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We extended a previously developed diagrammatic formulation for the calculation of the 
effective dielectric response of composites prepared as a random, homogeneous, and isotropic 
distribution of small spherical inclusions in an otherwise homogeneous matrix. This is done 
within the long-wavelength, dipolar approximation in the low-density regime of inclusions. We 
propose a new diagrammatic summation and we compare our results with two recently 
reported computer simulations. 

I. INTRODUCTION 

The calculation of the effective electromagnetic re- 
sponse of a system composed by an homogeneous matrix 
with a random, isotropic distribution of small spherical in- 
clusions, has been an active field of research’ since the pio- 
neering work of Maxwell Garnet? in 1904. The solution 
found by him, known in the literature as the Maxwell Gar- 
nett theory (MGT) is equivalent to the celebrated Clausius- 
Mossotti-Lorentz-Lorenz relation,3 which links the dielec- 
tric response of a fluid with the polarizability and density of 
its molecules. In the MGT one assumes that in the presence 
of a long-wavelength external electric field (i) the local field 
at each inclusion is uniform, thus only the dipolar moment is 
induced (dipolar approximation) and (ii) that all the 
spheres acquire exactly the same induced dipole moment, 
taken equal to its average and calculated self-consistently. 
This last assumption, which neglects the fluctuations of the 
induced dipoles, is known as the mean-field approximation 
(MFA) . The relief of these two assumptions has been the 
challenge which has stimulated the work of many research- 
ers in the last decades. 

At low densities of inclusions one expects the dipolar 
approximation to hold. On the other hand, the MFA breaks 
down even in the low-density regime, owing to the disorder 
in the location of the spheres being it the source of the fluctu- 
ations. Therefore, it is the tendency towards order that 
makes the MFA more valid; for example, if the spheres were 
arranged in the sites of a cubic lattice, all of them would 
acquire, in the long-wavelength limit, the same induced di- 
pole moment: there would be no fluctuations. In this case the 
only corrections lacking would be the inclusion of the all the 
rest of induced multipolar moments.4 

In this paper our main interest is rather the effects of 

disorder, thus our attention will be concentrated in how to 
improve the MFA, but keeping still the dipolar approxima- 
tion. There is an ample variety of procedures which have 
been developed’ towards this same goal, but an estimation of 
their precision through its comparison with experiment has 
been a painful task. The problem lies in the fact that the 
experiments performed, up to now, do not resemble properly 
the models used in the theoretical work. The preparation of 
homogeneous and isotropic samples, with a well-defined fill- 
ing fraction of identical spheres, with radius in the nano- 
meter range, has been difficult. Problems like particle clus- 
tering, the existence of a distribution of shapes and sizes, and 
an anomalous high density of dislocations in the small inclu- 
sions have obscured a clear interpretation of the effects of 
disorder in the optical experiments. On the other hand, as 
pointed out by several authors,5-10 beyond MFA the effec- , 
tive dielectric response of a composite depends not only on 
the filling fraction of the spheres but also on the structure of 
their two- and three-particle distribution functions. In other 
words, different types of disorder will lead to different re- 
sults. Now, since most of the experimentalists do not report 
the actual distribution functions of the inclusions in their 
samples, this yields another source of confusion. Fortunate- 
ly, two numerical simulations of the model used here, also 
within the dipolar approximation, were recently report- 
ed”*‘* and we have, for the first time, a set of very definite 
results to test the validity of our theories. 

