e '=(er'a+ex'b)/d .
In this limit the reflection amplitude is given simply by

€fcos6—pe /o
S dudnr ol 43)
€xcos0+pc /o

and the surface electromagnetic modes by

(Eef— 1 )Gef 2

2 x z @

Q =T of of 1 2 ° (44)
Gife';f—— 1 ¢?

Finally, we obtain the dispersion relation of the normal
modes of the superlattice in the long-wavelength approxi-
mation, but taking now into account the propagation of
longitudinal waves. This is done by expanding Eq. (29) up
to second order in pd, ga, and kb, leading to

1

+2[1—cos(ib)] {—1———] “0%d =0 . 45)
€y €Epn

f

charge at each x, i.e.,
z
fz]f:, dz p(x,z)=0,

where p(x,z) is the volume charge density. Therefore, the
electric field produced by the charge distribution is very
small outside of the metallic layers, leading to a negligible
interaction. This cancellation does not occur for the odd-
numbered standing plasmons, whose wavelength fits a
half-integer number of times. From Eq. (45) these modes
correspond to poles of the wave vector p ().

For frequencies o > w,, ®#w,, the modes are a mixture
of transverse and longitudinal waves, and p oscillates
around its local value given by Eq. (41). Finally, if
© < w,, the longitudinal wave vector / becomes imaginary
and large and the local approximation becomes appropri-
ate.

IV. MODEL CALCULATION

In this section we present the results of analytical calcu-
lations performed for a model superlattice, in which the
conducting layers have a Drude transverse dielectric func-
tion
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2
“p (46)

eylo)=1————
M o*+io/T

and a hydrodynamic longitudinal response
2
T2 = 20024 72) ° (47

o +iw/T—BA(Q+17)
where 7 is the electronic relaxation time and /32:3111%/5,
with vy the Fermi velocity of the metal. The factor of +
is obtained from a long-wavelength expansion of
Lindhard’s dielectric response.*> We chose vacuum as an
insulator so that €;=1, and we took 7=100/w, and
UF=0.01C.

In Fig. 2 we show the dispersion relation for a superlat-
tice with @ =b =0.1A, and a fixed value of Q =1.5/4,,
where A, =c/w,. In order to obtain Fig. 2 we gave real
values to @ and then solved Eq. (29) analytically for the
real and the imaginary part of the Bloch’s wave vector p;
the solid line corresponds to the solution with a positive
imaginary part while the dashed-dotted line corresponds
to the solution with a negative imaginary part. Notice
that for some frequencies it is not possible to have both a
positive imaginary part and a positive real part in the first
Brillouin zone. Thus, Bloch waves which decay towards
the right may seem to propagate towards the left.

In order to understand the main features of Fig. 2, it is
useful to compare it with Fig. 3, where we plotted the
dispersion relation for the same system but in the local
limit. This was obtained from Eq. (38) although it is al-
most indistinguishable from the effective-medium result
given by Eq. (40) since we chose such small values for a
and b. We also plotted in Fig. 3 the dispersion relation of
the longitudinal waves w =w, assuming they do not in-
teract with transverse waves at the conductor surfaces and
assuming an infinite relaxation time 7, since they cannot
exist with real frequencies if 7 is finite.

elo)=1

L a=b=0.1Xp 4
— ]
T ne ]
1

-
e —

o] 1 2 3

Im(p)Xp

FIG. 2. Dispersion relation @ vs p of a superlattice with
a =b =0.1A, and with Q =1.5/A,. The real part of p is shown
in the upper panel and its imaginary part in the lower panel.
The solid line corresponds to the branch with a positive imagi-
nary part and the dashed-dotted line to the branch with a nega-
tive imaginary part.

FIG. 3. Dispersion relation w vs p of a superlattice with
a=b=0.1A, and Q =1.5/X,, in the local limit. Also shown
with dashed lines is the dispersion relation of guided plasma
waves in the absence of damping and of longitudinal-transverse
interaction.

At frequencies near the surface plasma frequency of an
isolated metal-vacuum interface, w; =w,/ V2, two propa-
gating normal modes can be seen: one whose frequency
diminishes and another whose frequency increases with
increasing wave vector p. Since these modes have
© <w, <Qc, they are made up of evanescent waves in
both the conducting and the insulating layers, i.e., g and k
are almost imaginary. Actually, they consist of surface
plasmons localized on each interface but interacting
among themselves through the tails of their evanescent
fields, thus giving rise to bulk modes of the whole super-
lattice. Recall that for an isolated thin metallic film there
are two surface plasmons: a symmetric one with equal
charges and an antisymmetric one with opposite charges
on the two surfaces of the film, the former having a
smaller frequency than the latter. When many metallic
films are brought near each other to form a superlattice,
each of these two kinds of surface plasmons gives rise to a
bulk band. These two bands have been studied recently in
Refs. 26 and 27 within the nonretarded limit.

