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Using a recently developed theory for the inverse longitudinal nonlocal dielectric response for a granular
composite/R. G. Barrera and R. Fuchs, Phys. RevsB 3256(1995], we find an effective local dielectric
response from the condition that it must give the same electron energy-loss probability density as the actual
nonlocal response. This local response is expressed as a spectral representation: a sum of terms with simple
poles corresponding to the excitation of bulk and interfacial modes. Taking as a guideline the condition that the
strength and location of the poles must satisfy sum rules, a single-surface-mode approximation is proposed.
This single-mode approximation is tested for a random system of aluminum spheres in vacuum.
[S0163-18206)07142-1

[. INTRODUCTION theories to the problem of electron energy loss in composite
materials is rather recent. In the works of Walahd Howie
In the study of the optical properties of composite mate-and Walsh one finds some of the first attempts to use the
rials the concept of an effective medium has been a usefudoncept of an effective medium to construct a theory for the
tool for the interpretation of a wide variety of experimental calculation of the electron energy loss in a granular compos-
results as well as for a better understanding of the physics afe. They tried to apply the theories which were successful in
inhomogeneous system#n effective medium is a fictitious  the field of optics to the interpretation of their own energy-
homogeneous medium with the same optical properties dsss experiments. Lack of success in this task led them to the
those of the actual composite material. In the case of nonconstruction of a phenomenological theory for the calcula-
magnetic systems, the linear optical properties are detetion of the inverse dielectric response, which is the quantity
mined by the transverse dielectric function, which relates thehat governs the electron energy-loss phenomenon. Stimu-
transverse components of the displacement and electriated by this work, Pendry and Morehoalculated the en-
fields. Due to the geometrical structure of a composite maergy loss of electrons passing above an ordered array of
terial, the induced electric fields are highly inhomogeneouspheres. Later, Barrera and Futhgroduced the effects of
at length scales of the order of the spatial inhomogeneities alisorder by developing a theory for the calculation of the
the system. When one is interested in the average of thesdfective inverse dielectric longitudinal response for a ran-
fields rather than their spatial fluctuations, the concept of amlom system of spherical inclusions. They showed that taking
effective responséor an effective mediumbecomes appro- account of the spatial nonlocality in the response was essen-
priate and useful. An effectivéor macroscopic dielectric  tial for understanding the energy-loss mechanism. Using this
response is then defined as the linear operator which relatéiseory, our main objective in this paper is to construct a
the averagesof the displacement and electric fields. The spectral representation of an effectieeal inverse dielectric
theoretical problem then consists in devising a theory whichresponse which can be related more directly to the structure
yields the effective response of a composite material in termsf the electron energy-loss spectra. We also propose an ap-
of the response of its constituents and the statistical propeproximation for this local response which could be very use-
ties of its geometrical structure. The study of this effectiveful for the actual interpretation of experimental data. The
response, for the description of the optical and electricapaper has the following structure: In Sec. Il we derive a
properties of two-component composites, has a long historgpectral representation for the effective inverse nonlocal di-
which goes back to the end of last centtiriyhere are two electric response, together with associated sum rules. The
classic papers, one by Maxwell Garfetnd another by electron energy-loss probability is then calculated and the
Bruggemart, in which simple expressions for the effective effective local inverse dielectric response is defined and writ-
dielectric response are derived. These expressions have betem in a spectral form. In Sec. lll we introduce and analyze
widely used for the interpretation of optical data and theythe multiple- and single-surface-mode approximations for
have also stimulated the development of more sophisticatetthe local response. In the last part of this section the accuracy
and accurate theoriés of the single-surface-mode approximation is tested for a
On the other hand, the application of effective mediummodel of random spheres in vacuum. Section IV is devoted
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to comparing our single-surface-mode approximation withof the electric field in the system and ti, correspond to
the phenomenological theory developed by Howie andheir strengths. Tha, are called the depolarization factors.

Walsh® and Sec. V is a summary of the paper. It has been recently sho@nhat for a system made of
spherical inclusions distributed at random within an other-
Il. SPECTRAL REPRESENTATIONS wise homogeneous matrix, a spectral representation for the
OF THE DIELECTRIC RESPONSE macroscopic inverse longitudinal dielectric response
8,\_,|1(k,w) also exists. This spectral representation has the

A. Inverse longitudinal dielectric function form

Consider an external electric potential with wave vector
k and frequencyw exciting a homogeneous and isotropic
system. According to linear response theory, the Fourier
transform of the induced potential will be given by

1+f

, ®

Cb Cs
_+
u—1 zs: u—ns)

S&l(k,w)=8—2

_ whereu is the same spectral variable defined in Ej, and
VIN(k, w)=[e 1(k,w)—1]V(K, ), (1) e4(w) ande,(w) are the local dielectric responses of the
whereVi™(k, ) andVe(k,w) are the k,o) Fourier com- spheres_a_nd matrix, respectlvéfynge and be_Iow we omit
. . . the explicit dependence dnand w in expressions like the
ponents of the induced and external potentials, respectivel

and e~ 1(k, ) is the corresponding Fourier component of)Fight—hand sidgRHS) of Eq. (5) to simplify the notation. It

. : 9 . ; should be noted that the spectral representation of
what is known as the inverse longitudinal dielectric responseé _7 . - . )
(k,w) is very similar to the one given far, (k—0,w) in