In this work, we develop a new diagrammatic formalism 
for the calculation of the effective dielectric response of a 
composite prepared as mixture of identical spheres embed- 
ded in an otherwise homogeneous matrix. This formalism is 
valid only in the low-density regime because of two reasons: 
(i) the use of the dipolar approximation and (ii) the approx- 
imation of the replacement of all the sth particle distribution 
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which takes advantage of the fact that in the q-+0 limit the 
longitudinal and transverse effective responses coincide. On 
the other hand, the limiting process (q-0) is necessary in 
order to get around the evaluation of some conditionally 
convergent integrals5 

functions of the spheres by unsymmetrized products of two- 
particle distribution functions. After setting up the formal- 
ism, we extend a previously performed diagrammatic sum- 
mation* by including an infinite set of diagrams whose 
relative importance should be large at low densities. Then we 
compare our results with the only “experiments” that, we 
believe, will give the fairest possible comparison: the numeri- 
cal simulations of Kumar and Cukier,” and Cichocki and 
Felderhof,” both for a collection of Drude spheres within 
the dipolar approximation. The structure of the paper is as 
follows: In Sec. II we develop the diagrammatic formalism 
and in Sec. III we present a diagrammatic summation which 
yields a formula similar to one obtained previously with a 
different procedure. Then, we propose a new diagrammatic 
summation which can be seen as a vertex decoration of this 
formula. Our results and their corresponding comparison 
with the computer simulations are displayed in Sec. IV, 
while Sec. V is devoted to conclusions. 

Lets consider an external field of the form 
E’” = qE eQi(qT - Of) and then substitute this expression into 
the equation for the induced dipole moments, Eq. ( 1 ), in 
order to get 

1 , (da) 
where 

(4b) 

II. FORMALISM 

Let us consider an homogeneous and isotropic ensemble 
of N) 1 spheres of radius a and dielectric function E, embed- 
ded in a host medium with dielectric function E,, . The system 
is in the presence of a space- and time-dependent external 
electric field of wave vector q such that qa ) 1, which oscil- 
lates with frequency w. Under this condition the induced 
interaction among the spheres can be taken in the quasistatic 
limit. Within the dipolar approximation, the local electric 
field at the ith sphere induces an effective dipole moment 
given by 

are so defined in order to get rid of trivial exponential factors 
and the explicit q and w dependence will not be explicitly 
written from here on. The iterative solution of Eq. (4) was 
the starting point of the diagrammatic formulation for E, 
developed in Ref. 8. One of our objectives here is to recast the 
diagrammatic series derived in this reference in order to get 
an alternative series where the diagrams corresponding to 
the mean-field approximation (MFA) are already summed. 
For this purpose we rewrite Eq. (4) as 

Pi =a(~) E;+CATu.Pj 
I 

, (54 
i 

where 

pi(w) =a(w) 
[ 

E:+~t,*p, 
i I 

, (1) 

where q is the electric field induced in the medium at 
R,, in the absence of the spheres, a(w) 
= a3[~,(w) -E~(w)]/[E,(w) +~E~(w)] is the effec- 

tive polarizability of an isolated sphere within the host medi- 
um and 

E+y+N(T).(p) (5b) 

is known as the Lorentz field, N is the total number of 
spheres, and 

AT,=T, - (T), (SC) 

where 

0) = f (C T,). (5d) i 
t, = (1 - S,>ViV,( l/R,) (2) 

is the dipole-dipole interaction tensor (in the quasistatic 
limit). Here R, = IRi - Rj 1 and S, is the Kronecker delta. 

We excite the system with a longitudinal external field, 
the polarization is then defined as the average of the induced 
dipole moment per unit volume which can be related to the 
effective (or macroscopic) dielectric response E,,, (w) of the 
system through” 

The formal solution of Eq. (5) is 

P, =a =j$ (V-‘),.EL, 
i 

where 

$, (0) -= 1 - 4nEh (w)/p*‘(q+O,o), (W 
E,+f (0) 

