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Abstract 

We have developed a theoretical model for describing the electromagnetic response of 
noble metal surfaces. The model takes into account the d to s-p interband transitions as 
well the actual crystalline geometry. The surface response is incorporated in a calculation 
of the optical reflectance, and it yields corrections to Fresnel’s formulae which depend on 
the angle between the polarization vector and the surface principal directions. The 
anisotropy effect has been confirmed by surface reflectance anisotropy spectroscopy 
experiments performed on (110) Ag and Au surfaces. We show that the main contribution 
to the anisotropy is the screened surface local-field effect on resonant dipolar oscillations 
localized near the surface. 

1. Introduction 

Since the linear, long-wavelength, bulk electromagnetic response of a cubic 

crystal is isotropic, any anisotropies in its optical properties are expected to 

originate from the lower symmetry of its surface. The measurement of the 

reflection anisotropy of cubic crystals has become an important tool for the 

investigation of surface structure [l-5]. There are many possible sources of 

anisotropy, such as transitions among surface states [6,7] and preferential surface 

roughness, though intrinsic anisotropies at flat surfaces in the absence of surface 

states have also been observed [l]. These anisotropies have been successfully 

accounted for in some systems by the surface local-field effect [S]. 

Lately, there has been a renewed interest in the electromagnetic response of 

single crystal Ag surfaces. After the pioneering research of Furtak and Lynch [9] 
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who showed an anisotropy in the electroreflectance spectra of Ag (llO), came the 
work of Tadjeddine et al. [lo] who measured attenuated total reflection spectra 
and found that the dispersion relation of the retarded surface plasmons on Ag 
surfaces depended on the face orientation and on their propagation direction. The 
nonretarded surface plasmon dispersion has recently been measured [ll-131 by 
electron energy-loss spectroscopy, and an anomalous anisotropic dispersion whose 
kind is still in dispute [14-161 was also found. 

The bulk and surface plasmons of Ag have frequencies that are substantially 
lower than what might be expected in terms of the free electron theory [17]. This 
is due to a large positive contribution to the real part of the dielectric function 
originated from the interband transitions between a d-band complex below the 
Fermi energy and the conduction s-p band [18]. In this paper we extend a model 
previously employed to incorporate the surface geometry and the contributions of 
both, interband and intraband, transitions in a calculation of the collective modes 
of Ag surfaces [19]. Here we calculate the surface optical conductivity and employ 
it to obtain the surface corrections to the complex reflection amplitude. We apply 
the model to Ag and Au (110) surfaces and we obtain that their reflection 
amplitude is anisotropic. The reflectance anisotropy (RA) spectra of Au turn out 
to be of the same order of magnitude as that of previously investigated systems, 
but that of Ag is about two orders of magnitude larger. To test this result we 
performed RA measurements and compared them to the theoretical results. 

2. Model 

Following ref. [19], we assume that, since the d orbitals are fairly localized, the 
interband transitions generate dipole moments only in small regions localized near 
the ionic core positions where there is a substantial overlap between the d and the 
s-p wavefunctions. Furthermore, we assume that outside these regions the 
conduction electron gas can be assumed to be homogeneous. Therefore, we 
model the crystal as an homogeneous electron gas with a swiss cheese geometry, 
with spherical cavities centered at every fee lattice site. We replace the ionic core, 
the d electrons and the electron gas within each sphere by a point polarizable 
entity located at the center of the cavity. We describe the electron gas by the 
simple Drude model and we characterize each dipole by its polarizability, which is 
fixed by the requirement that the calculated bulk macroscopic dielectric response 
should agree with experiment. 

The total dipole moment pi within the ith cavity is given by 

E,+x T,p,+c Tii.pi. 
j#i ., J 

2 
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(w ’ + iw7) ’ 
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where E, is the external field, whose component normal to the surface E’ is 
screened by the dielectric response &g of the conduction electron gas, Tij = VVR,’ 
is the bare dipole-dipole interaction, and p,, is the image of the dipole pj, 
reflected from inside by the boundary of the electron gas. 

For a long-wavelength field, all the dipoles acquire essentially the same moment 
within the bulk pi = pB, so that Eq. (1) is very simply solved, yielding the well 
known Clausius-Mossotti relation [20] (E - E~)/(E + 2~~) = $ma, where II is the 
number density. Now we set E to the experimentally measured [17] bulk dielectric 
function F~,(w) for each frequency w, we solve the previous equation for the bulk 
polarizability (Y, we assume that LY is independent of position and solve Eq. (1) to 
obtain pi in the neighborhood of the surface [21]. 