_1 _ EMm
?Sfott?gp?y(s)ﬁ?é ';;;Zm depends only ok=(k|, due to the Eq. (3). Hereu=1 (g,=0) corresponds to the position of

For an inhomogeneous system, a gilkeh Fourier com- the .b.UIk mode qf the inplusions amg= ns corresponas to thg
ponent of the external field will, in general, excite an inducedPOsItion of the interfacial modes. In the bulk modes the in-

potential with Fourier components #k: thus its inverse duced charge density is located in the interior of the spheres,
dielectric response will be given t)s;/*l(lé K':w). Here we while in the interfacial modes it is located at their surfaces.

will consider granular systems which are inhomogeneous ogor?sequen(;l):ﬁ@b IS thtf] Strtengtkt\hof tfrlﬁ b_UItk rfnogiel of éhe
a certain length scale but appear homogeneous on a larg eres an s are the strengths of the Intertacial modes.

length scale, which will be called macroscopic. Our purpose e strength and positions of the modes depend on the wave

here is to calculate an effective or macroscopic inverse diyectork of the external field, the radius of the spheres,

electric response which appears in a linear relation betweelf€ filling fractionf, and their geometrical arrangement. It
the external field and the average induced field, when thi§an be showhthat
average is performed over the macroscopic length scale. It
can be shown that under a translational average the only Cp+ >, Cs=1, (6)
Fourier components that survive in }(k,k’;w) are those s

with k” =k. If we further assume that the system appears tQuhich states that the sum of the strengths of all modes is
be isotropic after the performance of a configurational averygnserved.

age, the effective or macroscopic longitudinal inverse dielec- | the mean-field approximation the statistical properties
tric response),"(k, ) is then defined by of the geometrical arrangement of the spheres are determined
- 1 completely by their filling fractionf and their two-particle
(VK@) =Ley" (ko) = 1IVi(k ), @ distribution functionp®(R;,). Here R;,=|R;—R,| is the
where(- - -) means configurational average. distance between a pair of spheres whose centers are located
A breakthrough in the study of the effective dielectric at Ry andRy, respectively. If one takes account only of the
response of composite materials was the introduction of it§orrelations coming from the excluded volume of the
spectral respresentation. It was shdwhthat in thek—0  spheres, that is,
limit the macroscopic dielectric responsesy ()
=¢y(k—0,0) of any macroscopically homogeneous and @(R,,) =
isotropic two-component system can be expressed as a sum P !
(or integra) of simple poles, that is,

C
1-f> —~

v u—n,

0 if Ry<2a,

7
1 if Ry;=2a, 0

one gets simple expressions for the strengths and positions of
the modes which are given explicitly in Appendix A.
, (€)) In the spectral representation given by E5), the mode
corresponding to the bulk mode of the matrix, £0) has
where not been isolated: i.e., the factore}/does not appear in a
separate term, but multiplies the whole expression in square
-1 brackets. One is able to isolate the bulk mode of the matrix

u= e1(w)lex(w)—1 (4) by rewriting Eq.(5) in a more symmetric form

em(w)=¢,(w)

is the spectral variables;(w) and e,(w) are the local di- 1 G;

electric functions of each of the two components, &igithe em(Kw)=2 Nt (I-ns,’ ®
filling fraction of component 1. This is actually a represen- e /=2

tation in normal modes: The position of the polessn,  wherej runs over all modes: the bulk mode of the matrix
corresponds to the resonant frequencies of the normal modés with Np, =1, the bulk mode of the spherds, with



12 826 FUCHS, BARRERA, AND CARRILLO 54

N, =0, and the interfacial modes with ng (0=<n,<1)
2

given by Eqg.(A4). The corresponding strengtl@; of the 1 ke dk
modes are given by sor(®) =Wf/ en (ko)1 17
e WiV
Gbl=be, ©) where IW=Inkw,/w. Using these definitions one is now
able to write
1
Gp,=1—f—1> (n——l)cs, (10) 1
s s E(E)=—Im ——]|, 18
o T=(B)= oon(®) (18)
which looks formally identical to the corresponding expres-
G Cs (11) sion for the electron energy-loss probability density through
S_ .

Ng a homogeneous medium with dielectric resposgd w).
Now, inserting Eq(8) into Eq.(17) and writing the bulk
Here G, and Gy, are the strengths of the bulk modes of yqe termsj=b, ,b, separately from the interfacial mode
media 1 and 2, respectively, and t@g are the strengths of termsj=s, one finds
the interfacial modes when both materials are considered to

be active. These relations between thes; and 1 Ao, Ay, ke Gs dk
{f.Cy,Cs.ng} are valid in general; this means that they gf:s_1+s_2+w ooy 2 N1+ (1-Nge; K
would be also valid in an exact theory. Using E). one can (19)
show that these strengti&; obey the sum rules
where
> Gj=1, (12) ke dk
i A=W Gj(k)— (20)
olv) k
> n,G;="f1, (13  for j=b; andb,. To simplify the notation we have omitted
i both the dependence @&4(k) and ng(k) on k in the third
and combining these two one can write term on the right-hand side of E¢L9) and the explicit de-

pendence of4, €5, andeq; ON w.
In this equation X4 is given as a sum of two discrete
E (1-njGj=f5, (14 poles ate;=0 ande,=0, corresponding to the bulk modes,