V, E 16, - aAT,, (6b) 

and B is the unit tensor. We now define the Lorentz suscepti- 
bility as 

where x’“( q,w) is the external susceptibility defined by 

n(p)(w) =f”(w)*JWq,~L (3b) 

and the superscript I denotes longitudinal projection. Here 
F”(q,o) and (p) (q,w) are the Fourier transforms of the 
external field and the average dipole moment, respectively, n 
is the number density of spheres, and (. * a) means ensemble 
average. The fact that the system is excited by a longitudinal 
rather than a transverse field is just a matter of convenience, 

nO’)(q,m) =,y=(q,4*EL(q,d, (7) 

where E ‘( q,w) is the Fourier transform of the Lorentz field. 
It is easy to show that the effective dielectric response can 
then be written as 

(W 

where f = n4rra3/3 is the volume fraction of spheres, 
G = (r/a3 and 
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na+p’(q+O,o) =p& w-q. (8b) 

This equation [Eq. (8a) ] has exactly the same func- 
tional form as the Maxwell Garnett formula’ (or Clausius- 
Mossotti relation3 ), except that the bare polarizability 5 of 
an isolated spheres is now renormalized by a factor 6 which 
is proportional to the dipolar response of a sphere to the 
Lorentz field. The only approximation done, so far, in deriv- 
ing Eq. (8a) is the dipolar one. 

The calculation of the renormalization factor { requires 
the evaluation of the ensemble average of the inverse of ma- 
trix V, defined in Eq. (6b), which in the thermodynamic 
limit becomes an infinite matrix with stochastic elements. 
This is obviously a complicated problem. Here we follow the 
same method as in Ref. 8 and we use a series representation 
of the inverse of V, in powers of AT,, given by 

1 (V-l), = 1 +aCATV +aZCATii*ATj~ + +*a. (9) 
j 1 ik 

Then we take an ensemble average assuming that in the low- 
density regime the s-particle distribution function 
p”‘(R , ,...,R,) can be factorized as unsymmetrized sequen- 
tial products of two-particle distribution functionsp”’ (R, ), 
i.e., 

S-I 
p’“‘(R ,,..., R,) = n p”‘&). (10) 

i=l 

j=i+l 

The end result is a series representation of g which can 
be cast in a diagrammatic form as 

g=c,~I(r,s)=o + 
r s Q + [v + -1 

+ lQ+467+Tim%+-+~+~] 
. . , + t (11) 

where each diagram is irreducible; this means that it cannot 
be split into two independent diagrams by cutting a single 
line. The precise definition of each diagram is given in Ref. 8. 
Here we will only say that in order to draw a diagram with r 
lines and s black dots, one starts from a white dot and joins it 
to all s black dots with r lines, but without lifting the pencil 
from the paper and without joining a dot to itself. Each line 
carries a factor a, each black dot carries a factor n, the other 
factor is an integral over the coordinates of the particles de- 
picted by black dots, being the white dot the reference 
sphere. The integrand contains the longitudinal projection 
of the contraction of the propagators T, which join the dots i 
and j weighted by the two-particle distribution functions 
p”’ (R, ) . For example 

v =n2a3 lim,+, G-T,, *T,, *T,, -@ 

Xp”‘(R,,)p”‘(R23)d3R, d3R3. (12) 

One might interpret each diagram as the contribution to the 

polarization of a series of elementary processes in which aTii 
propagates the polarization from sphere i to sphere j. The 
small numbers that appear aside in some of the diagrams of 
Eq. ( 11) refer to the order of transversal of the line. 

Since a diagram with r lines and s black dots is propor- 
tional to ZZrf”, its relative importance in the series can be 
estimated through the relative magnitude of this factor. For 
example, in the low (high) -density regime the most impor- 
tant diagrams will be those with the smallest (largest) num- 
ber of dots for a given number of lines; i.e., for four lines a low 
(high)-density diagram is 0 (0) . In Table I we have 
grouped all the irreducible graphs of lowest order in powers 
off and a. All the graphs with the same number of black dots 
(lines) are in the same row (column). 

