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Using a recently developed theory for the inverse longitudinal nonlocal dielectric response for a granular
composite@R. G. Barrera and R. Fuchs, Phys. Rev. B52, 3256~1995!#, we find an effective local dielectric
response from the condition that it must give the same electron energy-loss probability density as the actual
nonlocal response. This local response is expressed as a spectral representation: a sum of terms with simple
poles corresponding to the excitation of bulk and interfacial modes. Taking as a guideline the condition that the
strength and location of the poles must satisfy sum rules, a single-surface-mode approximation is proposed.
This single-mode approximation is tested for a random system of aluminum spheres in vacuum.
@S0163-1829~96!07142-1#

I. INTRODUCTION

In the study of the optical properties of composite mate-
rials the concept of an effective medium has been a useful
tool for the interpretation of a wide variety of experimental
results as well as for a better understanding of the physics of
inhomogeneous systems.1 An effective medium is a fictitious
homogeneous medium with the same optical properties as
those of the actual composite material. In the case of non-
magnetic systems, the linear optical properties are deter-
mined by the transverse dielectric function, which relates the
transverse components of the displacement and electric
fields. Due to the geometrical structure of a composite ma-
terial, the induced electric fields are highly inhomogeneous
at length scales of the order of the spatial inhomogeneities of
the system. When one is interested in the average of these
fields rather than their spatial fluctuations, the concept of an
effective response~or an effective medium! becomes appro-
priate and useful. An effective~or macroscopic! dielectric
response is then defined as the linear operator which relates
the averagesof the displacement and electric fields. The
theoretical problem then consists in devising a theory which
yields the effective response of a composite material in terms
of the response of its constituents and the statistical proper-
ties of its geometrical structure. The study of this effective
response, for the description of the optical and electrical
properties of two-component composites, has a long history
which goes back to the end of last century.1 There are two
classic papers, one by Maxwell Garnett2 and another by
Bruggeman,3 in which simple expressions for the effective
dielectric response are derived. These expressions have been
widely used for the interpretation of optical data and they
have also stimulated the development of more sophisticated
and accurate theories4.

On the other hand, the application of effective medium

theories to the problem of electron energy loss in composite
materials is rather recent. In the works of Walsh5 and Howie
and Walsh6 one finds some of the first attempts to use the
concept of an effective medium to construct a theory for the
calculation of the electron energy loss in a granular compos-
ite. They tried to apply the theories which were successful in
the field of optics to the interpretation of their own energy-
loss experiments. Lack of success in this task led them to the
construction of a phenomenological theory for the calcula-
tion of the inverse dielectric response, which is the quantity
that governs the electron energy-loss phenomenon. Stimu-
lated by this work, Pendry and Moreno7 calculated the en-
ergy loss of electrons passing above an ordered array of
spheres. Later, Barrera and Fuchs8 introduced the effects of
disorder by developing a theory for the calculation of the
effective inverse dielectric longitudinal response for a ran-
dom system of spherical inclusions. They showed that taking
account of the spatial nonlocality in the response was essen-
tial for understanding the energy-loss mechanism. Using this
theory, our main objective in this paper is to construct a
spectral representation of an effectivelocal inverse dielectric
response which can be related more directly to the structure
of the electron energy-loss spectra. We also propose an ap-
proximation for this local response which could be very use-
ful for the actual interpretation of experimental data. The
paper has the following structure: In Sec. II we derive a
spectral representation for the effective inverse nonlocal di-
electric response, together with associated sum rules. The
electron energy-loss probability is then calculated and the
effective local inverse dielectric response is defined and writ-
ten in a spectral form. In Sec. III we introduce and analyze
the multiple- and single-surface-mode approximations for
the local response. In the last part of this section the accuracy
of the single-surface-mode approximation is tested for a
model of random spheres in vacuum. Section IV is devoted
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to comparing our single-surface-mode approximation with
the phenomenological theory developed by Howie and
Walsh,6 and Sec. V is a summary of the paper.

II. SPECTRAL REPRESENTATIONS
OF THE DIELECTRIC RESPONSE

A. Inverse longitudinal dielectric function

Consider an external electric potential with wave vector
k and frequencyv exciting a homogeneous and isotropic
system. According to linear response theory, the Fourier
transform of the induced potential will be given by

Vind~k,v!5@«21~k,v!21#Vext~k,v!, ~1!

whereVind(k,v) andVext(k,v) are the (k,v) Fourier com-
ponents of the induced and external potentials, respectively,
and «21(k,v) is the corresponding Fourier component of
what is known as the inverse longitudinal dielectric response
of the system. Here«21 depends only onk5ukz, due to the
isotropy of the system.

For an inhomogeneous system, a givenkth Fourier com-
ponent of the external field will, in general, excite an induced
potential with Fourier componentsk8Þk; thus its inverse
dielectric response will be given by«21(k,k8;v). Here we
will consider granular systems which are inhomogeneous on
a certain length scale but appear homogeneous on a larger
length scale, which will be called macroscopic. Our purpose
here is to calculate an effective or macroscopic inverse di-
electric response which appears in a linear relation between
the external field and the average induced field, when this
average is performed over the macroscopic length scale. It
can be shown that under a translational average the only
Fourier components that survive in«21(k,k8;v) are those
with k85k. If we further assume that the system appears to
be isotropic after the performance of a configurational aver-
age, the effective or macroscopic longitudinal inverse dielec-
tric response«M

21(k,v) is then defined by

^Vind~k,v!&5@«M
21~k,v!21#Vext~k,v!, ~2!

where^•••& means configurational average.
A breakthrough in the study of the effective dielectric

response of composite materials was the introduction of its
spectral respresentation. It was shown9,10 that in thek→0
limit the macroscopic dielectric response«M(v)
[«M(k→0,v) of any macroscopically homogeneous and
isotropic two-component system can be expressed as a sum
~or integral! of simple poles, that is,

«M~v!5«2~v!F12 f(
v

Cn

u2nn
G , ~3!

where

u5
21

«1~v!/«2~v!21
~4!

is the spectral variable,«1(v) and «2(v) are the local di-
electric functions of each of the two components, andf is the
filling fraction of component 1. This is actually a represen-
tation in normal modes: The position of the polesu5nn

corresponds to the resonant frequencies of the normal modes

of the electric field in the system and theCn correspond to
their strengths. Thenn are called the depolarization factors.