Under normal incidence, the electromagnetic response of the surface may be 
characterized by the surface conductivity [22] P defined through i,, = &$,(O), 
where i = s d3r (j -j,)lA measures the difference between the electric current 
density j near the surface and its bulk value jB, and A is the area of the sample. 
Taking account that both the localized dipoles and the electron gas contribute to 
j, it can be shown [8,9,21] that 

.5--E g c (A),, - (Ps),, 
a=-iwa 4r n 

(PB)II ’ (2) 

where the sum is taken over the crystalline planes n. 
Finally, the normal incidence complex reflection amplitude is given by [8,22] 

, rf = (x& - 1)/(X& + 1) 

where rr is the Fresnel reflectance. 

3. Results 

In Fig. 1 we show the surface conductivities u of the (110) face of Au and Ag 
crystals for the electric field along the two nonequivalent principal directions [liO] 
and [OOl]. Notice that there is a resonant structure that corresponds to dipolar 
surface excitations, and that the surface conductivity displays a very marked 
anisotropy. We observe very wide peaks in the conductivities of Au and better 
defined ones for Ag, particularly for the [OOl] orientation. This structure may be 
understood in terms of the resonances of (Y shifted in frequency by the dipole- 
dipole and by the dipole-image interactions; it corresponds to normal oscillations 
of the dipole moments localized within the first few atomic planes. In the case of 
Ag( llO)[OOl] the peak lies very close to the surface-plasmon frequency and below 
the interband threshold where dissipation is very small, so it is much larger and 
narrower than the others. 

Using the above conductivities we have calculated the real and imaginary parts 
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Fig. 1. Real part of the surface conductivity of Ag and Au (110) surfaces for fields along [liO] and 
[OOl]. 

of the reflection amplitudes r for E along [liO] and [OOl], and the relative RA 

*?-jr = (r[riOj - r~oOrl)~r~OO~j~ We have also performed measurements of the RA 
using what can be considered a normal incidence ellipsometer developed by the 
ISA Jobin-Yvon company (France). The RA signal may be obtained from the 
ellipsometric parameters rC, and A defined through r[,,rj lr[riol = tan !P eiA. The 
apparatus [23] consists of a 75 W xenon lamp as a source of light that hits the 
sample at 2.75”. The light is polarized and analyzed with Glan-Taylor polarizers 
and modulated with a fused silica bar subject to a 50 kHz periodical stress. Its 
energy is analyzed with a double-grating monochromator and detected with a 
photomultiplier with a range 230-830 nm. The sample was prepared following a 
procedure [24] which produces well defined single-crystal surfaces. 

In Fig. 2 we display the real part of the reflectance anisotropy *r/r of Au (110). 
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Fig. 2. Real part of the calculated and measured reflectance anisotropy spectra (Re (Ar/r)) of a Au 

(110) surface. 

Fig. 3. Real part of the calculated and measured reflectance anisotropy spectra (Re(Arlr)) of a Ag 

(110) surface. The open diamonds and closed triangles correspond to the freshly prepared and the 48 h 
old samples. 
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Both theory and experiment show an anisotropy of the same order of magnitude 
as previously obtained for semiconductors, i.e., a few parts in a thousand. The 
calculated results agree roughly with experiment: they are of the same order of 
magnitude, they follow the same pattern of sign reversals and they have the same 
peak-to-peak amplitude. However, the experiment shows a distinct structure at 
3.6eV that is absent in the calculated results. 

In Fig. 3 we show the real part of the RA calculated for Ag and experimental 
results for two samples, one prepared just prior to the measurement and the other 
prepared 48 h in advance and stored in an air ambient. In this case the theoretical 
and the experimental results are both two orders of magnitude larger than for Au 
and for other systems [l]. One reason for this anisotropy enhancement is the large 
resonance in the surface conductivity of Ag. Another reason is the sharp decrease 
in the reflectivity Y of Ag at the plasma frequency, which enhances the relative 
anisotropy Arlr. The three have a high degree of correspondence and there is a 
good quantitative agreement between the measurements on the oxidized crystal 
and theory. This might be due to an overestimation of the surface local field effect 
by our point dipole model together with an overlayer induced decrease in r for 
the contaminated sample. 

4. Conclusions 

We developed a model with which we calculated the reflectance anisotropy of 
Ag and Au (110) surfaces incorporating the conduction electron gas, the 
interband transitions and the crystalline geometry. We also performed normal- 
incidence ellipsometry experiments to measure the RA signal. For Au we 
obtained a qualitative agreement between theory and experiment. For Ag the 
theory yields an extremely large optical anisotropy which is in very good accord 
with experiment. Several causes of anisotropy might be present, such as an 
anisotropic electron gas conductivity or presence of anisotropic film coatings. 
However, our results show that the local-field effect plays a most important role 
in the surface optical response of the noble metals. They also confirm that optical 
anisotropy spectroscopy is a linear optical technique that is inherently sensitive to 
the surface and that may be employed in environments in which other surface 
techniques are ineffective. 
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