This type of diagrams were already proposed by 
Hynne, l3 with exactly the same physical meaning as the one 
given above, but their incorporation into a formal theory for 
the calculation of the effective dielectric response was first 
done in Ref. 8. In this section we have modified this theory in 
order to get rid of all the nonirreducible graphs. The first 
application of a diagrammatic method to a composite system 
was reported by Bergman and Kantor14 who calculated the 
effective dc conductivity of a two-component random-resis- 
tor network in powers of the conductivity difference of its 
constituents. Their diagrams look like the ones used here 
because in both cases a series representation of the inverse of 
an operator with two-particle interactions was involved. 

III. DIAGRAMMATIC SUMMATIONS 
A. Mean-field approximation (MFA) 

Since in this new diagrammatic formulation the dia- 
grams which correspond to the MFA are already 
“summed,” the MFA (or Maxwell Garnett theory) is ob- 
tained simply by taking 

l=o=l. (13) 
This also means that all the graphs in the series [Eq. 

( 11) ] beyond o( = 1) correspond, obviously, to the contri- 
butions to the mean polarization coming from the fluctu- 
ations of the induced dipole moments around its average 
value. 

TABLE I. Lowest-order irreducible diagrams. 

T 
‘ 5 r 1 

1 

v 
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B. Low-density diagrams 
Here we choose in the summation all the diagrams with 

the smallest number of dots (namely two) for a given num- 
ber of lines. As mentioned above their contribution should 
be important in the low density regime. In this case we have 

g=o+ D + e + 0 + e 
. . . + * (14) 

Assuming no correlation among the particles beyond the 
hole correction (HC), pc2'(R) = 6(R - 2a), where 8 is 
the unit step function, it is shown in Appendix C of Ref. 8 
that this sum yields 

g= 1 ++zlog(~). (15) 
50 

3 

3 
0.0 

i 

2 -2 5 

1 

-5 0 

1 

-75 ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 
0 02 04 06 

W/Wp 

Substituting this expression into Eq. (8a), one obtains an 
explicit analytic form for the effective dielectric response Q, 
which in the limit jZ 4 1 becomes 

%f -= 1+3jZZ+ @>’ 3+21og 
Eh 

[ (S)]? (16) 

which is identical to the expressions obtained in Ref. 8 using 
a diagrammatic summation and in Ref. 15 using a two-parti- 
cle cluster integral. 

In order to get a deeper insight into the physical inter- 
pretation of this approximation we show in Appendix A that 
one recovers this same expression [ Eq. ( 16) 1, for oM if one 
solves Eqs. ( 1) directly assuming that a reference sphere 
interacts with all the other spheres but the rest of them inter- 
act only with the reference sphere and not among them- 
selves. 

In Fig. 1 we show a plot of Im Ed for f = 0.0217 and 
f = 0.05 using Eq. ( 8a) with {given by Eq. ( 15). We chose a 
system of metallic spheres embedded in dispersionless gela- 
tin with E,, = 2.37. The spheres are described by a Drude 
dielectric function given by 

E,=l- 4 
w(w + i/7) ’ 

(17) 

where wP is the plasma frequency and r the relaxation time; 
in Fig. 1 we took wPr = 46, which is a typical value for a 
noble metal. 

We found that Im E,,, becomes negative close to the di- 
polar resonance of the isolated sphere w, ( - 0.4 1 7wP ) when- 
ever fop7-S 1, as it can be seen in Fig. 1 (b) for 
f = 0.05 > l/46 = 0.0217. Since Im a^(~,) -wPr, one con- 
cludes that the approximation proposed in Eq. ( 14) is incon- 
sistent with the law of increase of entropy whenever $2 l/j 
The same problems also appear in Eq. ( 16) and Felderhof 
and JonesI have proposed a specific healing procedure. 