It has been recently shown8 that for a system made of
spherical inclusions distributed at random within an other-
wise homogeneous matrix, a spectral representation for the
macroscopic inverse longitudinal dielectric response
«M

21(k,v) also exists. This spectral representation has the
form

«M
21~k,v!5

1

«2
F11 f S Cb

u21
1(

s

Cs

u2ns
D G , ~5!

whereu is the same spectral variable defined in Eq.~4!, and
«1(v) and «2(v) are the local dielectric responses of the
spheres and matrix, respectively.11 Here and below we omit
the explicit dependence onk andv in expressions like the
right-hand side~RHS! of Eq. ~5! to simplify the notation. It
should be noted that the spectral representation of
«M

21(k,v) is very similar to the one given for«M(k→0,v) in
Eq. ~3!. Hereu51 («150) corresponds to the position of
the bulk mode of the inclusions andu5ns corresponds to the
position of the interfacial modes. In the bulk modes the in-
duced charge density is located in the interior of the spheres,
while in the interfacial modes it is located at their surfaces.
Consequently,Cb is the strength of the bulk mode of the
spheres and theCs are the strengths of the interfacial modes.
The strength and positions of the modes depend on the wave
vector k of the external field, the radiusa of the spheres,
their filling fraction f , and their geometrical arrangement. It
can be shown8 that

Cb1(
s
Cs51, ~6!

which states that the sum of the strengths of all modes is
conserved.

In the mean-field approximation the statistical properties
of the geometrical arrangement of the spheres are determined
completely by their filling fractionf and their two-particle
distribution functionr (2)(R12). HereR12[uR12R2u is the
distance between a pair of spheres whose centers are located
at R1 andR2, respectively. If one takes account only of the
correlations coming from the excluded volume of the
spheres, that is,

r~2!~R12!5H 0 if R12,2a,

1 if R12>2a,
~7!

one gets simple expressions for the strengths and positions of
the modes which are given explicitly in Appendix A.

In the spectral representation given by Eq.~5!, the mode
corresponding to the bulk mode of the matrix («250) has
not been isolated: i.e., the factor 1/«2 does not appear in a
separate term, but multiplies the whole expression in square
brackets. One is able to isolate the bulk mode of the matrix
by rewriting Eq.~5! in a more symmetric form

«M
21~k,v!5(

j

Gj

nj«11~12nj !«2
, ~8!

where j runs over all modes: the bulk mode of the matrix
b1 with nb151, the bulk mode of the spheresb2 with
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nb250, and the interfacial modess with ns (0<ns<1)

given by Eq.~A4!. The corresponding strengthsGj of the
modes are given by

Gb1
5 fCb , ~9!

Gb2
512 f2 f(

s
S 1ns21DCs , ~10!

and

Gs5 f
Cs

ns
. ~11!

HereGb1
andGb2

are the strengths of the bulk modes of

media 1 and 2, respectively, and theGs are the strengths of
the interfacial modes when both materials are considered to
be active. These relations between theGj and
$ f ,Cb ,Cs ,ns% are valid in general; this means that they
would be also valid in an exact theory. Using Eq.~6! one can
show that these strengthsGj obey the sum rules

(
j
Gj51, ~12!

(
j
njGj5 f 1 , ~13!

and combining these two one can write

(
j

~12nj !Gj5 f 2 , ~14!

where f 1[ f is the filling fraction of medium 1 and
f 2[12 f is the corresponding filling fraction of medium 2.
The resonant frequencies are determined by the vanishing of
the denominators in Eq.~8!.

B. Electron energy-loss probability density

We now use the spectral representation given in Eq.~8! to
derive a corresponding representation for the electron
energy-loss probability densityJ(E) of a beam of fast elec-
trons traveling through the system. The electrons have an
incident energyEI and lose energy by exciting collective
modes of energyE5\v. HereJ(E) is defined as in Ref. 8,

J~E!5a0EI

d2P~E!

dldE
, ~15!

wherea0 is the Bohr radius andd2P(E)/dldE is the prob-
ability per unit length, per unit energy, for an electron to
scatter with energy lossE. The relation betweenJ(E) and
«M

21(k,v) is given by8

J~E!5
1

pEv/v I

kc
Im@2«M

21~k,v!#
dk

k
, ~16!

wherev I is the speed of the incident electrons, andkc is an
upper cutoff wave vector usually determined by the angular
aperture of the electron energy-loss detector.

We now define an effectivelocal dielectric response
«eff~v! through the expression

1

«eff~v!
5WE

v/v I

kc
«M

21~k,v!
dk

k
, ~17!

where 1/W5 lnkcvI /v. Using these definitions one is now
able to write

pJ~E!5
1

W
ImF 21

«eff~v!G , ~18!

which looks formally identical to the corresponding expres-
sion for the electron energy-loss probability density through
a homogeneous medium with dielectric response«eff(v).

