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Abstract 

We perform a numerical simulation in order to calculate the dielectric response, to a 
long wavelength external field, for a linear chain of polarizable spheres embedded in a 
homogeneous host. The dielectric response is calculated within the dipolar, quasi-static 
approximation, and the position of each sphere is generated using three different types of 
disorder algorithms. The induced dipole moment on each sphere is calculated by solving a 
set of linear equations and using periodic boundary conditions. The imaginary part of the 
dielectric response as a function of frequency is shown and analyzed for the three types of 
disorder. These are also characterized through the calculation of the two-particle dis- 
tribution function of the spheres. 

1. Introduction 

The study of the optical properties of inhomogeneous media has been an active 

field of research for more than over a century. At  the beginning of this century 

J.C. Maxwell Garnett  [1] calculated the effective dielectric response (EDR)  of a 
system composed by spherical inclusions located at random positions within an 
otherwise homogeneous matrix. In his calculation, he assumed that the local field 
was uniform within each inclusion (dipolar approximation) and that all the 

spherical inclusions had the same induced dipole moment.  This latter assumption 
is known nowadays as the mean field approximation (MFA),  and is equivalent to 
the neglect of the local-field fluctuations. In the last decades, most of the efforts 
spent in the calculation of an E D R  in granular systems with spherical inclusions 
have been directed to the removal of both of these assumptions [2]. 

* This paper was presented at the Third International Conference on Electrical Transport and Optical 
Properties of Inhomogeneous Media (ETOPIM 3), Guanajuato, Mexico, 9-13 August 1993. Selected 
papers of this conference were already published in Physica A 207 (19941 Nos. 1-3. 
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Up to now, the direct comparison between the different theoretical approaches 
and the experimental results has been a very painful task. This is due, essentially, 
to two facts: 

(i) The samples do not resemble properly the idealized models used in the 
theoretical work. For example, in the samples the inclusions usually have a 
distribution of sizes and shapes, together with clustering effects. 

(ii) Most of the experimental reports do not contain enough information about 
the actual statistical distribution of inclusions within the samples. 

This latter point comes about, because most of the experimentalists intended to 
fit their data to either the Maxwell Garnett theory (MGT) or to the Bruggeman 
theory (BT), or to an extension of them in which the only information required 
about the microstructure of the system was the filling fraction of spheres. Thus 
this was the only recorded parameter. Nevertheless, it has been now recognized 
that it is quite fortuitous that the filling fraction were indeed the only microstruc- 
tural information required in the MFA, and that this happens only in the very 
special case of spherical inclusions in 3D. As soon as one considers either a 
system of spheres located at random in 2D [6] or non-spherical inclusions in 3D 
[7], one finds that the calculation of the EDR in the dipolar, quasistatic, MFA 
requires an additional statistical information, namely, the two-particle distribution 
function of the inclusions. Furthermore, it can be shown that beyond the MFA, 
the two- and higher-particle distribution functions are a necessary input for the 
calculation of the EDR in the case of either spherical or non-spherical inclusions. 
Therefore, even an apparent disagreement between two sets of experimental 
results could not be legitimately resolved if the microstructure of the actual 
samples were not properly characterized. 

Then, under these circumstances, one might say that the only fair test of the 
present theories is their comparison with numerical simulations which use the 
same model [3]. One might even be tempted to call these numerical results the 
"exact solution" of the model. Recently, Cichocki and Felderhof [4] have 
reported results of a numerical simulation for a system of spherical inclusions in 
3D within the quasistatic, dipolar approximation. They calculate the spectral 
function of the EDR for 6 different filling fractions between 0.1 and 0.5. The 
configurations were generated by a Monte Carlo technique, with a hard sphere 
statistics, that is, the particle centers were distributed randomly apart from the 
nonoverlap condition. The spectra show a sharpening peak at the lower end of the 
spectrum as the filling fraction increases and they conjecture that it corresponds to 
a collective mode of the system. These results are certainly a main step forward 
towards the understanding of the dielectric response of granular systems; 
nevertheless one may wonder, how sensitive these results are, to different types of 
disorder. This question might be specially relevant, when one thinks of a real 
experimental situation, where the statistical distribution of inclusions is the result 
of a quite complicated preparation procedure, which could not be modeled, 
necessarily, by a system of hard spheres in thermal equilibrium. 
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At this respect, R.I. Cukier et al. [5] have reported results of numerical 
simulations for the imaginary part of the EDR for a system of conducting 
spherical inclusions in 3D but considering different kinds of disorder. They did it 
also within the dipolar approximation but only for a very low filling fractions f of 
spheres ( f =  0.03). They find that the width of the absorption peak in the 
imaginary part of the EDR as a function of frequency, for spheres described by a 
Drude dielectric function, depends indeed on the type of disorder. Analogous 
results for high filling fractions are still lacking. 