The behavior of the coupled surface plasmon bands can
be discussed qualitatively by referring to Fig. 4, where we
show two of the metallic layers comprising the superlat-
tice and the sign of the charges induced at their surfaces.
We also show with arrows the attraction or repulsion be-
tween the electrons on a selected surface and the charges
on neighboring surfaces. Figure 4(a) shows symmetric
surface plasmons which alternate sign between adjacent
conductors and therefore have p =m/d. It can be seen
that the repulsion of the electrons on the same conductor
and the attraction to the positive charges in the neighbor-
ing conductor press the selected electrons onto the surface,
impeding their motion in the Z direction and leading to a
small frequency of oscillation. As p diminishes towards
zero we approach the situation illustrated in Fig. 4(b),
where charges in the same and in different layers push in
opposite directions therefore subtracting their effects and
leading to a higher frequency. Figure 4(c) corresponds to
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FIG. 4. Surface charge configurations in coupled surface
plasmon bands: (a) symmetric surface plasmon on each metallic
layer alternating sign between layers, (b) symmetric surface
plasmons with the same phase on each metallic layer, (c) an-
tisymmetric surface plasmons with the same phase, and (d) an-
tisymmetric surface plasmons alternating sign. The direction of
the forces “felt” by the electrons in one surface due to the
charges on the opposite surface of the same layer and on the
facing surface of the following layer are indicated.

antisymmetric surface plasmons oscillating in phase. In
this case, charges in the same and in different layers pull
in opposite directions giving rise to a situation similar to
that of Fig. 4(b). Finally, as the phase difference between
adjacent layers increases, we approach Fig. 4(d) where
p =m/d. Here, the attraction to the positive charges in
the same layer and the repulsion of the charges in the fac-
ing surface drive the electrons away from the surface,
leading to a high oscillation frequency. Thus, the situa-
tion in Fig. 4(a) has the lowest and that of Fig. 4(d) the
highest frequency; the relative frequencies of the oscilla-

tions shown in Fig. 4(b) and 4(c) depend on the widths of

the metallic and the insulating layers.

In the nonretarded region, the surface plasmon fields
decay as we move away from the surface, either into the
metal or into the dielectric, with the same decay length
1/Q. Therefore, if a =b, the opposing forces shown in
Figs. 4(b) and 4(c) cancel each other exactly and the sur-
face plasmon on any given surface is undisturbed by the
presence of the other surfaces of the superlattice. Thus
the oscillations in Figs. 4(b) and 4(c) become degenerate
and they have the frequency w=w; of the surface
plasmon of a semi-infinite metal. This degeneracy of the
two kinds of surface plasmon bands at p =0 is broken by
retardation, since it makes the decay length in the metal
[1/Im(k)] smaller than that in the dielectric [1/Im(q)] ac-
cording to Egs. (1) and (9), so that the metallic films ap-
pear to be thicker.

The degeneracy at @ =w; can be seen in the upper panel
of Fig. 3, where the two surface plasmon bands touch
each other at Re(p)=0. The fact that the degeneracy is
not exact can be seen in the lower panel as a small peak in
Im(p) at w=w,. Actually, in the nondissipative limit,
T— 0, a small gap would open at Re(p)=0. On the other
hand, the charges shown at the metals’ surfaces in Fig. 4
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FIG. 5. Dispersion relation @ vs p of a superlattice with
a =0.84,, b=0.1A,,and @ =1.5/A,.

occupy a region with a nonzero width 1/Im(/), so that,
when spatial dispersion is taken into account, the metallic
films appear to be thinner. In Fig. 2 we took into account
both retardation and spatial dispersion. Since their effects
compete with each other, the two surface plasmon bands
appear to be degenerate at Re(p)=0 and there is no longer
a peak in Im(p) near w=w;. Another effect of spatial
dispersion on the surface plasmon bands is a slight in-
crease in their frequency. In more elaborate models, such
as the random-phase-approximation (RPA) self-consistent
jellium, we expect another competing effect: a nonvanish-
ing conduction electron density outside the metal layers.
This electron spillout would tend to make the metallic
films appear thicker and to decrease their surface plasmon
frequency.?

Going up in frequency, it can be seen that the disper-
sion relations shown in Figs. 2 and 3 are very similar to
each other except for a series of peaks in the nonlocal cal-
culation at the frequencies w=w, for odd values of n.
Notice that there are no visible effects of the longitudinal

Re(p)hs

Im(pIxp

FIG. 6. Dispersion relation w vs p of a superlattice with
a=b=0.1A, and Q@ =0.5/A,.
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waves for even values of n, as was discussed in the preced-
ing section.