Now, inserting Eq.~8! into Eq. ~17! and writing the bulk
mode termsj5b1 ,b2 separately from the interfacial mode
terms j5s, one finds

1

«eff
5
Ab1

«1
1
Ab2

«2
1WE

v/v I

kc

(
s

Gs

ns«11~12ns!«2

dk

k
,

~19!

where

Aj5WE
v/v I

kc
Gj~k!

dk

k
~20!

for j5b1 andb2. To simplify the notation we have omitted
both the dependence ofGs(k) and ns(k) on k in the third
term on the right-hand side of Eq.~19! and the explicit de-
pendence of«1, «2, and«eff on v.

In this equation 1/«eff is given as a sum of two discrete
poles at«150 and«250, corresponding to the bulk modes,
plus an integral overk of a sum of terms containing simple
poles atns(k)«11@12ns(k)#«250, corresponding to the in-
terfacial modes.Ab1

andAb2
are the effective strengths of the

bulk energy loss in media 1 and 2, respectively. In a strict
sense, one cannot call Eq.~19! a spectral representation of
1/«eff , because the third term in the right-hand side is not
expressed as an integral over the depolarization factors, as
required in the original definition of the spectral
representation.9 Nevertheless, Eq.~19! can be put in the ca-
nonical form of a spectral representation by an appropriate
change of integration variable in the integrals overk. First
considerk a ~multivalued! function of ns , k5k(ns), and
then move the function labels fromn to k, so that
k5k(ns) can be rewritten asks5ks(n). Then the variable of
integration can be changed fromks to n, yielding

WE
v/v I

kc Gs

ns«11~12ns!«2

dk

k

5WE
0

1 Gs@ks~n!#

n«11~12n!«2
U dksdn U dn

ks~n!
~21!

5E
0

1 As~n!

n«11~12n!«2
dn, ~22!

where

As~n!5WGs@ks~n!#U dksdn U 1

ks~n!
~23!
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is the continuous spectral function associated with the inter-
facial modes. Now, substituting Eq.~22! into Eq. ~19!, we
obtain the spectral representation of 1/«eff in canonical form,
that is,

1

«eff
5
Ab1

«1
1
Ab2

«2
1E

0

1 A~n!

n«11~12n!«2
dn, ~24!

where

A~n!5(
s
As~n! ~25!

is the spectral function associated with the continuous distri-
bution of all interfacial modes.

An actual calculation of the integrals over the depolariza-
tion factors given in Eqs.~21!, ~22!, and~24! would require
one to take into account the fact thatks is, in general, a
multiple-valued function ofn. This means that the integra-
tion over n should be performed over each branch of the
function ks(n) that lies within the range of integration
v/v I<ks<kc . To avoid cumbersome notation we have
omitted a sum over branches and used the values 0 and 1 as
limits in the integration overn instead of specifying the ac-
tual limits for each branch, which always lie between 0 and
1. This simplified notation is justified since the spectral func-
tionsAs(n) have been introduced as conceptual tools; Eqs.
~20!–~25! are never actually used to compute 1/«eff .

As a result of thek integration in Eq.~17!, the strengths
Ab1

and Ab2
, as well as theAs(n), now depend on

$v,kc ,v I%, in contrast with the spectral representation of
«M

21(k,v), given in Eq.~8!, where the strengths of the poles
depend only on structural parameters. Also, while the bulk
modes appear as isolated poles in the complexv plane, the
interfacial modes correspond to a continuous branch cut.

It is not difficult to show that as a consequence of Eqs.
~12! and ~13! the following sum rules are always fulfilled:

Ab1
1Ab2

1E
0

1

A~n!dn51 ~26!

and

Ab1
1E

0

1

nA~n!dn5 f 1 . ~27!

The total strength of bulk and interfacial modes is always
conserved and adds to one, as stated in Eq.~26!, while the
second sum rule, Eq.~27!, determines the centroid of the
mode distribution. The main merit of the spectral represen-
tation given by Eq.~24! is its direct relationship with the
experimental energy-loss spectra through Eq.~18!.

Structural information about the system can be obtained,
for example, by analyzing how the strengths and positions of
the modes depend onf , a, andv, for a given incident en-
ergy EI and wave vector cutoffkc . The simplest case for
studying this dependence is to consider the strengths of the
bulk modes. Each bulk mode generally occurs at a single
frequency, and so the bulk modes are usually identified as
well-defined peaks in the energy-loss spectra. The strength of
the bulk modes is proportional to the height of these peaks,
and their width is due to the presence of different kinds of

dissipation mechanisms within the system. The correspond-
ing analysis for the interfacial modes is more complex, not
only because of the more intricate dependence ofA(n) on
the structural parameters of the system, but also because
A(n) depends on the frequencyv. Nevertheless, this analy-
sis can be greatly simplified whenever the single-pole ap-
proximation, developed in the next section, can be used.