Here we perform a numerical simulation for the calculation of the EDR for a 
1D chain of polarizable identical spheres. We do this within the quasistatic, 
dipolar approximation and we perform a systematic study for different types of 
disorder and for filling fractions covering the whole range, from the extreme- 
dilute to the close-packed limits. Our objective is twofold, first we want to study 
the properties of a 1D system due to the intrinsic interest that exists in the 
behavior of low-dimensional systems, and second, to shed some light into the 
possible dependence of the EDR on the type of disorder in systems in higher 
dimensions. Obviously, the computation time required for the simulation in a 1D 
chain is significantly smaller than in the corresponding 3D system. This allows us 
to perform the numerical calculations directly through matrix diagonalization and 
to study, in a systematic way, the fluctuations induced in the local field by the 
positional disorder of the spheres. 

2. Formalism 

We consider a linear chain of length L, lying along the Z-axis, with N (>> 1) 
identical, non-overlapping, polarizable spheres of radius a and dielectric function 
es(~o), located at random positions {zj), within a homogeneous, dispersionless 
host with dielectric constant eh" The system is excited by an external electric field 
EeXt(~o) oscillating with frequency w and constant in space. 

In the dipolar approximation, the local field induces in the ith sphere a dipole 
moment given by 

f E e x t  N } 

where a(oJ)=a3[es(<o)--Eh]/[es(oJ)+2eh] is the effective polarizability of an 
isolated sphere within the host, 

3Ri j .  Rij - l ij 
tij -- 3 (2) 

R~j 

is the quasistatic dipole-dipole interaction tensor, and Rij = IRi- Rj]. For a linear 
chain/~ij = (0, 0, 1). 
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The relation between the {Pi} and the average or macroscopic fields is given 
through 

P = n ( p i )  = n ( p >  , (3) 

where P, the macroscopic polarization field, is the dipole moment per unit 
volume, n = N/(xra2L) is the number volume density of spheres, and ( . . - )  means 
ensemble average. We assume that the ensemble is homogeneous, thus the 
average (Pi) is independent of i. Here the volume of the system is chosen as a 
cylinder of radius a and length L. 

Our purpose is the calculation of the external dielectric susceptibility tensor 
Xext, which relates the macroscopic polarization field with the external electric 
field, that is 

P -= Xext" E~Xt. (4) 

We do this, by first generating the positions {zi} of the spheres along the chain 
with a certain type of disorder algorithm, then one solves Eq. (1) for {pi} by 
matrix inversion and finally an ensemble average is taken over an ample set of 
chain configurations. 

Edge effects due to the finite length of the chain are removed by using periodic 
boundary conditions. That is, given a finite set of positions {z~} in a chain, one 
constructs a unit cell of length L with N - 1 spheres and then one takes an infinite 
number of unit cells locating the first sphere always in the same position, for 
example z I = 0. The distance between any pair of spheres in the infinite chain is 
given by 

R~ ~'' = ](Z/ ~- /zZ) -- (zy + ~'z)l :-Iz, + ~ z l ,  (5) 

where/z  denotes the cell, zq is the distance between two spheres in the same cell 
and o- can take any integer value. 

The dipole-dipole interaction tensor tq for the infinite chain is diagonal in the 
coordinate system we have chosen, and can be now written as 

t ,  = ,,=_o~ Iz ,  + ~ L I  3 ' (6) 

where c = diag(-1 ,  - 1 ,  2). By performing the sum over all unit cells one gets 

- °  ° ,  , 7 '   -b3) t ,  = izi j]3 ',- ,,=-,,, I tl _ ,  

12cz: ( ,)  
+ ; ( 5 ) -  7 + '  (7) 

o'=1 

where m is an integer, appropriately chosen to get quick convergence, and ~(n) is 
the Riemann zeta function. 

We now substitute this expression into Eq. (1) with m = 2 (which yields good 
convergence) and calculate the induced dipole moment in each sphere {p~) by 
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solving a set of linear equations through the inversion of a N x N matrix. The 
average over each configuration l is calculated as [/5]/= (l/N)E/N=I Pi and the 
average over all configurations M is then 

1 M 
<P> (8) 

Finally, the external susceptibility is obtained using Eq. (4). 
First, we consider the ordered distribution, where the separation between 

spheres is the same, and then we consider distributions with three different kinds 
of disorder: 

In disorder A,  N - 1 random positions are generated within the unit cell and 
the centers of the spheres are located on these sites with the only restriction that 
they do not overlap. 