. plus an integral ovek of a sum of terms containing simple
where f;=f is the filling fraction of medium 1 and poles ang(k)e,+[1—ng(k)]e,=0, corresponding to the in-
fa=1-1 is the corresponding filling fraction of medium 2. terfacial modesA,, andAy, are the effective strengths of the
The resonant frequencies are determined by the vanishing @k energy loss in media 1 and 2, respectively. In a strict
the denominators in Eq8). sense, one cannot call E(L9) a spectral representation of

1/e, because the third term in the right-hand side is not
B. Electron energy-loss probability density expressed as an integral over the depolarization factors, as

We now use the spectral representation given in(8gto required in the original definition of the spectral
derive a corresponding representation for the electrofiepresentatio.Nevertheless, Eq19) can be put in the ca-
energy-loss probability densiff (E) of a beam of fast elec- nonical form of a spectral representation by an appropriate
trons traveling through the system. The electrons have afhange of integration variable in the integrals okerFirst
incident energyE, and lose energy by exciting collective considerk a (multivalued function of ng, k=k(ns), and

modes of energf =% w. HereE (E) is defined as in Ref. 8, then move the function labels fromm to k, so that
k=k(ng) can be rewritten ak;=kg(n). Then the variable of

. d?P(E) integration can be changed frokg to n, yielding
E(B)=aki 54 (15
: : . Wfkc L ﬂ(
wherea, is the Bohr radius and?P(E)/dIdE is the prob- wivNs€1 T (L=Ng)ey K

ability per unit length, per unit energy, for an electron to

scatter with energy losk. The relation betweek (E) and B fl G4 ks(n)] dks| dn -
ey’'(k,w) is given by " Jone +(1—n)e,| dn | ky(n) (21)
1 (ke _ dk
E(E)=_| Im[-eyi(k)], (16) _ fL”) N 22
T J wlv) 0n81+(1_n)82 '
wherev, is the speed of the incident electrons, dqads an  \\here
upper cutoff wave vector usually determined by the angular
aperture of the electron energy-loss detector. Ke
We now define an effectivdocal dielectric response A =WGC{k{(M1 4 ka(m) (23
S

gef(w) through the expression
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is the continuous spectral function associated with the interdissipation mechanisms within the system. The correspond-
facial modes. Now, substituting Eq(22) into Eq.(19), we  ing analysis for the interfacial modes is more complex, not
obtain the spectral representation of l/in canonical form, only because of the more intricate dependencelffi) on

that is, the structural parameters of the system, but also because
A(n) depends on the frequeney. Nevertheless, this analy-
1 Ay, Ap, (1 A(n) sis can be greatly simplified whenever the single-pole ap-
gf: 8_1+ & Jo n81+(1_n)82d”’ (24) proximation, developed in the next section, can be used.
The dependence ok, andA, onf, a, andw can be
where studied by substituting Eq$9) and (10) into Eq. (20). One
gets
An)=2 Ayn) (25)
S kea dx
is the spectral function associated with the continuous distri- Abl_Wfl La/vlcb(x) X (28)

bution of all interfacial modes.
An actual calculation of the integrals over the depolariza-and
tion factors given in Eqs21), (22), and(24) would require

one to take into account the fact thi is, in general, a e kea 1 d_X
multiple-valued function oh. This means that the integra- A, =111 WflES walo; | Ns(X) 1/Cs(¥) X’
tion over n should be performed over each branch of the (29

function k¢(n) that lies within the range of integration ] ] i
wlv,<ks<k.. To avoid cumbersome notation we have which can be evaluated using the expressionsdgika),

omitted a sum over branches and used the values 0 and 1 Bg(k@), andCs(ka) given by Eqgs.(Al), (A2) and (A4) in
limits in the integration oven instead of specifying the ac- APPendix A. One can see that, is proportional tof, and is
tual limits for each branch, which always lie between 0 andgiven in terms of a well-behaved integral, beca@igka)
1. This simplified notation is justified since the spectral func-goes as ka)? for smallka and approaches 1 asymptotically
tions A,(n) have been introduced as conceptual tools; Egsfor largeka. For w finite, one can show from Eq28) that
(20)—(25) are never actually used to compute L. Ab1—>0 in the limit a—0 and Ab1—>f1 when a—«; thus
As a result of thek integration in Eq.(17), the strengths 0=<A; /f;=<1, for O<a=w. The direct proportionality of
Ap, and Ay, as well as theAy(n), now depend on A it f, also means thak,, /f; represents the strength of

{“_”lkc’vl}’ in contrast with the spectral representation Ofthe bulk energy loss for aisolatedsphere. Thus the devia-
ey (k,), given in Eq.(8), where the strengths of the poles tjon of Ap,/f1 from 1 is a manifestation of thBegrenzung

depend only on structural parameters. Also, while the bulk

modes appear as isolated poles in the compleplane, the effect in an isolated sphere. The fact that all spheres are
. app P . ' identical (and therefore have the samBegrenzungffecd is
interfacial modes correspond to a continuous branch cut.