The dependence ofAb1
andAb2

on f , a, andv can be
studied by substituting Eqs.~9! and ~10! into Eq. ~20!. One
gets

Ab1
5Wf1E

va/v I

kca

Cb~x!
dx

x
~28!

and

Ab2
512 f 12Wf1(

s
E

va/v I

kca S 1

ns~x!
21DCs~x!

dx

x
,

~29!

which can be evaluated using the expressions forCb(ka),
ns(ka), andCs(ka) given by Eqs.~A1!, ~A2! and ~A4! in
Appendix A. One can see thatAb1

is proportional tof 1 and is

given in terms of a well-behaved integral, becauseCb(ka)
goes as (ka)2 for smallka and approaches 1 asymptotically
for largeka. For v finite, one can show from Eq.~28! that
Ab1
→0 in the limit a→0 andAb1

→ f 1 when a→`; thus

0<Ab1
/ f 1<1, for 0<a<`. The direct proportionality of

Ab1
with f 1 also means thatAb1

/ f 1 represents the strength of
the bulk energy loss for anisolatedsphere. Thus the devia-
tion of Ab1

/ f 1 from 1 is a manifestation of theBegrenzung
effect in an isolated sphere. The fact that all spheres are
identical~and therefore have the sameBegrenzungeffect! is
what makesAb1

directly proportional tof 1 . The solid line in

Fig. 1~a! showsAb1
/ f 1 as a function of the radiusa of the

spheres measured in Å, forkc51.69 Å21, electrons with
incident energyEI5100 keV and energy loss\v516 eV
which corresponds to the plasmon energy\vp

@«1(vp)50# in aluminum. We can see how the strength
increases with the particle size and how it tends asympoti-
cally to 1 asa increases. The solid line in Fig. 1~b! shows
Ab1

/ f 1 as a function of the energy loss\v measured in eV,

for a fixed sphere radiusa5100 Å and forkc51.69 Å21 and
EI5100 keV. The external parametersEI5100 keV and
kc51.69 Å21 are typical in a standard scanning transmission
electron microscope with an aperture 0.01 rad in the electron
detection.

The effective strength of the bulk energy loss in medium
2 is Ab2

. This medium is connected and has a complicated
geometry; it fills the complementary space left by the spheri-
cal inclusions. Forv finite, one can show from Eq.~29! that
Ab2
→(12 f 1)/(112 f 1) in the limit a→0 andAb2→12 f 1

when a→`; thus 1/(112 f 1)<Ab2
/ f 2<1, for 0<a<`.

Therefore, for finitea, Ab2
does not scale withf 2 , as shown

in Fig. 2, complicating the direct determination of the struc-
tural parameters from experiment. In Fig. 2~a! we plot
Ab2

/ f 2 as a function of the radiusa of the spheres for

kc51.69 Å21, EI5100 keV,\v516 eV, andf 150.1 and
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0.25. In Fig. 2~b! we plotAb2
/ f 2 as a function of the energy

loss \v for kc51.69 Å21, EI5100 keV, a5100 Å , and
f 150.1 and 0.25. In these figures one can see that for a given
filling fraction f 1, Ab2

/ f 2 increases as either the radius of the
spheres or the energy loss increase. Also, for a given radius
or energy loss,Ab2

/ f 2 decreases asf 1 increases.
In conclusion, for an electron beam of a given energy, the

measurement of the relative height of the energy-loss peaks
corresponding to the strength of the bulk modes does not
determine f and a separately. A precise determination of
these quantities requires a detailed analysis of the energy-
loss spectra corresponding to the interfacial modes, as has
been already shown in Ref. 8, for the case of aluminum
spheres in AlF3 .

III. DISCRETE SURFACE-MODE APPROXIMATION

A. Multiple-surface-mode approximation

In the multiple-surface-mode approximation the idea is to
replace the continuous spectrum of the interfacial modes
which appears in Eq.~24! by an infinite sum of simple poles.
The weightsAs and the locationsas of these poles are cho-
sen so as to fulfill the same sum rules as the ones fulfilled by
the continuous spectrum, that is,

Ab1
1Ab2

1(
s
As51 ~30!

and

Ab1
1(

s
asAs5 f 1 , ~31!

FIG. 1. ~a! Strength of the bulk modeAb1
over the filling frac-

tion f 1 as a function of the radiusa ~in Å! of the spheres, for an
energy loss\v516 eV, upper wave vector cutoffkc51.69 Å21,
and incident energyEI5100 keV. The dashed line is the corre-
sponding expressionAb1

HW/ f 1 proposed by Howie and Walsh as dis-
cussed in the text.~b!. Strength of the bulk modeAb1

over the filling
fraction f 1 as a function of the energy loss\v ~in eV!, for spheres
of radiusa5100 Å, upper wave vector cutoffkc51.69 Å21, and
incident energyEI5100 keV. The dashed line is the corresponding
expressionAb1

HW/ f 1 proposed by Howie and Walsh as discussed in
the text.

FIG. 2. ~a! Strength of the bulk modeAb2
over the filling frac-

tion f 2 as a function of the radiusa ~in Å! of the spheres, for an
energy loss\v516 eV, upper wave vector cutoffkc51.69 Å21,
incident energyEI5100 keV, and filling fractionsf 150.1 and
0.25. ~b! Strength of the bulk modeAb2

over the filling fraction
f 2 as a function of the energy loss\v ~in eV!, for spheres of radius
a5100 Å, upper wave vector cutoffkc51.69 Å21, incident energy
EI5100 keV, and filling fractionsf 150.1 and 0.25.
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which are the discrete counterparts of Eqs.~26! and ~27!.
This leads immediately to the following definitions ofAs and
as ,

As5E
0

1

As~n!dn ~32!

and

asAs5E
0

1

nAs~n!dn. ~33!

Therefore«eff(v) can be written as

1

«eff
'
Ab1

«1
1
Ab2

«2
1(

s

As

as«11~12as!«2
. ~34!