In disorder B, the first sphere is located at the edge of the unit cell and N -  1 
equidistant sites are defined within the cell. The next sphere is randomly located 
between the first sphere and the second site, the next one between the second 
sphere and the third site and so on. 

In disorder C, the first sphere is located at the edge of the unit cell and N -  1 
equidistant sites are defined within the cell. Lets call s o the distance between these 
sites and then locate the k-th sphere randomly within an interval 2~s 0 around the 
k-th site. The parameter  0 ~< 6 4 1 serves as a measure of the disorder, for 
example,  6 = 0 corresponds to the ordered case and 6 = ½ to the maximum 
allowed disorder of this type. 

The choice of these types of disorder has nothing in particular, the idea is 
simply to illustrate the sensitivity of the dielectric response to a specific type of 
disorder algorithm. 

3. Resul ts  

We consider a system of metallic spheres with a Drude dielectric function with 
plasma frequency top and an electronic relaxation time ~-= 103/%. The spheres 
are embedded in a homogeneous medium with a dispersionless dielectric constant 
E h = 2.37 (gelatin). Results are presented for the imaginary part of the external 
susceptibility Im Xext as a function of frequency, for each kind of disorder 
(A, B, C) discussed above. The peaks in Im Xext correspond to the resonance 
frequencies of the collective electromagnetic modes of the system which are 
optically active; we will call these peaks, absorption peaks, and Im ge~t(to), the 
absorption spectra. By optically active one means modes which can be excited by 
a long wavelength external field. As is well known, in the ordered case and for 
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z---~ ~, the imaginary part of the diagonal components of the susceptibility are 
delta functions. This means that there is only a single optically-active mode which 
can be excited for each direction (x, y, or z) of the external field. On the other 
hand, in the presence of disorder there is a broadening of the absorption peaks 
even for ~- ~ ~. What happens is that there are now disorder-induced fluctuations 
in the dipole moments of the spheres, enabling the existence of new optically- 
active modes which span a continuous range of frequencies. In order to illustrate 
this behavior,  we have taken here ~- = 103/top, which is big enough to yield very 
narrow peaks in the ordered case. The number of spheres N depends on the filling 
fraction f = 2Na/L, where L/a ~ 103,  and the ensemble averages are performed,  
typically, over M ~ 100 configurations. 

In Figs. 1, 2 and 3 we show the results of the numerical simulation for 
Im X~x~t(to), plotted as a function o f /2  -- to/tOp, for filling fractions f = 0.3, 0.5, and 
0.8, respectively, and for the three types of disorder A, B, and C, discussed 
above. For disorder C we have set ~ = 1. In these figures we take as a reference,  
the resonance frequency of the isolated sphere given by ~.s. -= tOi.s./tOp = 0.4174, 
and the resonance frequency 12 o -= tOo/tOp of the ordered case at the corresponding 
filling fraction. We mark them with vertical lines and denote them with i.s. and o 
respectively. We recall that the isolated resonance of the ordered array O o 
corresponds to the one obtained for a disordered system with the same filling 
fraction using the mean fieM approximation. On the other hand, in Fig. 4, we 
show the corresponding results for Im xxxt(tO ) for disorder A and filling fractions 

f = 0.3, 0.5, and 0.8. 

5.00 

4.00 

3.00 

2.00 

1.00 

0.00 0.30 

f = 0 . 3  

i i.s. 

0.35 0.40 0.45 
Fig. 1. Imaginary part  of X~t as a function of the reduced frequeucy 12 = o~/t% for disorder of type A,  
B and C, and filling fraction f =  0.3. The vertical lines mark the position of the resonance frequencies 
of the isolated sphere (i.s.) and the ordered array (o). 
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Fig. 2. Imaginary part of ) ( z z  t a s  a function of the reduced frequency ~ = co/% for disorder of  type A,  
B and C, and filling fraction f = 0.5. The vertical lines mark the position of the resonance frequencies 
of  the isolated sphere (i.s.) and the ordered array (o). 