It is not difficult to show that as a consequence of Eqs.What makesAtJl directly proportional tof; . The solid line in

(12) and(13) the following sum rules are always fulfilled: 9. 1(& showsA, /f, as a function of the radiua of the
spheres measured in A, fde,=1.69 A~1, electrons with
incident energye, =100 keV and energy loskw=16 eV
which  corresponds to the plasmon energfo,
[e1(wp)=0] in aluminum. We can see how the strength
and increases with the particle size and how it tends asympoti-
1 cally to 1 asa increases. The solid line in Fig(d shows
Ab1+J nA(n)dn="f,. (27 Abllfl as a function of the energy logss measured in eV,
0 for a fixed sphere radius= 100 A and fork,.=1.69 A"* and
The total strength of bulk and interfacial modes is alwaysE;=100 keV. The external parametes=100 keV and
conserved and adds to one, as stated in(E6), while the ~ K.=1.69 A~! are typical in a standard scanning transmission
second sum rule, Eq27), determines the centroid of the electron microscope with an aperture 0.01 rad in the electron
mode distribution. The main merit of the spectral represendetection.
tation given by Eq.(24) is its direct relationship with the =~ The effective strength of the bulk energy loss in medium
experimental energy-loss spectra through @®). 2 is Abz- This medium is connected and has a complicated
Structural information about the system can be obtainedgeometry; it fills the complementary space left by the spheri-
for example, by analyzing how the strengths and positions oal inclusions. Fom finite, one can show from Eq29) that
the modes depend dh a, andw, for a given incident en- Ap,—(1—f1)/(1+2fy) in the limit a—0 andAp,—1—f;
ergy E, and wave vector cutofk.. The simplest case for \yhen a—co: thus 1(1+2f,) <A, /f,<1, for O<a<o.
studying this dependence is to consider the strengths of t herefore. for finitea. A does noi scale with. as shown
bulk modes. Each bulk mode generally occurs at a single "~ ’ L T 2
frequency, and so the bulk modes are usually identified al§ Fig- 2, complicating the direct determination of the struc-
well-defined peaks in the energy-loss spectra. The strength #ral parameters from experiment. In Fig(aR we plot
the bulk modes is proportional to the height of these peaksn,/f2 @s a function of the radius of the spheres for
and their width is due to the presence of different kinds ofk.=1.69 A™!, E,=100 keV,Zw=16 eV, andf,=0.1 and

1
Abl+Ab2+J A(nydn=1 (26)
0
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FIG. 2. (a) Strength of the bulk modz—:«b2 over the filling frac-
FIG. 1. (a) Strength of the bulk mod#,, over the filling frac-  tion f, as a function of the radiua (in A) of the spheres, for an

tion f, as a function of the radiua (in A) of the spheres, for an energy lossiw=16 eV, upper wave vector cutoki,=1.69 A 1,
energy losshw=16 eV, upper wave vector cutok,=1.69 A1, incident energyE,=100 keV, and filling fractionsf;=0.1 and
and incident energye, =100 keV. The dashed line is the corre- 0.25. (b) Strength of the bulk mode;é*\b2 over the filling fraction
sponding expressioA{;'l"’/fl proposed by Howie and Walsh as dis- f, as a function of the energy logsv (in eV), for spheres of radius
cussed in the textb). Strength of the bulk moday, over the filling ~ a= 100 A, upper wave vector cutok,=1.69 A~1, incident energy
fraction f, as a function of the energy logsv (in eV), for spheres  Ei=100 keV, and filling fractiond;=0.1 and 0.25.
of radiusa=100 A, upper wave vector cutok.=1.69 A=, and
incident energye, =100 keV. The dashed line is the corresponding  1ll. DISCRETE SURFACE-MODE APPROXIMATION
expressiorAE'W/fl proposed by Howie and Walsh as discussed in ) .
the text. 1 A. Multiple-surface-mode approximation

In the multiple-surface-mode approximation the idea is to
0.25. In Fig. Zb) we pIotAb2/f2 as a function of the energy replace the continuous spectrum of the interfacial modes
loss iw for k,=1.69 A~1, E,=100keV,a=100A , and Which appears in E¢24) by an infinite sum of simple poles.
f,=0.1and 0.25. In these figures one can see that for a givehhe WeightsAs and the locations, of these poles are cho-
filling fraction 4, Ay, /f, increases as either the radius of the S€n 0 as to fulfill the same sum rules as the ones fulfilled by

spheres or the energy loss increase. Also, for a given radiL}Qe continuous spectrum, that is,
or energy IossAbZ/fz decreases af, increases.

In conclusion, for an electron beam of a given energy, the _
measurement of the relative height of the energy-loss peaks Abl+Ab2+§s: A=l (30
corresponding to the strength of the bulk modes does not

determinef and a separately. A precise determination of gng

these quantities requires a detailed analysis of the energy-

loss spectra corresponding to the interfacial modes, as has

been already shown in Ref. 8, for the case of aluminum A, +2 aA=T,, (31)
spheres in All. 15
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which are the discrete counterparts of E(&6) and (27).