Explicit expressions for ofAs andas are derived in Appen-
dix B. Equation~34! is the best possible discrete approxima-
tion to the actual spectral representation@Eq. ~24!# in the
sense that each discrete interfacial mode has the same
strengthAs and positionas as the total stregth and centroid
of the corresponding continuous mode. The strength and lo-
cation of these discrete poles can be easily determined in the
dilute (f 1→0) limit, which corresponds to the case of non-
interacting spheres. In this case, one gets

As5 f 1 3~2s11!2WE
va/v I

kca j s
2~x!

x3
dx ~35!

and

as5
s

2s11
, ~36!

wheres labels the multipolar order of the induced interface
modes on the noninteracting spheres. Thuss51 corresponds
to the dipolar mode,s52 to the quadrupolar mode, etc. To
lowest order inf 1 , while the strengthsAs of the interfacial
modes are proportional to f 1 , their positions
as51/3, 2/5, 3/7, . . . , areindependent off 1 and lie within
the interval 1/3<as<1/2, the value 1/2 being an accumula-
tion point. In Figs. 3~a! and 3~b! we plot, for the first three
modes,As / f 1 as a function ofa and \v, respectively, for
kc51.69 Å21 andEI5100 keV. In Fig. 3~a!, \v516 eV,
and in Fig. 3~b! a5100 Å . These figures show that, with
these selections of parameters, the dipolar mode dominates
over higher multipolar modes only in the region of small
radii and small energy losses. Its strength decays quite rap-
idly with increasing energy loss or radius. For example, for
\v516 eV anda'30 Å , or a5100 Å and\v'5 eV, the
strength of the sum of the quadrupolar and octupolar modes
is already about half of the the strength of the dipolar mode.
Finally, recall that to lowest order inf 1, As / f 1 are the cor-
responding mode strengths for an isolated sphere.

B. Single-surface-mode approximation

As f 1 increases, the dependence of the strengthsAs and
locationsas of the interfacial modes onf 1 becomes more
complicated and the whole analysis of extracting structural
information from 1/«eff becomes more involved. Neverthe-
less, a simple situation arises when the resonant energies of

the interfacial modes lie so close together and the dissipation
broadening contained in the imaginary parts of«1 and«2 is
so large that they appear as a single peak in the energy-loss
spectrum. In this case it is possible to approximate the infi-
nite set of interfacial modes by a single effective surface
mode. The strength and location of this effective surface
mode will be labeledAs andas , respectively, and they are
chosen as to satisfy the sum rules given by Eqs.~30! and
~31!. This yields

As5(
s
As ~37!

and

FIG. 3. ~a! Strength of the interfacial modesAs over the filling
fraction f 1 as a function of the radiusa ~in Å! of the spheres, in the
low-density limit (f 1→0), for an energy loss\v516 eV, upper
wave vector cutoffkc51.69 Å21, and incident energyEI5100 keV.
The numbers 1,2,3 above each line label the first three modes
s51,2,3 and the letters labels the effective single modes5s. ~b!
Strength of the interfacial modesAs over the filling fractionf 1 as a
function of the energy loss\v ~in eV!, in the low-density limit
( f 1→0!, for spheres of radiusa5100 Å, upper wave vector cutoff
kc5 1.69 Å21, and incident energyEI5100 keV. The numbers
1,2,3 above each line label the first three modess51,2,3 and the
letters labels the effective single modess5s.
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asAs5(
s

asAs , ~38!

and the approximation will be called the single-surface-mode
approximation. In this approximation«eff(v) is simply writ-
ten as,

1

«eff
'
Ab1

«1
1
Ab2

«2
1

As

as«11~12as!«2
, ~39!

and the sum rules become

Ab1
1Ab2

1As51 ~40!

and

Ab1
1asAs5 f 1 . ~41!

The expression for 1/«eff in this approximation has an ex-
tremely simple and appealing form. From the definitions in
Eqs.~37! and~38! it follows that the single effective interfa-
cial mode in the spectral representation of Eq.~39! has the
same strengthAs and positionas as the total strength and
centroid of all interfacial modes in the actual spectral
representation @Eq. ~24!#, i.e., As5*0

1A(n)dn and
as5*0

1nA(n)dn/*01A(n)dn. Furthermore, it can be seen
from Eqs.~40! and ~41! thatAs andas are completely de-
termined byAb1

, Ab2
, and f 1 . Nevertheless, for the case of

spherical inclusions and within the approximations used in
Appendix A, it is more convenient to calculateas first, and
then to determineAs from as andAb1

using Eq.~41!. The

reason for this is that for spheres of radiusa@1/kc , as

becomes independent ofkc , and what is more important, it
becomes only a function ofva/v I . To see this, one uses
Eqs.~37! and ~38! together with Eqs.~B6! to write as as

as5(
s
E

va/v I

kca

Cs~x!
dx

x Y (
s
E

va/v I

kca Cs~x!

ns~x!

dx

x
, ~42!

whereCs(x) andns(x) are the strengths and depolarization
factors of the interfacial modes as functions ofka, given by
Eqs.~A3! and~A4!, respectively. SinceCs(x)→0 quite rap-
idly asx→`, as will become independent of the upper limit
of integration wheneverkca@1. One can check that this will
be the case forkca'10. This condition is not very restric-
tive; for example, as pointed out before, for 100 keV elec-
trons in a standard transmission scanning electron micro-
scope a typical value ofkc is about 1.7 Å

21; this means that
kca'10 is already fulfilled for spheres of radius of about
17 Å . Therefore, we will consider here the casekca@1, and
analyzeas as a function of the lower limit of integration
va/v I . This is very convenient for the analysis of experi-
mental data since the dependence on frequency and the ex-
ternal parameters is combined in a single variable.

