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Abstract 

The effective dielectric response of a system of spherical inclusions embedded in an 
otherwise homogeneous matrix has been calculated using, in the Maxwell Garnett formula, 
a renormalized polarizability instead of the bare one (Phys. Rev. B 38, 5371 (1988)). This 
renormalized polarizability was given as a functional of the two- and three-particle distribu- 
tion functions and results were presented for a very crude approximation of the three-par- 
ticle distribution function. Here we extend these results and analyze the effects of the 
three-particle correlations by using the best available form of this functional. We compare 
our results with other theoretical approaches and recent numerical simulations. 

I .  Introduct ion 

The interest in the electrical and optical properties of granular media dates 
back to the beginning of electrodynamics. The problem of calculating the effective 
conductivity of a system of insulating spheres embedded in a conducting matrix is 
already solved in the works of J.C. Maxwell [1], in the extreme-dilute limit, and of 
Lord Rayleigh for a periodic array [2]. Later on, at the beginning of this century, 
J.C. Maxwell Garnett  [3] studies the optical properties of a system of conducting 
spheres embedded in an insulating matrix. He obtains a relation for the effective 
dielectric function of the system in terms of the filling fraction of the spheres and 
the dielectric functions of each component. A very complete review of the early 
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history of this problem can be found in the beautiful article of Landauer presented 
at the first ETOPIM conference [4]. Recently there has been a renewed interest in 
this problem due to the development of new theoretical methods for the treatment 
of disordered systems [5], and also due to the potential use of granular composites 
in selectively absorbing paints for solar energy devices [6]. 

It is now recognized that the Maxwell Garnett  (MG) solution corresponds, 
within a statistical approach, to a mean-field theory within the dipolar, quasistatic 
approximation. It can also be easily shown that it is completely equivalent to the 
well-known Clausius-Mossotti relation [7] in the dielectric theory of liquids. The 
most remarkable feature of the MG solution is that the only statistical property of 
the distribution of inclusions, that appears in the theory, is the filling fraction of 
the spheres. Now we know that this is quite fortuitous and that it happens only in 
the very special case of spherical inclusions in a 3D system. As soon as one 
considers either a system of spheres located at random in 2D [8] or non-spherical 
inclusions in a 3D system [9], one finds that the effective dielectric response (EDR) 
in the dipolar, quasistatic, mean-field approximation requires of more information 
about the microstructure of the system: it depends not only on the filling fraction 
of the spheres but also in their two-particle distribution function. 

In the mean-field approximation (MFA) the fluctuations in the induced dipoles 
are neglected, that is, the induced dipoles at each sphere are considered all the 
same and equal to their mean (average) value. In this approximation the EDR 
shows a resonance which is red-shifted with respect to the corresponding dipolar 
resonance of the isolated sphere. This is also called the dipolar resonance of the 
system and the amount of red-shift increases as the filling fraction increases. 

On the other hand, it is now generally accepted [10-12], that the main effect of 
the dipolar fluctuations in the EDR is to produce an additional broadening and a 
strong asymmetry of the dipolar resonance, at all filling fractions. Additional here 
means, additional to the usual broadening produced by the non-radiative energy- 
loss mechanisms. Since in an ordered system there are no dipolar fluctuations, 
these fluctuations are due to the effects of disorder, thus this additional broaden- 
ing is also refereed to as disordered induced [11]. Furthermore, recent numerical 
simulations [12] show that, within the dipolar approximation, this disordered-in- 
duced broadening increases as the filling fraction of spheres increases but that it 
decreases back when the filling fraction gets near to its closed-packed value. 

On the other hand, for high filling fractions of spheres, the dipolar approxima- 
tion breaks down and higher induced multipoles start to play an important role in 
the EDR. It can be shown [13], that in the mean-field approximation, that is, when 
the induced multipolar fluctuations are neglected, there are no multipolar contri- 
butions (beyond the dipole) to the EDR when the two-particle distribution 
function has spherical symmetry. Only when multipolar fluctuations are taken into 
account or when the two-particle distribution function has no spherical symmetry, 
there is a net multipolar effect in the EDR. This is, for example, the case of a 
periodic system of spheres, which has no multipolar fluctuations, but it has a 
two-particle distribution function with crystalline symmetry [14]. For a homoge- 
neous, isotropic, disordered system, numerical simulations [15] have shown that the 
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main effect of the multipolar fluctuations in the ED R is the appearance of 
multipolar resonances with its corresponding disorder-induced broadening. 