Between w=w, and w=1.7w, there can be no propaga-
tion according to the local dispersion relation, i.e.,
Re(p)=~0 and Im(p) is large in Fig. 3. However, two
propagating modes can be seen inside this gap in Fig. 2 at
w=w; and s. In the former, w < Qc < (w; +Q%?*)'/? and
therefore transverse waves cannot propagate in vacuum
nor in the metal according to Egs. (1), (9), and (46). Thus,
the mode at w =wj; consists of guided plasma waves prop-
agating inside the metallic films with wave vector Q and
being reflected back and forth from the metals’ surfaces
on which they interact with evanescent transverse waves.
The tail of the evanescent fields in vacuum couple the
guided plasma waves in neighboring metallic films, giving
rise to the bulk mode.

Since ws> Qc, the mode at w =ws can be thought of as
being made up of either guided plasma waves in the met-
als coupled to each other through extended transverse
waves in the dielectrics, or conversely, as extended trans-
verse waves in the dielectrics coupled by the guided plas-
ma waves in the metallic layers.

For w > 1.7w, propagation of bulk modes becomes pos-
sible in the local limit as can be seen in Fig. 3, where
Im(p) =0 and Re(p)s40. These modes consist of extended
waves in the dielectrics coupled through either extended,
for v > (a); +Q2c2)1/2, or evanescent waves in the metals.
The odd-numbered guided plasma waves at w, wq, etc.,
modify the strength of this coupling giving rise to the
small peaks in Re(p) that can be seen in Fig. 2. They also
absorb energy resonantly, originating sharp peaks in
Im(p).

The detailed shape and size of the features found in
Fig. 2 at the frequencies w3, ws, etc., depend on the
strength of the coupling between transverse and longitudi-
nal waves at the metal’s surface. This is in turn sensitive
to the microscopic surface structure, since there is no
transverse-longitudinal coupling in the bulk. Thus, in a
model such as the RPA self-consistent jellium, in which

Re (p) Xp
3( - ’<\"\"\ - i S — 1‘
t \\\\ | a=bshp 1
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FIG. 7. Dispersion relation @ vs p of a superlattice with
a=b=A, and Q =0.5/A,. The vertical dashed line indicates
the boundary of the Brillouin zone.
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the electronic density does not fall sharply to zero at the
interface and in which excitation of electron hole pairs is
possible, this coupling is smaller than in the hydrodynam-
ic model.?” However, the presence of resonant structure
similar to that shown in Fig. 2 is unavoidable in any non-
local theory.

In Fig. 5 we show the dispersion relation for the same
system as that in Fig. 2, except that we made the insula-
tors’ width, @ =0.84,, wider than the metals’ width,
b =0.1A,. As expected from the discussion above, when
a and b differ, a gap opens between the upper and the
lower surface plasmon bands. Thus, Fig. 5 shows that no
propagation is possible between 0.3w, and 0.9w,, where
Re(p) =0 and Im(p) has a large peak. In other respects,
Fig. 5 is similar to Fig. 2; the gap above w, is somewhat
narrower and the effect of the guided plasmon is smaller
simply because the corresponding superlattice contains
less metal.

The effects of retardation are illustrated in Fig. 6,
which corresponds to the same system as in Fig. 2, but
now with a smaller wave vector Q =0.5/4, parallel to the
interfaces. As Q diminishes, the frequency of the lower
surface plasmon band is pushed down, so that it remains
always below the light line w=Qc. This band starts at
0.33w, in Fig. 6. On the other hand, the upper surface
plasmon band evolves continuously into the band that
starts at w, in Fig. 6. However, this can no longer be re-
garded as a surface plasmon band since it is now above
the light line, and therefore the fields in the dielectric
layers are no longer evanescent. No propagation is possi-
ble in between these two bands. It can also be seen in Fig.
6 that the gap above w, practically disappeared since the
metal becomes transparent at a smaller frequency
(j 4+Q%?)'?, and that the effect of the guided plasmons
decreased, as it should ultimately disappear at Q =0.

In order to show the effects of the periodicity of the su-
perlattice, in Fig. 7 we have plotted the dispersion relation
for a system with a bigger period, a =b=A,, and for

< superlattice

P — [P -
[¢] 1 2 3

w/wp

FIG. 8. Nonlocal (solid line) and local (dashed-dotted line)
calculation of the reflectance of a semi-infinite superlattice and
of a metallic film with a =b =0.25), for an angle of incidence
6=70".
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FIG. 9. Dispersion relation w vs p of a superlattice with
a =b =0.25A, for a fixed angle of incidence 6 =70".