C. A new diagrammatic approximation 
In order to avoid the above mentioned limitations, we 

would require to include diagrams with a larger number of 
dots for a given number of lines. Thus we propose a new 
diagrammatic approximation which decorates the series giv- 

P=O.O217 

15 wpT=46 

I: 
3 10 

\u' 

2 

0.5 

1 (a) 

0.0-I 0 “L -6 “‘4 
w/wp 

25 
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FIG. 1. Im cy as a function of o/o,, calculated using Fq. (8a) with 6 given 
by Eq. ( 15) for a system of Drude spheres embedded in gelatin. Figures 
1 (a) and 1 (b) correspond to filling fraction of 0.0217 and 0.05, respective- 
ly. 

en in Eq. ( 14) by the addition of an infinite class of diagrams. 
These diagrams corresponds to self-polarization processes 
which are represented by closed-loop graphs; i.e., processes 
which starting from a given sphere, polarize the rest of the 
spheres and finally get back to the initial sphere. 

These diagrams include, obviously, graphs with a larger 
number of dots for a given number of lines, than the ones 
contained in Eq. ( 14). The relative importance of these 
graphs will be evaluated by comparing our results with the 
ones obtained in recent numerical simulations.“*‘2 

We write 

<=@+a t 
(18a) 

where the renormalized vertex@= A is given by the self- 
consistent solution of the following diagrammatic equations: 

@=A=o+ 
YhD+ 6% 

.  .  .  
+ 9 (18b) 

&qy + Q + 
(18~) 
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A few examples of the graphs included in { are, for instance, l=A+@A=log 64 - E=A= 
> 64 - 4Z2A2 ’ 

(25a) 

where A is given by the self-consistent solution of the follow- 
ing equation: 

(4+Z@)(8+Za) -’ 
I (4-@)(8-Z@) * 

(25b) 
We also assume that the graphs v which appear in Eq. ( 18b) 
are statically independent, thus IV. RESULTS 

A=1+77+p2+773+...=L. 
1-V 

(20) 

We now show our results for a system of Drude spheres 
embedded in vacuum with wp7 = 94. We chose this particu- 
lar system in order to compare our results with the numeri- 
cal simulations recently reported by Kumar and Cukier,” 
forf= 0.01; .0.03; and 0.1. In this work, periodically repeat- 
ed configurations of 48 spheres within a cube were generated 
for a hard-sphere fluid in equilibrium. The polarization aver- 
ages were taken over 500 configurations on spherical regions 
which, coritained about 25 spheres, on the average. In Fig. 2 
we plot Im Ed Bs a function of w/w, forf= 0.01; 0.03; and 
0.1. The cbntinu,ous lines are our theoretical results and the 
dots are the results of the numerical simulation taken direct- 
ly from the paper of these authors. One can see that for 
f = 0.01. and f = 0.03 we have an excellent agreement be- 
tween our results and the ones of the numerical simulation. 
One should add that these results deviate appreciably from 
the ones predicted by the MFA, as discussed in Kumar and 
Cukier’s work.” This clearly means that the infinite class of 
diagrams that we have chosen are those which become more 
important in the low-density regimen. Forf = 0.1 the agree- 
ment is not exact but is obviously very good. 

A more restricted approximation consists in taking simply 

{=A and v=, l 

8 

(21) 

which corresponds to the approximation developed in Ref. 8 
[see Eq. (27)] and known as renormalized polarizability 
theory (RPT) .5 

In order to calculate 77 we first define the tensor A such 
that A = @*A*ij. Now, instead of taking the longitudinal pro- 
jection of the contraction first and then the average, we first 
perform the tensorial contraction, take l/3 of its trace and 
then average; this will give the same result due to the iso- 
tropy of the ensemble with A = IA. 