In Fig. 4 we show the positionas of the single effective
surface mode as a function ofva/v I , for different values of
the filling fraction f 1 . In reading this graph one must recall
that the values very close to the origin on theva/v I axis are
not very accurate, because the present calculation ofas is
not valid for a→0; it is valid only if a@1/kc . In the limit
a→0, the only active mode is the dipolar one, and one can
show thatas(a→0)5(112 f 1)/3. Therefore, in Fig. 4 we

see that for va/v I'0, as starts around the values
(112 f 1)/3 for each value off 1 , and then goes asympoti-
cally to the value 1/2, for allf 1 , asva/v I increases. For
f 150.2 one sees thatas has actually a minimum around
va/v I'1.3. The curve labeledf 1'0 corresponds to the di-
lute (f 1→0) limit which corresponds to the case of an iso-
lated sphere. To get some idea of typical values of the pa-
rameterva/v I , note thatva/v I50.924 when the energy
loss \v510.0 eV, the sphere radiusa5100 Å , and the
incident electron energyEI5100 keV. In Appendix C we
give a convenient formula@Eq. ~C9!# for calculatingva/v I
for arbitrary values of\v, a, andEI . Finally, we must re-
mark that the wayas approaches its limiting value
(112 f 1)/3 along theva/v I axis depends on whether one
considersa→0 or v→0; whenv→0 the approach is loga-
rithmic whereas whena→0 the approach is a power law.

We now proceed to the calculation of the effective
strengthAs by using Eq.~41!; that is,As5( f 12Ab1

)/as .

Nevertheless, it will be illustrative to first calculateAs in the
dilute (f 1→0) limit, since in this limitAs corresponds to the
effective strength for an isolated sphere. This calculation can
be performed by using Eq.~37! directly, that is,
As5(sAs , with the As taken from Eq.~35!. Since the
strengthsAs are proportional tof 1 , the effective strength
As5(sAs will be also proportional tof 1. In Fig. 3 we show
the dependence ofAs / f 1 as a function of the radius of
the spheres and the energy loss, forEI5100 keV and
kc51.69 Å21. Here we have performed the sum over all
multipolar modes until convergence was attained. Notice
again that the contribution of the dipolar mode is dominant
only in the region of small radius and small energy loss.

As the filling fraction f 1 increases,As no longer scales
with f 1 but it can be calculated, as mentioned above, using
Eq. ~41!. Takingkc51.69 Å21 andEI5100 keV as external
parameters and two filling fractionsf 150.1 and 0.25, in Fig.
5~a! we plot As as a function ofa for \v516 eV, and in
Fig. 5~b! as a function of \v for a5100 Å. Since
As(a→0)53 f 1 /(112 f 1) andAs(a→`)50, the effective

FIG. 4. Positionas of the effective single mode as a function of
va/v I for different filling fractionsf 1. The labelf 1'0 corresponds
to the low density limit (f 1→0).
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strength As , as a function of a, lies between
0<As<3 f 1 /(112 f 1), and Fig. 5~a! shows that the de-
crease from 3f 1 /(112 f 1) to 0 is monotonic. In Fig. 5~b!
one sees also thatAs decreases as\v increases.

Finally, we test the accuracy of the single-surface-mode
approximation by calculating the energy-loss probability
J(E) for a system of aluminum spheres in vacuum. The
local dielectric function for the aluminum was modeled by a
Drude dielectric function«1(v)512vp

2/(v21 iv/t), with
plasma energy\vp515.8 eV and two choices of the damp-
ing factor g[1/vpt50.01 and 0.08. The valueg'0.04,
corresponding to bulk aluminum, lies between the two cho-
sen values. In Fig. 6 we compare an exact calculation of
J(E) with the one done using the single surface-mode ap-
proximation as defined in Eq.~39!. In Fig. 6~a! we plot the
energy-loss probabilityJ(E) as a function of the energy loss
E5\v, for spheres of radiusa5100 Å, a filling fraction

f 150.1, and a damping factorg50.01. Such a small damp-
ing factor was chosen in order to see the actual structure of
the spectral function corresponding to the interfacial modes.
One can clearly see that in the single-surface-mode approxi-
mation, the actual structure of the interfacial spectral func-
tion is replaced by a single mode whose position is located at
the centroid of the actual structure. For a larger value ofg
the actual surface-mode spectrum will be smoothed out,
making the single-surface-mode approximation more accu-
rate. In Fig. 5~b! we show a plot of the energy-loss probabil-
ity J(E) as a function of the energy loss, for the same pa-
rameters as in Fig. 5~a!, but with the damping factorg
increased tog50.08. In this case the single-surface-mode
approximation gives a good approximation to the actual
spectrum.

In order to facilitate the actual use of the the single-
surface-mode approximation we provide, in Appendix C,
analytical fits for the bulk strengthAb1

and the position of

the single effective surface modeas .

FIG. 5. ~a! StrengthAs of the effective single mode as a func-
tion of the radiusa ~in Å! of the spheres, for an energy loss
\v516 eV, upper wave vector cutoffkc51.69 Å21, incident en-
ergy EI5100 KeV, and filling fractionsf 150.1 and 0.25.~b!
StrengthAs of the effective single mode as a function of the energy
loss\v ~in eV!, for spheres of radiusa5100 Å, upper wave vector
cutoff kc51.69 Å21, incident energyEI5100 keV, and filling frac-
tions f 150.1 and 0.25.