In this work, we go beyond the MFA using a simple renormalization procedure 
for the polarizability of the spheres [11]. Our objective is to evaluate the impor- 
tance of the three-particle correlations in the EDR. Since both, the multipolar 
corrections and the ones coming from three-particle correlations become impor- 
tant whenever the filling fraction gets high, here we isolate the effect of the 
three-particle correlations by keeping the calculation within the dipolar approxi- 
mation. 

2. Formalism 

Lets us consider a homogeneous and isotropic ensemble of N >> 1 identical 
spheres of radius a o and dielectric function e s located at random positions {R i} in 
a host medium with dielectric function e b. The system is in the presence of a 
position-dependent external electric field Eex oscillating with frequency to and 
with wavelength much larger than a o and the typical separation between spheres. 
Under  these conditions the dipole moment Pi induced at the ith sphere is given by 

pi=a( to)[E°  + ~fiy'P/]j (1) 

where E ° is the electric field induced within the medium at R i in the absence of 
the spheres, a ( to )=a3o[eS-  eb]/[e ~ + 2e b] is the effective polarizability of an 
isolated sphere within the host medium, and 

~/y = (1 - 6ij)Vi~(1/Rij ) (2) 

is the dipole-dipole interaction tensor in the quasistatic limit. Here Riy = [ R i - Rj [ 
and 6ij is the Kronecker delta. 

The macroscopic polarization field PM, defined as the average of the induced 
dipole moment per unit volume, is then given by 

PM(R) = n (p )  = (~ ]p i6 (R  - R i ) ) ,  (3) 
i 

where n is the number density of spheres and ( • .- ) means ensemble average. 
Furthermore,  the polarization induced in the system by an external field is 
characterized by the external susceptibility ~-.~X(q, to), defined as 

eM(q, to) =~eX(q, to).EeX(q, w), (4) 

where Eex(q, to) and PM(q, to) are the space-time Fourier transform of the 
external field and the macroscopic polarization field, respectively. The term 
external susceptibility indicates that the polarization is responding to the external 
field rather than to the average macroscopic electric field EM, with respect to 
which the electric susceptibility is usually defined. 



466 R.G. Barrera, C.L Mendoza / Solar Energy Materials and Solar Cells 32 (1994) 463-476 

The relationship between the local, effective (or macroscopic) dielectric re- 
sponse EM(W) and the external susceptibility ~ex(q, o~) is given by [11] 

,M(W ~ -- 1 - 4,rreb(og)xex't(q ~ 0, w), (5) 

where the superscript l denotes longitudinal projection. For a non-magnetic 
system, the long wavelength limit of the longitudinal l and transverse t response 
coincides, that is, gex, l(q ~ O, oo)=xex, t(q ~ O, w). Thus, the choice of the 
longitudinal projection in Eq. (5) instead of the transverse one, is just a matter of 
convenience. Since the dipolar interaction is long-range, care must be taken when 
the average of such an interaction field is performed, because it might yield to the 
appearance of ill-defined integrals in the case of an infinite system. Here we avoid 
this problem by adopting the following procedure: one starts by exciting the system 
with a longitudinal electric field of finite wavevector q, that is, 

E e x ( r )  = qEeXe i(q'r-w'), (6) 

and the linear set of equations given by Eq. (1) is solved for {Pi}. An ensemble 
average of {Pi} is then taken and the calculation of the macroscopic polarization 
field PM and the external susceptibility ,~ex is clone by using Eqs. (3) and (4), 
respectively. Then one takes the longitudinal projection of ~ex, and finally the 
local EM(W) is calculated by taking the q --) 0 limit of ,~ex, l and using Eq. (5). 

To follow this procedure it is convenient to introduce the following transforma- 
tion 

and 

Pi(q) = pi e-iq'Ri, (7) 

Tij.( q ) = ~ije -iq'(Ri-Rl). (8) 

Using this transformation, Eq. (i)  becomes 

Pi( q ) = ol [ ~Eex/ ea + ~_~Tij( q ) " Pj( q ) (9) 

where the argument oJ has been omitted. The main advantage of the above 
transformation is that the Fourier transform of the macroscopic polarization field 
PM becomes, simply 

PM(q) = N(Pi(q) ), (10) 

where N is the total number of inclusions. 
If we now use a formal solution of Eq. (9) together with Eqs. (4) and (5) we can 

write 

-) 
eM(m)%(O)) 1 -- 4~-lim ( ~  o__,o\j (O'U~(q, ~°)'0)ii , (11) 
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where 

Uij( q,  oJ) =-q6i j /a(oo ) - Ti~.( q ) . (12) 

Thus, one has first to invert a N × N matrix with random elements and N >> 1, 
and then perform an ensemble average. This is obviously a non-trivial task, whose 
solution has lead to a wide variety of approximation schemes [16]. 