3 T T T T T
This leads immediately to the following definitions Af and ]
Ag,
1 ] J
A= f Ag(n)dn (32 5 ]
0 ]
and -
1 < 1 1
aAs= f nAg(n)dn. (33 14 e .
0 ] ]
Thereforee (@) can be written as
2
1 Abl Abz As 0 / 2 T T T T T T T T T
—~—t—+ . (39 0O 20 40 60 8 100 120
+(1-
Ceff €1 €2 s asert( as)er @ Radius (A)

Explicit expressions for oAg and a are derived in Appen-

dix B. Equation(34) is the best possible discrete approxima- 2.07]
tion to the actual spectral representatidg. (24)] in the ]
sense that each discrete interfacial mode has the same
strengthAg and positiona as the total stregth and centroid

of the corresponding continuous mode. The strength and lo-
cation of these discrete poles can be easily determined in the

157

dilute (f;—0) limit, which corresponds to the case of non- =
interacting spheres. In this case, one gets <
k.a jz(X) 0.57
A=f,3(2s+1)2W | = —-d (35) ]
waly, X
and 0.07
S 0 10 20 30 40 50
aS:ZS—-l-l’ (36) (b) Energy Loss (eV)

wheres labels the multipolar order of the induced interface
modes on the noninteracting spheres. Téad corresponds
to the dipolar modes=2 to the quadrupolar mode, etc. To
lowest order inf,, while the strengthg\; of the interfacial

modes  are proportional to f,, their positions The numbers 1,2,3 above each line label the first three modes

as=.1/3, 215, 3/7. < areindependent Ofl, and lie within s=1,2,3 and the lettes labels the effective single mode=o. (b)
the interval 1/3<a;<1/2, the value 1/2 being an accumula- Strength of the interfacial modes; over the filling fractionf; as a

tion point. In Figs. 8a) and 3b) we plot, for the first three  f,ction of the energy los&w (in eV), in the low-density limit
modes,As/f, as a function ofa and7% w, respectively, for (¢, .0), for spheres of radiua=100 A, upper wave vector cutoff
ke=1.69 A~! andE;=100 keV. In Fig. 3a), hw=16eV, k= 1.69 AL, and incident energf, =100 keV. The numbers
and in Fig. 3b) a=100 A . These figures show that, with 1,23 above each line label the first three moged,2,3 and the
these selections of parameters, the dipolar mode dominatésiter o labels the effective single modss- .
over higher multipolar modes only in the region of small
radii and small energy losses. Its strength decays quite raghe interfacial modes lie so close together and the dissipation
idly with increasing energy loss or radius. For example, forbroadening contained in the imaginary partssefande, is
hw=16 eV anda~30 A , ora=100 A andiw~5eV, the 5o large that they appear as a single peak in the energy-loss
strength of the sum of the quadrupolar and octupolar modespectrum. In this case it is possible to approximate the infi-
is already about half of the the strength of the dipolar modenite set of interfacial modes by a single effective surface
Finally, recall that to lowest order ify, As/f, are the cor- mode. The strength and location of this effective surface
responding mode strengths for an isolated sphere. mode will be labeledd, anda,,, respectively, and they are
chosen as to satisfy the sum rules given by E86) and
B. Single-surface-mode approximation (31). This yields

FIG. 3. (a) Strength of the interfacial modés; over the filling
fractionf, as a function of the radius (in A) of the spheres, in the
low-density limit (f;—0), for an energy los&w=16 eV, upper
wave vector cutofk,=1.69 A%, and incident energ, =100 keV.

As f, increases, the dependence of the strengthand
locations a5 of the interfacial modes ori; becomes more A=A (37)
complicated and the whole analysis of extracting structural M
information from 1£.4 becomes more involved. Neverthe-

less, a simple situation arises when the resonant energies aifid
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aeAy= 2 adAs, (39) 0.6

S

and the approximation will be called the single-surface-mode
approximation. In this approximatiotyi(w) is simply writ-

ten as, 0.5
1 A, Ay, A, s @
ot o1 agert(l-age, 00
and the sum rules become 0.4
Abl+Ab2+A0': 1 (40)
and = i
0_3 1 i 1 | 1 1 1 I 1 1 1
Ay +a,A, =1, (41) 0 2 4 6
! wa
vy

The expression for %[y in this approximation has an ex-
tremely simple and appealing form. From the definitions in
Egs.(37) and(39) it follows that the single effective interfa- FIG. 4. Positione,, of the effective single mode as a function of
cial mode in the spectral representation of E2p) has the walv, for different filling fractionsf ;. The labelf,~0 corresponds
same strengtth, and positiona,, as the total strength and O the low density limit ¢, —0).

centroid of all interfacial modes in the actual spectral

representation [Eq. (24)], ie., A,=fjA(n)dn and see that for wa/v,~0, @, starts around the values
a,=[snA(n)dn/f3A(n)dn. Furthermore, it can be seen (1+2f;)/3 for each value off;, and then goes asympoti-
from Eqs.(40) and (41) that A, and «,, are completely de- cally to the value 1/2, for alf,, as walv, increases. For
termined byA,, , Ay, andf;. Nevertheless, for the case of f1=0.2 one sees that, has actually a minimum around

spherical inclusions and within the approximations used irf°®/v1~1.3. The curve labelety ~0 corresponds to the di-

Appendix A, it is more convenient to calculate, first, and Ut (f1—0) limit which corresponds to the case of an iso-
then to determine\, from @, and A, using Eq.(41). The lated sphere. To get some idea of typical values of the pa-
g g 1

reason for this is that for spheres of radias1k., a, rameterwalv,, note thatwa/v,;=0.924 when the energy

b ind dent & d what | . rant. it loss Aw=10.0 eV, the sphere radils=100 A , and the
ecomes independent £, and what is more Important, it i, cigent electron energ¥, =100 keV. In Appendlx C we
becomes only a function oba/v,. To see this, one uses