A special characteristic of this 1D system, which facilitates the analysis, is that 
the induced dipolar field of every neighboring sphere, at any given sphere site, 
points always parallel and along (opposite to) the external field when this field is 

5.00 

f = 0 . 8  
4.00 

C Io i.s. [ 
I 3.00 

2.00 

1 . 0 0  

o.oo (~ 
0.25 0.30 0.35 0.40 0.45 

Fig. 3. Imaginary part  of X~t as a function of the reduced frequency ~ = w/~% for disorder of  type A,  
B and C, and filling fraction f = 0.8. The vertical lines mark the position of  the resonance frequencies 
of  the isolated sphere (i.s.) and the ordered array (o). 
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Fig. 4. Imaginary part of X~:t as a function of the reduced frequency ~ = co/c% for disorder of type A 
and filling fractions f = 0 . 1 ,  0.3 and 0.8. The vertical lines mark the position of the resonance 
frequency of the isolated sphere (i.s.), 

parallel (perpendicular) to the chain. This means that the local field, at any sphere 
site, is always greater (smaller) than the external field. As a consequence, the 
frequencies of the normal modes of the system are always softened (stiffened), 
that is, red-shifted (blue-shifted) with respect to the resonance frequency 12is. of 
the isolated sphere. The shift increases when the filling fraction increases. Thus 
E2i.s. becomes an upper (lower) limit in the spectra. The lower (upper) limit is the 
f r e q u e n c y  ~'~L ~- tOL/O)p (~'~U ~ £OU/('Op) of the mode L(U) at which the local field is 
the largest (smallest) possible field at every sphere site, and this happens in the 
configuration where the spheres are as close as possible to each other for a given 
filling fraction. It is obvious that this frequency I2 L (Ou) should be larger (smaller) 
than Oc, the one corresponding to the close-packed configuration f =  1, but 
smaller (greater) than/22 -= o~2/to p, the one corresponding to a system of only two 
spheres at the minimum separation 2a. In our case of spheres embedded in gelatin 
this corresponds to 0.2538 ~< O L ~< 0.3511 (0.4651 ~< O U ~ 0.5121) and the absorp- 
tion spectrum is then limited to the frequency range 12 L ~< O ~< Oi.s. (I2i.~. ~</2 ~< 
Ou). 

Furthermore,  since the profile of the absorption spectra mirrors the density of 
states of the normal modes of the system, one can understand the difference in 
shape of these spectra in terms of how the probability of finding different kinds of 
modes changes at various filling fractions. For example, for low filling fractions 
the spheres are, on the average, well separated from each other and one expects a 
larger probability of finding mode configurations with frequencies closer to Oi.~. 
than to 12L(12u). This would yield spectra with a peak on the high (low) 



C. Noguez, R. Barrera / Physica A 211 (1994) 399-410 407 

frequency side and a tail in the low (high) frequency one. On the contrary, for 
high filling fractions one expects a larger probability of finding mode configura- 
tions with frequencies closer to OL than to 12 i .... yielding spectra with a peak on 
the low (high) frequency side and a tail in the high (low) frequency one. 
Nevertheless for f =  1 the system is becoming ordered,  thus the spectra should 
narrow and narrow in order  to become finally a delta function at f =  1. At 
intermediate filling fractions the shape of the spectra should represent a transition 
between the one at low f and the one at high f. 

Looking at Figs. 1, 2 and 3, we see that the spectrum falls within the predicted 
frequency range for an external field parallel to the chain, and that the anticipated 
behavior  discussed above is well illustrated in curves A and B. At f = 0.3 they are 
highly asymmetric with a long tail on the low frequency side and a sharp edge at 

--Oi.s.. At  f - - 0 . 8  their peaks are also asymmetric but their shape is now 
reversed; the long tail is at the high frequency side and there is an edge, not as 
sharp, at the low frequency side. A transition between these two situations occurs 
at f =  0.5 where the profiles have two peaks: a small and narrow peak close to 
Oi.s. and a rather broad one at lower frequencies. On the other  hand, curve C 
peaks close to I2 o for the three filling fractions shown here. This behavior is 
obviously inherited from the one associated to the ordered configuration which 
serves as a seed for the generation of disorder. Therefore,  disorder generated in 
this way inhibits the appearance of low-frequency configurations. This can be 
more clearly seen when one chooses the parameter  ~ less than 1 and one gets, as 
expected,  an absorption peak with a profile more and more similar to the ordered 
case. Here  we chose 8 = 1 because it represents the maximum allowed disorder of 
this type. In case the external field lies perpendicular to the chain, one can see in 
Fig. 4, that the profile of the absorption spectra also follows the behavior 
predicted above. Although the results for disorder of types B and C are not 
shown in this figure, the corresponding behavior of the profile of Im xxxt(o.) ) for 
different filling fractions, as compared with disorder of type A, is analogous to the 
one shown in Figs. 1-3. 