Here we present a simple and intuitive solution for eM(W) which takes account 
of the dipolar fluctuations in an approximate way and which reduces to the 
well-known MFA when these fluctuations are neglected. First we rewrite Eq. (9) as 
follows, 

where APj - Pj - ( P )  is the fluctuation of the j th  dipolar moment, 

E; = t lEex /E  b + ~-~Tij " ( P ) ,  (14)  

J 

and we have omitted the argument q. As one can see, we have written the local 
field at R i as the superposition of two stochastic fields: the field E~ generated by a 
collection of identical dipoles located at random positions {Ry} plus the field 
generated by the dipolar fluctuations APj located at these same positions. 

It has been shown [11], that the effects of the dipolar fluctuations in the local 
field can be taken into account, at least in an approximate way, by means of a 
single scalar parameter  a*, defined by 

Pi = °l:~ E'i • (15) 

This parameter  can be interpreted as a renormalized polarizability. Thus, we will 
refer to this approach as the renormalized polarizability theory (RPT). Notice that 
Eq. (15) looks exactly the same as the equation usually used to define the MFA 
[11], but with a renormalized polarizability a* instead of the bare polarizability a. 
This equation can be solved immediately for ( P ) ,  and following the procedure 
described above yields 

E?M --  ~b 
- f & * ,  (16) 

e M + 2e b 

which, obviously, looks exactly the same as the well-known MFA relation given by 
Maxwell Garnet t  [3], but with &* instead of &. Here 6"  = a * / a  3, 6 =- a/a3o, and 
f - n ( 4 " r r a 3 / 3 )  is the volume fraction of spheres. 

The problem left is to find the relation between c~* and a, and this can be done 
by demanding consistency between Eqs. (15) and (9). One finds that &* obeys a 
simple second order algebraic equation [11] 

1 
-Tfe6(&*):  - 6 "  +& = 0, (17) 
4 
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where 

f~ = 4 a 6 1 i m A T 2 ( q ) ,  
q-+O 

and 

(18) 

functions fe can be written as 

fe  = fe (2) + fe (3), 

where 

¢~ p(2)( 2aox  ) 
f~2) = 3 q  0 x 4 

and 

dx,  (21) 

(20) 

9 
fe (3)= 47r2 f2f4 r 2 I~Ap(3)(R1, R2, R 3 ) d 3 R 2 d 3 R 3  • (22) 

Here fe (3) is independent of R 1 due to the homogeneity of the ensemble, and 

Ap (3) = p(3)(R 1, R2, R3) - p ( 2 ) ( R I ,  Rz)p(Z)(R2, R3) .  (23) 

The solution of Eq. (17) is 

&* 1 - - ~ l - - f e  62 
-~- = fe 6 , (24) 

which has the additional broadening, mentioned above, induced by the effects of 
disorder. This can be easily seen by taking in Eq. (24) a polarizability & with a 
single isolated pole of zero width in Im6 .  In this case 6" will acquire an imaginary 
part in the frequency region whenever f ea  2 < 1. 

Substituting now Eq. (24) into Eq. (16) one finally gets, 

eM - % 2 f  . (25) 
e M + 2~. b fe & 

It is interesting to notice that in the case of low polarizability a n d / o r  small filling 
fraction, or more precisely, when fe [&2[ >> 1, one can expand the square root in 

& z Eq. (25), in a power series in fe , that is, 

e ~ - e b  [ 1  1 
e M + 2 e b  f S  l + ~ f ~ &  + . . . .  (26) 

A T 2 ( q )  - Y'~O'Tij 'Tjk" - . Tq .  , (19) 
j ,k  

is the variance of the interaction tensor projected along q. 
The ensemble average is taken by using the m-particle distribution functions 

p(m) (R 1 . . . . .  R m) of the centres of the spheres. In our approximation, we require 
only the two- and three-particle distribution functions, and in terms of these 
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This yields to lowest order in fe &2, the correction to the Clausius-Mossotti 
relation proposed by Kirkwood and Yvon (KY) [17], about fifty years ago, in their 
statistical theory of the dielectric response of non-polar liquids and dense gases. 