! . ive a convenient formul (C9)] for calculatingwalv
Egs.(37) and (38) together with Eqs(B6) to write «,, as ?or arbitrary values oﬁw,&;_,qand E?. Finally, we r%\ust r:e—

kea @ Cs(x) dx mark that the waya, approaches its limiting value
a(,zE Cy(X) — / > f , (42)  (1+2f,)/3 along thewalv, axis depends on whether one
s ‘”a’”' wafv, N considersa—0 or w—0; whenw—0 the approach is loga-
whereC4(x) andng(x) are the strengths and depolarization fithmic whereas whea— 0 the approach is a power law.
factors of the interfacial modes as functionskef, given by We now proceed to the calculation of the effective

Egs.(A3) and(A4), respectively. Sinc€4(x)—0 quite rap-  strengthA, by using Eq.(41); that is,A,= (f1— Ay )/ e,

idly asx—oe, a, will become independent of the upper limit Nevertheless, it will be illustrative to first calculafe, in the

of integration whenevek.a>1. One can check that this will dilute (f;—0) limit, since in this limitA, corresponds to the
be the case fok.a~10. This condition is not very restric- effective strength for an isolated sphere. This calculation can
tive; for example, as pointed out before, for 100 keV elec-be performed by using EQ.(37) directly, that is,
trons in a standard transmission scanning electron microA,=3.As, with the A taken from Eq.(35). Since the
scope a typical value df, is about 1.7 A'%; this means that strengthsA are proportional tof,, the effective strength
k.a~10 is already fulfilled for spheres of radius of about A, =X A, will be also proportional td ;. In Fig. 3 we show
17 A . Therefore, we will consider here the caga>1, and the dependence of,/f, as a function of the radius of
analyzea, as a function of the lower limit of integration the spheres and the energy loss, =100 keV and
walv,. This is very convenient for the analysis of experi- k.=1.69 A™!. Here we have performed the sum over all
mental data since the dependence on frequency and the exwltipolar modes until convergence was attained. Notice

ternal parameters is combined in a single variable. again that the contribution of the dipolar mode is dominant
In Fig. 4 we show the positior,. of the single effective only in the region of small radius and small energy loss.
surface mode as a function ef/v,, for different values of As the filling fractionf, increasesA, no longer scales

the filling fractionf,. In reading this graph one must recall with f; but it can be calculated, as mentioned above, using
that the values very close to the origin on the/v, axis are  Eq.(41). Takingk.=1.69 A~! andE,=100 keV as external
not very accurate, because the present calculation,ofs  parameters and two filling fractiorig=0.1 and 0.25, in Fig.
not valid fora—0; it is valid only if a>1/k.. In the limit ~ 5(a) we plot A, as a function ofa for Zw=16 eV, and in
a—0, the only active mode is the dipolar one, and one carFig. 5b) as a function of4w for a=100A. Since
show thata ,(a—0)=(1+2f,)/3. Therefore, in Fig. 4 we A, (a—0)=3f;/(1+2f;) andA,(a—=)=0, the effective
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(b) Energy Loss (eV) FIG. 6. (a) Energy loss probability densit (E) as a function
of the energy losE=%Aw, for a random system of aluminum
spheres in vacuum. The spheres have radis<00 A, the upper
FIG. 5. (a) StrengthA,, of the effective single mode as a func- wave vector cutoff isk,=1.69 A~!, the incident energy is
tion of the radiusa (in A) of the spheres, for an energy loss E,=100 keV, the filling fractions if,=0.1, and the damping fac-
fw=16 eV, upper wave vector cutoki,=1.69 A%, incident en-  tor vy in the dielectric function of the spheresjs=0.01. The label
ergy E,=100KeV, and filling fractionsf;=0.1 and 0.25.(b) “Actual” refers to the exact calculation while the label “Single
StrengthA, of the effective single mode as a function of the energyMode” refers to the calculation in the single-surface-mode approxi-
losstw (in eV), for spheres of radiua=100 A, upper wave vector mation.(b) The same as ifa) but with y=0.08.

cutoffk,=1.69 A~1, incident energyE, = 100 keV, and filling frac- i
tions f;=0.1 and 0.25. f;=0.1, and a damping factor=0.01. Such a small damp-

ing factor was chosen in order to see the actual structure of

strength A,, as a function of a, lies between the spectral function corresponding to the interfacial modes.
0<A,<3f;/(1+2f,), and Fig. %a) shows that the de- One can clearly see that in the single-surface-mode approxi-
crease from 8,/(1+2f;) to 0 is monotonic. In Fig. &)  mation, the actual structure of the interfacial spectral func-
one sees also th#t, decreases asw increases. tion is replaced by a single mode whose position is located at

Finally, we test the accuracy of the single-surface-modéhe centroid of the actual structure. For a larger valuey of
approximation by calculating the energy-loss probabilitythe actual surface-mode spectrum will be smoothed out,
Z(E) for a system of aluminum spheres in vacuum. Themaking the single-surface-mode approximation more accu-
local dielectric function for the aluminum was modeled by arate. In Fig. %b) we show a plot of the energy-loss probabil-
Drude dielectric functiore;(w)=1— wz/(w +iw/7), with ity E(E) as a function of the energy loss, for the same pa-
plasma energyi w,=15.8 €V and two thoices of the damp- rameters as in Fig. (8, but with the damping factory
ing factor y= 1/pr 0.01 and 0.08. The valug~0.04, increased toy=0.08. In this case the single-surface-mode
corresponding to bulk aluminum, lies between the two cho-approximation gives a good approximation to the actual
sen values. In Fig. 6 we compare an exact calculation ofpectrum.
E(E) with the one done using the single surface-mode ap- In order to facilitate the actual use of the the single-
proximation as defined in Eq39). In Fig. 6@a) we plot the surface-mode approximation we provide, in Appendix C,
energy-loss probabilitiE (E) as a function of the energy loss analytical fits for the bulk strength, and the position of
E=f%w, for spheres of radius=100 A, a filling fraction the single effective surface mode, .
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IV. COMPARISON WITH THE TRAJECTORY MODEL In order to test the validity of Eq43) we substitute the
values ofg;,; and gy given by Eqs(44) and(45) into Egs.