FIG. 6. ~a! Energy loss probability densityJ(E) as a function
of the energy lossE5\v, for a random system of aluminum
spheres in vacuum. The spheres have radiusa5100 Å, the upper
wave vector cutoff iskc51.69 Å21, the incident energy is
EI5100 keV, the filling fractions isf 150.1, and the damping fac-
tor g in the dielectric function of the spheres isg50.01. The label
‘‘Actual’’ refers to the exact calculation while the label ‘‘Single
Mode’’ refers to the calculation in the single-surface-mode approxi-
mation.~b! The same as in~a! but with g50.08.
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IV. COMPARISON WITH THE TRAJECTORY MODEL

Howie and Walsh6 have analyzed their experimental data
on a system of aluminum inclusions embedded in AlF3 by
calculating the electron energy loss using a model based on a
weighted average of electron trajectories. Through the use of
phenomenological reasoning and after performing an aver-
age over different parts of a typical electron trajectory, they
concluded that the local dielectric response«HW(v) of an
effective medium which could simulate a system of spherical
inclusions embedded in an otherwise homogeneous matrix,
should be written@see Eq.~5! of Ref. 6# as

1

«HW
5 f 1F 1«1 1gintS 3

«112«2
2

1

«1
D G

1 f 2F 1«2 1gextS 3

«112«2
2

1

«2
D G , ~43!

wheregint represents the relative importance of interface to
bulk excitations in the spheres of material 1, andgext repre-
sents the volume fraction of material 2 which is close
enough to a piece of material 1 to give rise to an interface
excitation. Here the explicit dependence onv has been omit-
ted.

Howie and Walsh6 argued that for spheres of radius much
less thanv I /v, one should expectgint51, which means that
the strength of the bulk plasmon in the spheres vanishes. For
spheres of larger radius they expectedgint to be proportional
to v Ia/v, and so they proposedgint to be independent of
f 1 and to be given by a simple expression,

gint5
1

113va/v I
, ~44!

consistent with these ideas and with numerical results quoted
by Echeniqueet al.12 They also proposed that for small
spheres a reasonable dependence ofgext on f 1 should be of
the form

gext5
2 f 1

112 f 1
, ~45!

at least for small values off 1 .
It is interesting that Eq.~43! has exactly the same struc-

ture as the expression for«eff(v) within the single-surface-
mode approximation, as given by Eq.~39!. In fact, both ex-
pressions become identical if one has the following relations
between the parametersgint and gext and the effective
strengthsAb1

, Ab2
, andas :

Ab1
5 f 1~12gint!, ~46!

Ab2
5 f 2~12gext!, ~47!

and

as5 1
3 . ~48!

SinceAs512(Ab1
1Ab2

), one has

As5 f 1gint1 f 2gext. ~49!

In order to test the validity of Eq.~43! we substitute the
values ofgint andgext given by Eqs.~44! and ~45! into Eqs.
~46! and ~47! to yield

Ab1
HW5 f 1

3va/v I
113va/v I

~50!

and

Ab2
HW5

12 f 1
112 f 1

, ~51!

where the superscript ‘‘HW’’ refers to Howie and Walsh.6

In Fig. 1 we compare the dependence ofAb1
HW/ f 1 ona and

\v, given by Eq. ~50!, with our expression forAb1
/ f 1 ,

given by Eq.~28!, for the same set of external parameters.
One can see in Fig. 1~a! that for \v516 eV, Ab1

HW(a)/ f 1
coincides withAb1

(a)/ f 1 for a'20 Å. For larger values of

a, Ab1
HW(a)/ f 1 is actually larger thanAb1

(a)/ f 1, although it

is still a good approximation because the maximum devia-
tion of Ab1

HW(a)/ f 1 from the exact result is only about

10%. On the other hand, when the sphere radius is fixed at
a5100 Å, Fig. 1~b! shows thatAb1

HW(v)/ f 1 deviates substan-

tially from Ab1
(v)/ f 1 for \v<5 eV, but for larger energy

losses the deviation is less than about 10%. ThereforeAb1
HW

is a reasonable approximation forAb1
. The proposed values

of as51/3 and Ab2
HW5(12 f 1)/(112 f 1) correspond pre-

cisely to thea→0 limit of as andAb2
, as discussed above.

However, the sum rule given in Eq.~41! is satisfied only if
a'0 and f 1'0, since the valueas51/3 is correct only in
this limit.

Therefore, one can conclude that the expression proposed
by Howie and Walsh@Eq. ~43!#, for the dielectric response of
an effective medium, has exactly the same structure as the
spectral representation of«eff(v) derived here in the single-
surface-mode approximation. However, their expressions for
gext andas become approximately valid only in thea→0
and f 1→0 limits. Nevertheless, the theory of Howie and
Walsh6 might be useful for giving some insight into the
physical interpretation of our present theory.

V. SUMMARY

For homogeneous materials, the electron energy-loss
spectra of fast electrons can be calculated from the loss func-
tion Im@2«21(k,v)#; a similar theory8 has been found to be
very useful for calculating the energy-loss spectra of elec-
trons passing through composite systems consisting of a
mixture of two components with local dielectric functions
«1(v) and«2(v). In this theory the macroscopic~or effec-
tive! inverse longitudinal dielectric function«M

21(k,v) can
be written as a spectral representation that contains informa-
tion about the strengths and positions of bulk longitudinal
modes and interfacial modes, which are the excitations re-
sponsible for the energy loss.

Here we have derived a spectral representation for
«M

21(k,v) in which the two components appear on an equal
footing. In order to provide a more direct connection be-
tween the theory and experiment, an effective local dielectric
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function«eff(v) has been defined so as to give the same loss
spectrum as that calculated from the actual nonlocal dielec-
tric function.

It was also shown that a spectral representation for
1/«eff(v) also exists and new sum rules that relate the
stregths and positions of the modes were also found. In con-
trast with the usual spectral representation, where the mode
strengths and positions depend only on the geometrical struc-
ture of the composite, they now depend on both the structure
and experimental parameters such as the amount of energy
loss, the energy of the incident electrons, and the aperture
sizes of the detector. Also, the interfacial modes are not dis-
crete, but form a continuous spectrum.