In Ref. [11], e u was calculated taking fe (3)= 0, which is valid only in the 
low-density regime. At higher densities the effects of the three-particle correla- 
tions in E u should be important. Our purpose here is to analyze these effects using 
the best-known results for fe" 

Since the quantity fe appears already in the theory of Kirkwood and Yvon, 
there have been many efforts to calculate it for a system of molecules in thermody- 
namic equilibrium. The main difficulty has been the lack of a precise knowledge of 
p(2) and p(3). There are different approximations for p(2) coming from the solution 
of the Ornstein-Zernike equations [18] for different kinds of intermolecular 
potentials. For a homogeneous system of hard spheres in thermodynamic equilib- 
rium a useful approximation for p(2) is the one proposed by Percus and Yevick [19] 
in 1958. The calculation of p(3) is obviously a lot more difficult and a common 
simplifying approximation is the so called superposition approximation (SA), given 
by 

p(3) [1~ R2  ' R3  ) = p(2) (a12  ) p(2)(R23 ) p ( 2 ) ( a 1 3 ) ,  (27) SA~ *~ I ~ 

valid at low densities. A more precise determination of both p(2) and p(3) has been 
possible through numerical simulation techniques. For example, for a system of 
hard spheres a reliable Monte-Carlo simulation for p(2) has been available [20] 
since 1972. Nevertheless, there is no need to know p(2) and p(3) explicitly for the 
calculation of the integrals in fe, because the ensemble averaged themselves given 
in Eq. (19), can be also numerically simulated. 

In Fig. 1 we show the results for re, properly scaled, collected by Stell and 
Rushbrooke [21] for different approximations for p(2) and p(3) as  well as for a 

0.4 

0.3 

0.2 

fe O. 1 

-0 .0  

- 0 . I  SA+HC~ Js(O) \ 

~ 0 . ~  . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i ,  . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 
f 

Fig. 1. fe as a function of f,  as defined by Eq. (18). The point labelled AWS corresponds to the 
numerical simulation done by Alder, Weis and Strauss [23]. The other symbols are defined in the text. 



470 R.G.  Barrera, C L  Mendoza  / Solar Energy Materials  and  Solar Cells 32 (1994) 463 -476  

numerical simulation using a Monte-Car lo  technique. Here HC is the simplest 
approximation, it means fe (3) = 0 and p(2) _-- t~HC~(2) _= O ( R I  2 - 2a0). HC stands for hole 
correction; it accounts only for the correlations coming from the excluded volume 
of the spheres. SA + HC means that o (3) was taken using the SA and p{2) _ ,,{2) In - -  t-'HC" 
J3(0), fe (e) was calculated numerically using a Monte-Car lo  technique [22] and for 
fe (3) the integral was performed using SA for p ( 3 )  with p(2) _ ,,(2} SA + PY means - -  PHC"  
that p{3) was taken using the SA and p{2) within the Percus-Yevick approximation. 
Finally, the point labelled AWS corresponds to a numerical simulation done by 
Alder et al. [23] using a Monte-Car lo  technique. This calculation was done for a 
single filling fraction f = 0.4628 and the rest of the curve is an extrapolation of 
what Stell and Rushbrooke believe is the best available prediction; here we will 
call this curve fe(AWS). As it can be seen, at low filling fractions (f~< 0.05) all 
curves coincide with fe = f" It is obvious too that both, the contribution of f~3) and 
a more accurate estimation of f~2), become extremely important the higher the 
filling fraction. Taking the curve fe(AWS) as our best choice, it can be seen that 
the use of the SA in fe starts to break down at f = 0.3 and for f = 0.45 it is off by a 
factor of two. Furthermore, comparing fe = f with AWS for f ~ 0.45, the differ- 
ence is at least a factor of five. Notice also that fe = 0 corresponds, in RPT, to the 
MFA. 

In the case of a composite made of a solid homogeneous matrix with spherical 
inclusions, the calculation of p(e) and p(3) should take into account the specific 
process through which the composite was made, and it would not necessarily 
correspond to a system of hard spheres in thermodynamic equilibrium. Neverthe- 
less since an accurate determination of p{2) and pt3} for any specific composite 
would be almost impossible, here we will take the value of fe given by fe(AWS) as 
a guidance for analysing the effects of two- and three-particle correlations in the 
effective dielectric response. Furthermore,  a comparison between theory and 
experiment has been a difficult task because the samples used in the laboratory are 
far from being a collection of identical spheres. Usually there is a distribution of 
sizes and shapes in the inclusions as well as clustering effects. On the other hand, 
experimentalists were used to report only the filling fraction of their samples 
forgetting about other relevant properties of the microstructure, like the two-par- 
ticle distribution function. Thus, even the comparison between different experi- 
mental results might not be legitimate, because one could have samples with the 
same filling fraction but with different microstructures. Under these circumstances, 
the only fair comparison nowadays between theory and experiment is the compari- 
son between theory, and numerical experiments which solve the same model under 
the same approximations. Fortunately the results of these numerical simulations 
are now available [12,24]. 