Howie and Walshhave analyzed their experimental data (46) and (47) to yield

on a system of aluminum inclusions embedded in Abfy

calculating the electron energy loss using a model based on a 3walv,

weighted average of electron trajectories. Through the use of AE'lN= flm (50)
phenomenological reasoning and after performing an aver- akd

age over different parts of a typical electron trajectory, theyand

concluded that the local dielectric responsgy(w) of an

effective medium which could simulate a system of spherical HW _ 1-f, (51)
inclusions embedded in an otherwise homogeneous matrix, b2 1+2f,

should be writterjsee Eq/(5) of Ref. 6] as where the superscript “HW" refers to Howie and Wal$h.

In Fig. 1 we compare the dependence:ﬂdji"’/fl ona and

1 1 3 1
—=f|—+t 0t ——) hw, given by Eq.(50), with our expression foA, /fq,
EnHw e g1t+2e, &4 : 1
given by Eq.(28), for the same set of external parameters.
o 1 3 __) 43 One can see in Fig.(4) that for Aw=16 eV, Aglw(a)/fl
2 Jext e1+2e, &, coincides withA,, (a)/f; for a~20 A. For larger values of

whereg;,, represents the relative importance of interface to? A, '(a)/f, is actually larger thar, (a)/fy, although it
bulk excitations in the spheres of material 1, ang, repre- is still a good approximation because the maximum devia-
sents the volume fraction of material 2 which is closetion of Aj(a)/f, from the exact result is only about
enough to a piece of material 1 to give rise to an interface;0%. On the other hand, when the sphere radius is fixed at
excitation. Here the explicit dependence@thas been omit- =100 A, Fig. 1b) shows thap\gl/"(w)/fl deviates substan-

ted. .
Howie and Walshargued that for spheres of radius much tially from Ap,(w)/f, for #w<5 eV, but for larger energy

less thary, /w, one should exped,,=1, which means that 10Sses the deviation is less than about 10%. Therefj®
the strength of the bulk plasmon in the spheres vanishes. Fg a reasonable approximation f&g . The proposed values
spheres of larger radius they expectgd to be proportional  of o =1/3 and AE':V:(l_fl)/(1+2fl) correspond pre-
to vja/w, and so they proposeg, to be independent of cisely to thea—0 limit of «, andA,,_, as discussed above
ag 21 .

f, and to be given by a simple expression, : . , o )
However, the sum rule given in E¢41) is satisfied only if
1 a~0 andf;~0, since the valuex,=1/3 is correct only in
(44)  this limit.
Therefore, one can conclude that the expression proposed

consistent with these ideas and with numerical results quotelly Howie and WalsliEq. (43)], for the dielectric response of
by Echeniqueet al}?> They also proposed that for small an effective medium, has exactly the same structure as the

spheres a reasonable dependencg.gfon f; should be of ~SpPectral representation etq(w) derived here in the single-

Oinm=77 3walv,’

the form surface-mode approximation. However, their expressions for
Oext @nd a, become approximately valid only in tree—0
2f, and f;—0 limits. Nevertheless, the theory of Howie and
Gex= 1 21, (45 walst might be useful for giving some insight into the
physical interpretation of our present theory.
at least for small values df; .
It is interesting that Eq(43) has exactly the same struc- V. SUMMARY
ture as the expression fer(w) within the single-surface-
mode approximation, as given by E®9). In fact, both ex- For homogeneous materials, the electron energy-loss

pressions become identical if one has the following relationspectra of fast electrons can be calculated from the loss func-
between the parameterg,, and g, and the effective tion Im[—& (k,®)]; a similar theor§ has been found to be

strengthsAbl, Ap,, anda, : very useful for calculating the energy-loss spectra of elec-
trons passing through composite systems consisting of a
A, =Ff1(1—Gin), (46) mixture of two components with local dielectric functions
1

g1(w) ande,(w). In this theory the macroscopior effec-
_ -~ tive) inverse longitudinal dielectric function,,*(k,w) can
Ao, = T2(1= Qo). 2/ o o o
e written as a spectral representation that contains informa-
and tion about the strengths and positions of bulk longitudinal
modes and interfacial modes, which are the excitations re-
(48)  sponsible for the energy loss.
Here we have derived a spectral representation for
SinceA,=1—(Ap, +Ayp,)), one has em(k,) in which the two components appear on an equal
footing. In order to provide a more direct connection be-
Ay=T10intt F20ext- (49)  tween the theory and experiment, an effective local dielectric

Wl

&=
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functione () has been defined so as to give the same loss The strength of the bulk mode is
spectrum as that calculated from the actual nonlocal dielec-
tric function.

