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Wave behavior in anharmonic Penrose lattices 
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Taking advantage of the close resemblance of Kirchhoff's laws and the equations of motion of isotropic phonons in a 
simply connected lattice, a device to directly observe the vibrational eigen-modes of a Penrose lattice was built with electric 
LC oscillators. The wave interference patterns observed in this network reveal key aspects concerning the localization of 
states, which has not been settled so far. There are truly extended eigen-states at low frequencies, and critically localized 
ones when their wavelength is of the order of the distance between neighbors in the lattice. The device allows the study of 
non-linear effects, when it is excited with higher voltages. These effects are analyzed by perturbation theory and the 
observed shifts of the eigen-frequencies are explained as a consequence of adding anharmonic terms to the Hamiltonian. 

I. Introduction 

Quasiperiodicity and non-linear dynamics have 
been of tremendous interest in recent years. One 
of the most controversial aspects has been the 
influence of quasiperiodicity in the localization of 
the wave functions. Theoretical studies predict a 
critical spectrum in one [1] and two dimensions 
[2], and one could expect peculiar transport prop- 
erties from such a band structure [3]. Transport  
experiments in real quasicrystals are not very 
illuminating so far [4], however, extremely inter- 
esting results have been obtained from artificial 
quasicrystals, as Fibonacci superlattices [5], where 
there is evidence of Brillouin zone folding for the 
acoustic bands [6]. There have also been two-di- 
mensional analog simulations, as a Penrose array 
of Josephson junctions [7], or an array of tuning 
forks at the centers of the Penrose rhombi, to 
study acoustic interference [8]. 

In this paper we report  on an analog simula- 
tion of wave interference in an array of oscillators 
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disposed as in the vertex problem in the Penrose 
lattice. Such a simulation consists of L C  oscilla- 
tors, forming a T-line [9], that is, each vertex 
contains a grounded capacitor and the bonds are 
equal inductances (see fig. 1). This experiment 
has the advantage that it is simple, illustrative 
and does not require sophisticated equipment to 
measure. The other advantage is that the results 
for small oscillations (small voltages) can be cal- 
culated theoretically in exact form. The assump- 
tion of small amplitudes is not necessarily met in 
the real simulator, and this makes it an ideal 
device to study anharmonic and non-linear effects 
in the Penrose tiles. 

2. Experiment 

A n  L C  circuit is analogous to a system of 
masses linked by springs, the normal modes at a 
given frequency (w) are determined by Kirchhoff's 
laws as the solutions of the equation 

1 
iwCV,  + ioJ-----L ~_,(V,, - Vm) = 0, (1) 

m 
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Fig. 1. Sketch of the network of L C  oscillators, connected as in the vertex problem of a Penrose lattice. The bonds between 
neighbors are inductances and there is a grounded capacitor at each vertex. 

where the inductance (L)  and the capacitance 
(C) are the same in all sites, and V, is the voltage 
measured in site n. Here  the summation spans all 
sites m directly connected to site n. Equation (1) 
has the same eigenvalues of the secular equation 
for phonons [10] 

- M o o  2 + K ~ .  ( U  n - Urn) = 0, (2) 
m 

where the U, are the displacements of masses M, 
connected by isotropic springs with a force con- 
stant K. This analogy allows one to transfer the 
results obtained with this circuit, to the problem 
of excitations of the tight-binding type Hamiltoni- 
ans in the quasicrystal. The boundary conditions 
for eq. (1) depend on the way one feeds the 
system; in our case a constant current was in- 
duced in site n = 1, which is situated at the most 
acute angle of the triangle of fig. 1. Therefore,  
the first of eqs. (1) has an inhomogeneous term 
I(o~). 

The actual apparatus corresponds to a tile of 
generation 13 of the Penrose lattice, defined ac- 
cording to the inflation rule described elsewhere 
[11]. This array contains 137 vertices and 240 
bonds. The value of the capacitances in the ver- 
tices was 1 ~ F  _+ 10%, and the inductances of 7.8 
m H  + 5% were made with toroids of ferrite with 

a relative magnetic permeability of ~ / ~ o  = 1500. 
The choice of the toroidal shape was due to the 
need of minimizing the problem of mutual induc- 
tances. The dissipative effects of the inductances 
were examined experimentally and simulated in 
the theory by an imaginary term -R(w, AV)/to, 
added to L. At a peak-to-peak voltage of AV = 0.2 
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Fig. 2. Experimental spectrum obtained from the device of fig. 
1, when a current is induced through the site at the acute 
extreme of the triangle of fig. 1. The theoretical spectrum 
from eq. (1) is also shown for comparison. The vertical scale 

has been shifted by 6. 
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Fig. 3. Spatial distribution of the site amplitudes for the first six low-frequency eigen-states of fig. 2. The respective eigenvalues are 
indicated in each case, and the vertical height represents the measured voltages. 
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V, R(oo) = 0.006oJ 0'7, and at fixed frequency (~o = 
500 Hz), R(AV) = 5.6AV. On the other hand, the 
real part of L is also a function of the applied 
voltage, for instance, at w = 500 Hz, L(AV) -- 7.7 
+ 4.5AV. 