The equation for 7 [ Eq. ( 18~) ] can then be written as 

v=+T, C T,.A.T, 
i 

+ 2 T,-A.T,.T,.A.T,,) + *** 
j )I 

=$ T, CT,.A.T,.(l -T,.A.T,) -’ 
i 

which yields finally 

(22b) 

m ?,I =4rna2A 
[I 

p’=‘(R) dR 
o R4(l -a2A/R6) 

Using the same numerical simulation procedure and the 
same system of Drucle spheres, Cukier et ~1.” have also stud- 
ied the changes in the profile of the absorption peak, in 
Im Ed (w ), for different types of disorder. They have genera- 
ted distinct classes of configurations, with different algor- 
ithms which weight differently the probability of finding a 
sphere around the positions of an ordered system, and they 
find noticeable changes in the profile of the peak. In our 
theory those changes should arise from different choices of 
the two-particle distribution function. Unfortunately this in- 
formation is not reported, thus a further comparison of our 
theoretical results with their numerical simulations is not 
possible now. 

m 
+ 

s 
p’=‘(R) 

o R4(l -a’A/R”)(l -4a2A/R6) 
dR . 

I 
(23) 

Following the same procedure we calculate 6 summing 
all the diagrams which appear in Eq. ( 18a) and we get 

m 
6 = 8ma3A4 

s 0 

X p’=‘(R) 
R’(1 -a2A2/R6)(1 -4a2A2/R6) 

dR. (24) 

We assume that the two-particle distribution function is giv- 
en by the p$ = 8 (R - 2a), which should be valid in the 
low-density regime. Then, the integrals [Eqs. (23) and 
(24) ] can be performed analytically and we obtain 

Another numerical simulation has been reported by Ci- 
chocki and Felderhof” who display their results in terms of 
the spectral function g(u). This function, introduced by 
Bergman, l8 is defined through the following integral repre- 
sentation of EM : 

t= 1 
1 - E,/Eh . 

EM=I-f 
s 

’ cd’) & - , 
Eh 0 t-u 

(26) 

where the variable t is defined by 

(27) 

The main advantage of this representation is that g(u) 
does not depend on the dielectric properties of the materials 
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which compose the system. It is essentially a property of the 
geometry and the spatial distribution of the inclusions and it 
measures the weight of the normal electromagnetic modes of 
the system. For example, in our system, the MFA yields 
g(u) = S[ u - l/3 ( 1 -J) ] because in the absence of fluctu- 
ations and in the long-wavelength limit, only one mode can 
be excited. 

Cichocki and Felderhof performed their computer sim- 
ulations at six volume fractions (0.1; 0.2; 0.3; 0.4; 0.4618; 
and 0.5). At each volume fraction the average was taken 
over N, independent configurations generated earlier in a 
Monte Carlo simulation of the hard sphere system in equilib- 
rium. The configurations considered N, particles within a 
cube which was then repeated periodically. Since our theory 
is valid only in the low density regime here we compare our 
results only for the three lowest filling fraction used by Ci- 
chocki and Felderhof. For these filling fractions, they have 
taken N, = 300,500, and 580 and N, = 500,250, and 200, 
respectively. 

In Fig. 3 we plot g(u) as a function of u for f = 0.1; 0.2; 
and 0.3. The dotted lines are the results of the computer 
simulation and the continuous lines are our theoretical re- 
sults. The dashed lines are calculated using the RPT theory, 
given here by Eq. (2 1) . It can be readily seen that forf = 0.1 
we have a very good agreement between our theory and the 
computer-simulation results. For f = 0.2, although the 
agreement is not as good, the main features of the shape of 
the profile are maintained. Forf = 0.3 the peak in our theory 
is redshifted, higher, and more asymmetric than the comput- 
er-simulation result. It is not surprising that for such high 
filling fractions our approximations, in particular the factor- 
ization of the s-particle distribution function [Eq. (10) 1, 
starts to break down. It is also interesting to notice that for 
f = 0.3 our results start to resemble the ones given by RPT. 
This resemblance is even greater for f = 0.4 and 0.5 (not 
shown here) which clearly reflects, that in Eq. (18), all the 
graphs with more than two lines between vertexes will not be 
important in the high-density regime. Another distinctive 
feature of our results is an extremely deep and sharp mini- 
mum at u = l/3. Since the resonance of the isolated sphere 
is, precisely, at u = l/3, this means that our aproximation is 
not able to handle very large values of a. 