3. Results 

Here we calculate E M by substituting in Eq. (25) the value of fe given by 
fe(AWS) and compare them with the results of Ref. [11], where f~3) = 0, and with 
numerical simulations done on the same model. 
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We perform this analysis through the Bergman representation [25] of the 
spectral function g(u), defined through the relation 

eM i g(u) 
- - l - f 0  du,  ~'b t - u 

(28) 

where 

1 - f  fe (34) 
u L = ½ ( 1 -  f ~ e ) , u v = l (  1 +  f ~ e ) , a n d u  s 3 12f"  

It can be seen, that g(u) is no longer a single pole as in the case of the MFA, it 
has now structure for all u L ~< u ~< u U plus an isolated pole at u = u s for f>~ f~e /2 .  
It can also be checked that it fulfils the sum rules given in Eq. (30). 

In Fig. 2 we show different calculations of g(u) for f =  0.3. The dashed line 
corresponds to RPT with fe {3) = 0 and fe (2) calculated with ~(2) the solid line to I~HC~ 
RPT with fe(AWS) and the dotted line to the numerical simulations done by 
Felderhof  and Cichocki [12] for the same model with the same approximations. In 
comparing the dashed with the solid curve, we can see that the main effect of 

where 

1 
t (29) 

1 - E s / / E b  

The spectral function gives the weights of the different optically-active electromag- 
netic modes of the system. Its main advantage is that it does not depend on the 
dielectric properties of the materials but only on the geometry and the spatial 
distribution of the inclusions. It also obeys the following sum rules: 

folg(u) du=l, £1ug(u)du=½(l-f). (30) 

The spectral function was obtained by solving Eq. (28) for g(u), that is, 

1 
g(u) = - - I m [  l im%t(u + is)/eb]. (31) 

"n-f [s~O 

In the MFA, g(u) turns out to be 

g(u) = 6 [ u -  (1 - f ) / 3 ] ,  (32) 

where 6 is the Dirac delta function. This simply means that in this approximation 
there is only one optically-active mode. 

On the other hand, in the RPT g(u) becomes 

1 6~/fe--(1--3U) 2 
g(u) = ~- 4 f  2 _  4 f (1  -- 3U) + f e 0 ( U - -  uL)O(u U- U) 

+ ( f - ~ f  )O(4f2-  fe)t3(U - Us), (33) 
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Fig. 2. The spectral function g(u) as a function of u for a filling fraction f =  0.3. The broken line 
corresponds to RPT with f(e 3) = 0 and 0~c  . The solid line corresponds to RPT with fe(AWS). The 
dotted line is the computer  simulation of Ref. [12]. 

taking more accurate values of p(2) and p(3) is to shift the peak of g(u) to higher 
values of u, giving a bet ter  agreement  between the solid curve and the one 
corresponding to the numerical simulation. In the solid curve there is an isolated 
pole, which has no physical significance and should be a consequence of the 
approximations used in RPT. Nevertheless this isolated pole broadens and merges 
with the rest of the structure when the effects of nonradiating damping are taken 
into account yielding a single broad peak. This is shown in Fig. 3 where we plot 
three different curves for ImeM(W) as a function of ~o/o~p, for a system of spheres 

30 :i 
I I f = 0 . 3  

I 

~, T=92/COp 
I 

20 _ ~I / ',, 

0 / 
0 - -"----'-~ 
0. 0.2 0.3 0.4 0.5 0.6 

5 9 / / 6 9 p  

Fig. 3. Im e M as a function of oJ/~% for Drude  spheres in gelatin ( e  b = 2.37) and a filling fraction 
f = 0.3. Here r = 92/(o/,. The three curves, solid, dashed and dotted, were obtained through Eq. (28) 
using the corresponding solid, dashed and dotted curves for g(u) given in Fig. 2. 
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Fig. 4. The relative deviation ~M/ECM -- 1, from the Clausius-Mossotti value ~CM, calculated with RPT 
for a system with E s /% = 16/7. Curve U (3) (L(3)) corresponds to the dipolar contribution to the third 
order upper (lower) bound of Ref. [26]. 