The exper iment  is done by feeding a 
monochromatic current to one extreme of the 
lattice at a peak-to-peak voltage of 0.2 V. The 
measurement of this current as a function of 
frequency is shown in fig. 2, where we compare 
the predicted response from the solution of eqs. 
(1) with an appropriate complex inductance. No- 
tice that the agreement is excellent, without ad- 
justable parameters, except R(w). The eigenfre- 
quencies do not depend on R(w), but the intensi- 
ties are. 
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Fig. 4. Softening of the first five low-frequency states, as a 
function of the source rms voltage. 

3. Results 

The amplitude of the waves can be measured 
in all sites for any state. In fig. 3 we show the 
spatial distribution of amplitudes for the first six 
eigenstates of fig. 2. The state at 80 Hz is a truly 
acoustic mode with a wavelength four times the 
size of the lattice, and resembles the first normal 
mode of a membrane. This resemblance is to be 
expected, since for these long wavelengths the 
waves do not "see"  the discreteness of the lattice. 
Analogously, the following eigen-states corre- 
spond to the excited states of a membrane, except 
that the higher the frequency, the more impor- 
tant the quasicrystalline array of bonds is. In 
particular, when the wavelength is comparable to 
the intersite distance, the amplitude starts to be 
localized in certain small regions, as a result of 
the quasicrystallinity. The peaks seen at the cor- 
ners of figs. 3(e) and 3(O are finite size effects, 
but the peaking around a five-fold coordinated 
atom in the center is not, since it is isolated by a 
line of nodes and of internal structure corre- 
sponding to the computed calculations for tiles of 
different sizes. 

In fig. 4 we show the variation of the first five 
eigenvalues when the source voltage is increased. 
Notice that there is a softening of the modes 
except for the lowest frequency one. This soften- 
ing is due to anharmonic effects, caused by the 

magnitude of the fields. In order to examine such 
a behavior theoretically, one has to consider 
Kirchhoff's laws in differential form: 

d2Vn 1 
C - ~ -  + ~m Z(V" - vm) = 0; (3) 

where the inductance L = L 0 + lAV + i(r/w)AV, 
and L 0 = 7 . 7  mH, l = 4 . 5  m H / V  and r = 5 . 6  
f~/V. Expanding eq. (3) as a Taylor series, we 
obtain 

d2Vn 1 ( 

c - j  + v0 (vo- vm) - 

/ + i  r 2 

O) x(Vn--Vm) 2+ 

) 

x (v.- Vm) 3- ...} =0. 

l+ir 
0.) 

(4) 

This equation represents a system of 137 non-lin- 
ear coupled differential equations and is similar 
to the equation of motion for anharmonic 
phonons, which has no analytic solution. There- 
fore, our circuit provides a direct way of knowing 
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the solutions of  these non-l inear  systems of  equa- 
tions. 

4. Discussion 

In order  to estimate the magni tude  of  the 
anharmonic  effects one could write eq. (4) ne- 
glecting the coupling be tween different oscillators 

dzV 
dt_._ T + ~02V _ ¢020EV 2 + o)20E2V 3 i . . .  = 0 ,  (5) 

where  • = ( l  + i ( r / w ) ) / L  o. Equat ion  (5) could be 
solved by successive approximations and the fre- 
quency shift to first o rder  is [13] 

A2•2OJo 
~ o - o % -  24 ' (6)  

where  A is the ampli tude of  the unper tu rbed  
oscillator. Alternatively, one  could explain the 
softening of  the modes  by looking at the expres- 
sion for the unper tu rbed  frequencies ~o 0 = 
1 / v F L c ,  since, when the voltage increases, the 
inductances  also increase, and the frequencies 
are lowered. The  explicit fo rm in which this soft- 
ening takes places depends  upon  the topology of  
the lattice. 

5. Conclusion 

As a conclusion we could state that  we have 
presented  a useful me thod  to study wave propa-  
gation in two-dimensional  lattices, and we have 
built a device to look at wave interference in a 
Penrose  lattice. This device is versatile and could 
be used for numerous  studies, as selective con- 
ductance,  anisotropy of  the current  flux and reso- 
nance  phenomena ,  just to ment ion  a few. 

Despi te  of  the small size of  the network,  the 
effects of  quasiperiodicity and non-lineari ty are 

detectable on the e igenmodes  of  the system. We 
have demons t ra ted  that  the non-l inear  effects, 
when one increases the voltage, can be explained 
by anharmonic  terms in the equations,  and that  in 
general  these terms produce  a softening of  the 
modes  of  the harmonic  system. 

This device would be ideal to simulate interest- 
ing and complicated situations, as the dispersion 
of  light by a rough metallic surface, since in that 
case local capaci tances and inductances arc 
formed,  as in this circuit. 
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