Q =0.5/A,. It can be seen that gaps are opened at the
edge of the Brillouin zone corresponding to
Re(p)=m/2X,, of which the clearest is the one around
1.75w,; the one around 0.1w,, is rounded off by the high
dissipation. Since the metals’ width b is big, the guided
plasmon frequencies w, are very close together. However,
their decay distance is smaller than b so their small effect
on the dispersion relation is not noticeable in the figure.

In Fig. 8 we show the reflectance of a semi-infinite su-
perlattice with a =b =0.25A,, for an angle of incidence of
6=70°. We included results of both nonlocal and local
calculations obtained from Egs. (24), (31)—(35), and (37).
In order to understand their features, we have plotted in
Fig. 9 the dispersion relation w(p) calculated for a fixed
angle of incidence instead of for a fixed Q. We see that
the reflectance is almost 1 in the regions where there is no
propagating normal mode in the superlattice, and it di-
minishes where propagation is permitted. The nonlocal
reflectivity has a series of sharp, deep minima between w,
and 2.2w,, corresponding to plasmon-mediated propaga-
tion inside the local gap. This structure is less noticeable
above 2.2w,, where propagation is permitted in the local
case. As a comparison we have also plotted in Fig. 8 the
reflectance of a single metal film; the plasma resonances
are clearly visible at the same frequencies but they are
much less prominent than in the superlattice. The depth
of the reflectance minima due to the plasmon-mediated
propagation in the superlattice might be modified in more
realistic models of the metals. However, we expect their
presence and their big enhancement over the correspond-
ing structures for a single metal film to be independent of
the particular nonlocal model employed.

Finally, in Fig. 10 we show a logarithmic plot of
| R —Rjoc | /R for the same superlattice as in Fig. 9,
where R, is the reflectance in the local limit. The high
peaks correspond to the frequencies of the odd-numbered
guided plasma waves. The even-numbered plasmons are
responsible for the small peaks seen near the minima.
Thus, they do interact with transverse waves although
their effect is about three orders of magnitude smaller.

T . . T
a:b:0.25Xp ]
6=70° i

Y U | L

1.0 1.2 1.4 16 1.8 2.0

w/wp

FIG. 10. Normalized difference | R —Rj. | /Rioc between
the nonlocal and the local calculation of the reflectance of a su-
perlattice with @ =b =0.254, for an angle of incidence 6="70".

V. CONCLUSIONS

In this paper we developed a novel approach to the cal-
culation of the optical properties of metal-insulator super-
lattices. The 2X2 electromagnetic transfer matrix of the
superlattice was obtained as a product of the transfer ma-
trix of an insulating and a metallic layer. In order to take
into account the propagation of plasma waves in the met-
al, its transfer matrix had to be enlarged to a 4 X4 matrix,
which was later collapsed to a 2 X2 matrix by introducing
additional boundary conditions. Simple expressions were
then derived for the dispersion relation of the bulk and
surface modes of the superlattice, as well as for its reflec-
tion amplitude, and they were explored in several limiting
cases. Analytical calculations within a simple hydro-
dynamic model were performed in order to illustrate the
effects of retardation, periodicity, and spatial dispersion
on the optical properties of the superlattice.

The most important result shown is the existence of
propagating bulk modes, made up of coupled guided
plasmons, in regions where no propagation is expected if
spatial dispersion is neglected. These modes manifest
themselves as a series of very sharp and very deep minima
in the reflectance of a semi-infinite superlattice near fre-
quencies w, for which the wavelength of the plasmons fits
a half-integer number of times # /2 on the metallic layers’
width, where n is an odd integer. These minima are much
more pronounced than those found in single metallic
films, and they should be easily observable experimentally.
Our physical picture is that at these frequencies the
plasmons of a given metallic layer interact with the trans-
verse waves on the neighboring dielectric layers, taking
energy from the preceding one, partially dissipating it,
and partially transporting it across the metal and giving it
away to the next dielectric. This plasmon-mediated prop-
agation through the metallic films is impossible without
spatial dispersion.

Although we obtained our present results by using a hy-
drodynamic model and assuming a specific ABC, namely,
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continuity of the normal component of the electric field,
we do not expect our qualitative results to be modified by
a different choice of ABC or by using more realistic
models. By an appropriate choice of ABC and of dielec-
tric function they can also be adapted to excitonic semi-
conductor superlattices. Our formulas can also be used
for metal-metal superlattices at frequencies below the
plasma frequency of the more dense metal, ignoring the
small effects of spatial dispersion in it. At higher fre-
quencies charge fluctuations are able to propagate in both
metals and the metal-metal superlattice can no longer be
characterized by a 2 X2 transfer matrix. However, a 4 x4

transfer matrix can be constructed from those of its con-
stituents, and from it, the normal modes and optical prop-
erties of the metallic superlattice can be obtained follow-
ing a procedure analogous to the one shown in this paper.
Work in that direction is currently under progress.
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