Nevertheless, the main message conveyed by these figures is the great 
sensitivity of the effective dielectric response to the type of disorder. In each of 
the first three figures, the curves denoted with A, B, and C are markedly 
different. The profile of curve C is always distinctly taller, narrower and more 
symmetric than the corresponding ones of curves A and B. The noise present in 
all these curves is numerica l  noise and can be smoothened out by averaging over a 
larger number  of configurations. For  large filling fractions ( f  > 0.3) the calcula- 
tions were done on a CRAY machine and our only limitation was computer  time. 

It is also interesting to point out that an average over random orientations of 
the chain would lead to absorption spectra given by xlml Xext(C..o)zz + xlm2 . . . . .  Xext~('O) • It 
is then immediately seen that these spectra show two characteristic peaks, one 
below and the other  one above Oi.s.. This double-peak structure is also present in 
the calculated spectra of the solid-angle-averaged absorption coefficient of an 
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ordered chain of polarizable spheres [8]; this result was used to explain the 
double-peak in the experimental absorption spectrum of gold colloids. 

One way to characterize the different types of disorder is through the two- 
particle distribution function g(R). Given a sphere at Zl, g(R) is proportional to 
the probability of finding another sphere along the chain at a distance R from zl,  
and normalized such that g(R---~)= 1. We calculated g(R) numerically for the 
types of disorder discussed above. In this case, in order to obtain a bigger signal 
to noise ratio, it was necessary to average over a larger number of configurations, 
typically ~5000. In Fig. 5 we plot g(R) as a function of R, for f =  0.5 and the 
three types of disorder A, B, and C, while in Fig. 6 we plot g(R) as a function of 
R for f = 0.8 and disorders of type A and B; disorder of type C was not included 
here for the sake of a clearer figure. In the ordered case we have that g(R) is a set 
of delta functions located at the sphere positions. Looking at Figs. 5 and 6 one 
observes that when the spheres are now moved randomly around these positions, 
as in disorder of type C, the delta functions are broadened. On the other hand, 
when the disorder in the system is generated through algorithm A, the two- 
particle distribution function shows big oscillations at very short distances, which 
decay relatively soon to an asymptotic value gA" Here the value of gA is different 
from 1 due to the finite number of particles. For disorder B, g(R) has small 
oscillations around gA, which extend almost undamped to very large distances. 
The maxima of these oscillations are at the sphere positions in the ordered array 
as illustrated also in Figs. 5 and 6. From these figures we can see that disorder of 

1 . 0 1 0  

1 . 0 0 5  

a~ 

tao 

1 .000  I 

I 
I f = 0 . 5  

M =5000  

0 . 9 9 5  . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  E . . . . . . . . .  i 
0 5 10 15 2 0  2 5  

R/a 
Fig .  5. T h e  t w o - p a r t i c l e  d i s t r i b u t i o n  f u n c t i o n  g(Rla) as a f u n c t i o n  o f  R/a, fo r  t h e  t h r e e  t y p e s  o f  

d i s o r d e r  A ,  B a n d  C ,  a n d  a fil l ing f r a c t i o n  f =  0 .5 .  T h e  e n s e m b l e  a v e r a g e  w a s  d o n e  o v e r  5000 

c o n f i g u r a t i o n s .  
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0 5 10 15 R/a 
Fig. 6. The  two-particle distribution function g(R/a) as a function of R/a, for disorder of  type A,  and 
B, and  a filling fraction .f = 0.8. The  ensemble  average was done over 50017 configurations. 

type B seems to be a transition between the disorders of types A and C. This 
seems to be also the case when looking back at the absorption spectra of Figs. 
1-3. 

4. Conclusions 

In this work we perform a numerical simulation to calculate the external 
susceptibility of a 1D chain of polarizable spheres located at random positions. We 
do this for three different types of disorder, and we present results for three 
different filling fractions. The main result is the great sensitivity of the dielectric 
response to the specific choice of the disorder algorithm. We calculate the 
imaginary part of the external susceptibility as a function of frequency (absorption 
spectra) and we present an intuitive explanation of how the shape of its profile 
changes as the filling fraction increases. This is done in terms of the change in the 
density of states of low and high frequency modes at different filling fractions. 

In a 3D system, the local field at a sphere site, coming from a neighboring 
sphere, would have, in general, components both parallel and perpendicular to 
the external field. Therefore it is not obvious to know in advance in which 
direction the local field will point, on the different sphere sites. Nevertheless, it is 
interesting to notice that the behavior of the profile, as the filling fraction 
increases, of the absorption spectra for a Monte Carlo hard-sphere disorder in 3D 
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[4], fo l lows very  much  the  same  p a t t e r n  as Im X~x~t(to) for  d i s o r d e r  of  type  A as 

ca l cu l a t ed  here .  
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