A useful simplification of the theory is to replace the en-
tire continuum of interfacial modes by a single discrete
mode, whose strength and position are the same as the total
strength and centroid of all interfacial modes. This single-
mode theory contains only four parameters: the strength of
the bulk modes of the two components and the strength and
position of the single discrete interfacial mode. We calcu-
lated these four parameters using our previously developed
model of a random system of identical spherical particles,
and show how the single-mode theory could be used, with
very little effort, to analyze data in which the interfacial
modes form a single unresolved energy-loss peak.

The paper ends with a comparison of our single-mode
theory with a phenomenological theory developed by Howie
and Walsh,6 for a random system of spheres. In their theory
the structure of the effective local dielectric function is simi-
lar to our single-mode theory, but the values proposed for the
four parameters were obtained using arguments based on a
classical trajectory model. We showed that in their theory,
the value proposed for the strength of the bulk mode of the
spheres is approximately correct, but the value proposed for
the other parameters is applicable only in the limit in which
the sizes and volume fraction of the spheres are vanishingly
small.
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APPENDIX A: EXPRESSIONS FOR Cb , Cs , AND ns

In this appendix we write down the expressions derived in
Ref. 8 for the strengths and location of the bulk and interface
modes used in the spectral representation of«M

21(k,v) given
by Eq. ~5!, with r (2)(R12) given by Eq.~7!.

The strength of the bulk mode is

Cb5123(
l51

`

l ~2l11!@ j l~ka!/ka#2. ~A1!

The depolarization factorsns are given by the eigenvalues of
a real symmetric matrix

Hll 85
1

2l11
d l l 813 fAl l 8/~2l11!~2l 811!

~ l1 l 8!!

l ! ~ l 8!!

3S 12D
l1 l 822 j l1 l 821~2ka!

ka
, ~A2!

and the strengths of the interfacial modes are

Cs53(
l l 8

Al l 8~2l11!~2l 811!
j l~ka! j l 8~ka!

~ka!2
UlsUl 8s ,

~A3!

where j l is the spherical Bessel function of orderl , and
Uls is the unitary matrix which diagonalizesHll 8, that is,

(
l l 8

Usl
21Hll 8Ul 8s85nsdss8. ~A4!

APPENDIX B: DISCRETE APPROXIMATION

Although the discrete surface-mode parametersAs , as ,
As , andas , are defined by Eqs.~32!, ~33!, ~23!, ~37!, and
~38!, these equations are not actually useful for calculating
these quantities, as we discussed in the text. A useful expres-
sion for the mode strengthAs is found omitting the denomi-
natorsns«11(12ns)«2 from the left-hand side of Eq.~21!
and making the same change of variable of integration from
k to n. This procedure gives

WE
v/v I

kc
Gs~k!

dk

k
5E

0

1

As~n!dn, ~B1!

and using the definition ofAs in Eq. ~32!, we have

As5WE
v/v I

kc
Gs~k!

dk

k
. ~B2!

This result is identical to Eq.~20!, except that the indexj in
Eq. ~20! can now run over interfacial modess in addition to
the bulk modesb1 andb2 .

The total strength of all surface modes is

As5(
s
As

5WE
v/v I

kc

(
s
Gs~k!

dk

k
. ~B3!

Similarly, an expression forasAs is found from the equa-
tion
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asAs5E nAs~n!dn

5WE
v/v I

kc
ns~k!Gs~k!

dk

k
, ~B4!

which is derived using the same change of variable as in Eqs.
~21! and ~22!. Summing overs and using Eq.~38!, we get

asAs5WE
v/v I

kc

(
s
ns~k!Gs~k!

dk

k
. ~B5!

From Eqs.~B3! and ~B5! we have

as5E
v/v I

kc

(
s
ns~k!Gs~k!

dk

k Y E
v/v I

kc

(
s
Gs~k!

dk

k
.

~B6!

Equation~B6! reduces to Eq.~42! after making the substitu-
tionGs5 f 1Cs /ns and changing the integration variable from
k to x5ka.

APPENDIX C: PRACTICAL FORMULAS

In this appendix we provide analytical expressions for
Ab1

andas , kI , andva/v I . ForAb1
we get

Ab1
5 f 1WlnFb1A~kca!21b2

b1Az21b2
G , ~C1!

where

b52.3471,

z5va/v I ,

W51/ln~kcv I /v!. ~C2!

For as we get,

as5S~z!1H~ f 1!T~z!, ~C3!

where

S~z!50.453120.046 69z10.030 282z226.60431023z3,

16.031024z421.8131025z5 ~z<6! ~C4!

T~z!51/~0.27110.194z1.08!21.14 ~z,1.66!

51.585z22.24 ~z>1.66! ~C5!

and

H~ f 1!50.182 72~ f 120.2!20.0643~ f 120.2!2. ~C6!

Equations~C1!–~C6! fit the exact calculations with an error
of less than 1%.

The wave vectorkI for an incident electron with kinetic
energyEI is

kI5~0.512 Å21!A11x/2AEI , ~C7!

where

x5EI /mec
251.95731026EI . ~C8!

For a typical energyEI5100 keV we findkI5170 Å21,
giving a cutoff wave vectorkc'kIu'1.7 Å21 if the maxi-
mum deflection angle in the scanning electron microscopy
experiment isu'10 mrad. For the dimensionless parameter
z5va/v I we have the formula

va/v I50.256R~x!\va/AEI , ~C9!

whereR(x)5(11x)/A11x/2 is a relativistic correction. In
Eqs. ~C7!–~C9!, EI and \v are expressed in eV anda is
expressed in Å.
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