V. CONCLUSIONS 

05 

FJ 

. 
. 

I I I I I I I “V~ 
04 0.5 0.6 0.7 

We have derived a new diagrammatic series for the cal- 
culation of the effective dielectric response of a composite 
made up of identical spheres embedded in an otherwise ho- 
mogeneous matrix. The series is valid for low filling fractions 
of spheres and its zeroth-order term is already the mean-field 
approximation; this means that all the graphs in the series 
represent elementary-polarization processes corresponding 
to fluctuations around the mean polarization. 

FIG. 2. Im -zM as a function of w/oP for filling fractions 0.01 (a), 0.03 (b), 
and0.1 (c).Thesolidlinecorresponds tow. (8a) withlgiven by Eq. (25) 
and the dots are the results of the computer simulation of Ref. 11. 

The summation of extreme low-density graphs was per- 
formed and it was shown that in a certain limit this expres- 
sion was identical to the one derived by a two-cluster expan- 
sion. A different way of deriving this expression, which 
showed very clearly its physical meaning, was also presented 
and its shortcomings were discussed. A new diagrammatic 
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tl”“l”“l”‘l”j approximation was then proposed and its results were com- 
pared with two recently developed numerical simulations. 
We found an excellent agreement between our results and 
the ones given by the computer simulations, for filling frac- 
tions f<O. 1. 

c 6i-- I! i\\ 
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APPENDIX A 

In this Appendix we derive Eq. ( 15 ) by solving directly 
Eqs. ( 1) under specific approximations. We start with 

where E” is the electric field induced in the absence of the 
spheres, and it is assumed constant in space. 

We then choose a reference sphere located at R, inter- 
acting with the rest of the Nspheres, thus its induced dipole 
moment is given by 

p. =a 
[ 
13°+2&j*pj . 

i I 
(Al) 

15.01- ’ Ill ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ -I 

1 
Iii f= 0.3 

1 1 1; :"''-:. 
1 

I- : 
s 75 
cn 

1 

’ t : :,, 1;’ ‘. 
; I, ; ‘, 
1 1.: 

It is now assumed that the rest of the spheres interact 
only with the reference sphere but not among themselves, 
i.e., 

Pj = a[E”+ tp*po]. (A21 
Substituting this equation into the equation for the in- 

duced dipole moment of the reference sphere [ Eq. (Al ) ] 
yields 

p. =alP l+:ahj*(l-ahj)--’ , 
[ 1 i 

(A3) 
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where 1 is the unit dyadic. The explicit calculation of the 
right-hand side of Eq. (A3) gives immediately 

p. = aE”* 
N a/R ij (3~,~, - 1) + 2a2/R gj 1 

n+C i (1 +ti/R&)(l -2aR&) 1 ’ 
(A4) 

Since (p. ) is along E, , due to the isotropy of the ensem- 
ble, one is able to calculate (p. ) by taking the average of l/3 
of the trace of the tensor in brackets in the right-hand side of 
Eq. (A4). This gives 

FIG. 3. The spectral functiongcu) as a function of u for filling fraction 0.1 
(a), 0.2 (b), and 0.3 (c). The solid (broken) line corresponds to Eq. (8a) 
with 6 given by JZq. (25) [ JZq. (2 1) 1. The dotted line is the computer simu- 
lation of Ref. 12. 

xp’=‘(R)R = dR 
I 

. (A5) 
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Substitution of p”‘(R) = 0(R - 2~2) into Eq. (A5) 
yields, by direct integration, 

(~0) = aE”[ (A61 

Since in the low-density limit E ‘C-E” = E ‘, the renor- 
malization factor of a is given by the expression in brackets 
in Eq. (A6) which is the same as Eq. ( 15). 
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