It was also shown that a spectral representation for Cp= 1—32 1(21+ 1)[j(ka)/ka]>. (A1)
l/e4(w) also exists and new sum rules that relate the =1
stregths and positions of the modes were also found. In conrpe genolarization factons are given by the eigenvalues of
trast with the usual spectral representation, where the modg (o) symmetric matrix
strengths and positions depend only on the geometrical struc-
ture of the composite, they now depend on both the structure

o

. (1+1")!
and experimental parameters such as the amount of energy H, = L5H,+3f\/ll "1(21+1)(21"+1) ! l, )
loss, the energy of the incident electrons, and the aperture 2l+1 (!
sizes of the detector. Also, the interfacial modes are not dis- 41 =2

: 1 Jiv1r-1(2ka)
crete, but form a continuous spectrum. x| Z AR (A2)
A useful simplification of the theory is to replace the en- 2 ka

tire continuum of interfacial modes by a single discrete . )
mode, whose strength and position are the same as the toffld the strengths of the interfacial modes are
strength and centroid of all interfacial modes. This single-

mode theory contains only four parameters: the strength of . ) ——ji(ka)j.(ka)
the bulk modes of the two components and the strength and <~ 3% Vi@ +nr+1) (ka)? Is=lrs
position of the single discrete interfacial mode. We calcu- (A3)

lated these four parameters using our previously developed
model of a random system of identical spherical particleswhere j, is the spherical Bessel function of order and
and show how the single-mode theory could be used, withJ s is the unitary matrix which diagonalizes;,, that is,
very little effort, to analyze data in which the interfacial
modes form a single unresolved energy-loss peak. 1
The paper ends with a comparison of our single-mode Z Ug HirUpg =ngbsy . (A4)
theory with a phenomenological theory developed by Howie g
and WalsH, for a random system of spheres. In their theory
the structure of the effective local dielectric function is simi- APPENDIX B: DISCRETE APPROXIMATION
lar to our single-mode theory, but the values proposed for the .
four parame?ers were obtai}r/1ed using argumpentps based on aAIthough the dlsc_rete surface-mode parameteys as,
classical trajectory model. We showed that in their theory,AU’ anda,, are (_jefmed by Eqs32), (33), (23), (37), and _
é38), these equations are not actually useful for calculating
&pese guantities, as we discussed in the text. A useful expres-
sion for the mode strength, is found omitting the denomi-
atorsnge+(1—ng)e, from the left-hand side of Eq21)
nd making the same change of variable of integration from

spheres is approximately correct, but the value proposed f
the other parameters is applicable only in the limit in which
the sizes and volume fraction of the spheres are vanishingl

small.
k to n. This procedure gives
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APPENDIX A: EXPRESSIONS FOR C,, Cg, AND ng [ dk
| _ _ _ . =W [ "X Gy(k) - (B3)
In this appendix we write down the expressions derived in olv, s K
Ref. 8 for the strengths and location of the bulk and interface
modes used in the spectral representation,gf(k, ») given Similarly, an expression fag A4 is found from the equa-

by Eq. (5), with p®(Ry,) given by Eq.(7). tion
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= +H(f)T(), C3
asAs=J nAmdn a,=S(O)+H(F)T() (€3
where
ke dk
=W / Ns(K)Gs(k) 7 (B4) S(£)=0.4531-0.046 69 +0.030 2822—6.604x 10" 3.3,
, U|
which is derived using the same change of variable as in Eqgs. +6.0x10°47%—1.81x10757° ({=<86) (C4)

(21) and(22). Summing overs and using Eq(38), we get
T(¢)=1/(0.271+0.194%%8)—-1.14 ({<1.66

ke dk
a A=W | 3 ngk)Gy(k) 7. (85) .
wlv s =1.585 2% ([=1.66 (C5)
From Egs.(B3) and (B5) we have and
Ke dk ke dk 2
aﬁf/ 253 (k) Ge(k) - / ZS Ge(k) - H(f;)=0.182 72f,— 0.2 —0.0643f,—0.2)2. (C6)
wlv) wlv)

(B6) Equations(C1)—(C6) fit the exact calculations with an error
of less than 1%.

Equation(B6) reduces to Eq42) after making the substitu- . . L
q (B6) x42) g The wave vectok, for an incident electron with kinetic

tion Gg=f,Cs/ng and changing the integration variable from

K to x=ka. energyE, is
— -1
APPENDIX C: PRACTICAL FORMULAS k=(0512 A1 +x/2|E), €7
In this appendix we provide analytical expressions forVhere
Ap, anda,, k;, andwalv, . ForA,, we get X=E, /m,c?=1.957 10"°F, . 8

A fW b+ (k.a)*+b? 1 For a typical energyE, =100 keV we findk,=170 A1,
by = T1YVIN b+ VZZ+b2 | giving a cutoff wave vectok.~k,6~1.7 A1 if the maxi-

mum deflection angle in the scanning electron microscopy
where experiment isf~10 mrad. For the dimensionless parameter
{=walv, we have the formula

b=2.3471,
(= waly, walv,=0.25R(x)hwal VE, (C9
_ whereR(x)=(1+x)/\J1+x/2 is a relativistic correction. In
W=Uinkew, /). (€2 Egs. (C7)—(C9), E, and%w are expressed in eV ardl is
For a, we get, expressed in A.
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