with a Drude  dielectric funct ion and a finite electronic relaxation time ~- = 92/wp,  
embedded  in dispersionless gelatin (% = 2.37). The  three curves, solid, dashed and 
dotted,  were  obta ined th rough  Eq. (28) using the corresponding g(u)  given in Fig. 
2. One  can see, that  a l though the shape is not  exactly the same, the position of  the 
absorpt ion peak  of  the solid curve coincides with the one of  the numerical  
simulation (dotted).  

Now we show the results of  R P T  for e i ,  in the f requency region far f rom the 
resonances,  where  the materials are t ransparent  and dispersionless, that  is, when  
e s and e b are real and independen t  of  oJ. In this case the polarizability of  the 
spheres  5 = [Es - %]/[E~ + 2e b] is also real and EM can be computed  directly f rom 
Eq. (25). 

In  Fig. 4 we illustrate the behavior  of  the deviations of  e M calculated with R P T  
with respect  to the Claus ius-Mossot t i  value ECM. We plot EM / e CM -  1 as a 
funct ion of  f ,  for a system with contrast  es/E b = 16/7 .  The  dipolar contr ibut ion to 
the th i rd-order  bounds  derived by Fe lderhof  [26] is also included in this figure. 
These  bounds  are th i rd-order  because  they involve up to a three-part icle distribu- 
tion function. The  upper  bound  U (3) and the lower bound  L(3 ) are given by 

U O ) = e ,  1 1 - t  ( l _ t ) ( l _ t _ h 3 / h 2 )  , (35) 

and 

el e 2  ) -1 

L ( 3 )  = ,  b 1 1 - - t  ( 1 - t ) ( 1 S t - - e 3 f e 2 )  ' (36) 
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where 

e 1 = f ,  e 2 = -~-(1 - f ) ,  e 3 = (1 _ f ) z  + fe ,  

f f (1 - f ) ( 2  + f )  - ~6 re, (37) h~=a-f, h2= ~(1-f), h3=~ 

the parameter  t is given by Eq. (29) and e s > % > 0. The parameter  fe is common 
to RPT as well as to U (3) and g(3 ). In Fig. 4 all the curves have been calculated 
using f e ( A W S ) .  One can see that the RPT curve lies well within the bounds and it 
is interesting to point out that these calculations are very sensitive to the value of 
L. 

4. Conclusions 

We have presented a simple theory, within the quasistatic, dipolar approxima- 
tion, for the calculation of the effective dielectric response of a system of spherical 
inclusions located at random positions and embedded in an otherwise homoge- 
neous matrix. The theory goes beyond the MFA and takes account of the dipolar 
fluctuations through a single scalar parameter  a* which can be interpreted as a 
renormalized polarizability. The value of a* is determined by solving an algebraic 
second order equation with coefficients that involve the bare polarizability a and a 
parameter  fe,  which depends on the filling fraction f and integrals involving the 
dipole-dipole  interaction and the two- and three-particle distribution functions. 
The parameter  fe has been calculated previously [21] using different approxima- 
tions for both the two-and three-particle distribution functions. The most reliable 
values of fe are the ones obtained using an extrapolation which passes through a 
value calculated by a Monte -Car lo  simulation for f = 0.4628. These values were 
used to calculate a* and then the effective dielectric response e g and the spectral 
function g(u) .  The results were compared with a previous version of the theory 
which used a crude approximation of re, Ref. [11], and also with the results of a 
numerical simulation. We found that the effect of the dipolar fluctuations is to 
produce, in g(u) ,  an asymmetric peak with a finite width, in contrast with the 
single delta function in the MFA. Also, a more accurate value of fe in a* 
blue-shifts the absorption peak of I m e  g with respect to the results reported in 
Ref. [11], yielding a bet ter  agreement  with the numerical simulation. This was 
shown for a system of silver particles embedded in gelatin and f = 0.3. On the 
other hand, for transparent  materials the values of e g calculated through a* fall 
inside the third-order bounds. 

Although a* contains an additional broadening of the absorption peaks in- 
duced by disorder, the comparison of the profile of g(u)  with the results of 
numerical simulations is still not good enough, even when the best available values 
of fe are used. A better  agreement  would require a more accurate and obviously a 
more involved treatment  of the dipolar fluctuations. 
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