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Abstract 

After beginning with a brief review of the theory of electron energy loss by an unbounded 
random system of spherical inclusions characterized by a local dielectric function, we examine 
several extensions of this theory. We first treat an inhomogeneous system of spherical particles 
confined to a half-space. A surface response function, which can be used to calculate the energy- 
loss spectrum for charged particles moving outside the system, is defined, and this response 
function is written in a spectral representation. We discuss different approaches to this problem: 
the semiclassical infinite barrier model, an exact formal theory, and a continuous effective medium 
theory. Finally, we develop a theory of electron energy loss for a mixture of two components 
with arbitrary geometry, unbounded in three dimensions. 
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1. Introduction 

The theoretical problem of  calculating the local effective dielectric function eM(tO) 

o f  a heterogeneous mixture in terms of  the dielectric functions el(~O) and e2(a)) o f  its 

constituents has a long history. Only recently have there been some electron energy- 

loss measurements o f  such mixtures [1], and Barrera and Fuchs [2] were the first to 
study this problem theoretically. We begin with a short review of  this theory, which 
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addresses the problem of calculating the nonlocal effective ~ dielectric function eM(k, 09) 
of a random system of spherical particles. Throughout this paper we emphasize spectral 
representations, which give a direct connection between the effective dielectric response 
and the geometry of the system. Next, we consider the problem of finding the surface 
response function 9(Q, 09) of a disordered system of spheres confined to a half-space, 
and discuss several methods which may be useful for solving this problem. The fact 
that correlation functions depend on distances from the surface, not only on distances 
between particles, is a challenging feature of such systems. In the final section of this 
paper, we find the spectral representation of eM(k, 09) for a heterogeneous mixture with 

arbitrary geometry. 

2. Review of  theory for random system of  spheres 

We begin with a brief review of the theory of electron energy loss by an unbounded 
random system of spherical inclusions, first derived by Barrera and Fuchs [2]. It was 
assumed that the system appears to be homogeneous at a length scale l ~ a, where a 
is the radius of the spheres, although it is highly inhomogeneous at a length scale of 
the order of a. This allows us to describe the system by an effective dielectric function 
eM(k,09), from which the electron energy-loss spectrum can be calculated. 

It was shown [2] that 1/eM(k, 09) can be written in the following spectral represen- 

tation: 

1 _ 1 l + f  ~ - - ~ +  (1)  
eM(k,09) e2 u - n s  ' 

where f = (N/V)4rca3/3 is the filling fraction of the spheres, u = - 1/(el/eZ - 1 ) is the 
spectral variable, and /31 and e2 are the local, frequency-dependent dielectric functions 
of the spheres and the matrix, respectively. Here N is the total number of spheres and 
V is the total volume of the system. By spectral representation we mean that 1/~M 
can be written as a sum of terms with simple poles, and these poles are related to the 
excitation of the normal modes of the electric field within the system. For example, the 
poles at u = 1 and u = ns have strengths Cb and Cs, and correspond to the excitation of 
bulk and interfacial modes, respectively. Furthermore, the strengths Cb and Cs fulfill 

the following sum rule [2]: 

Cb + Z Cs= 1 (2) 
S 

which means that the sum of all mode strengths is conserved, or alternatively, that the 
strength of the bulk mode is reduced due to the presence of the interface, a fact also 
known as the Beorenzung effect. 

Another appealing feature of the spectral representation given in Eq. (1) is that the 
properties of the material appear only in the spectral variable u, while the location and 
strength of the poles depend only on k and on the geometry of the system. In the 
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mean field approximation the information about the geometry of the system is given 

by two statistical parameters [2]: the filling fraction of spheres f and their two-particle 
distribution function p(2)(Rl2), where R12 is the distance between the centers of two 
spheres. If the two-particle distribution function takes account of only the excluded 
volume correlation, that is, p(2)(Rl2) ---- 1 for R12 >~2a and 0 otherwise, it can be shown 
[2] that the strengths of the modes Cb and G and the location of the interface modes 
ns become functions of only ka, and can be calculated by a simple procedure. 

3. Inhomogeneous systems in a half-space 

3.1. Surface response function 9(Q, o9) 

We consider a system of spherical inclusions randomly located in the half-space 
z < 0. The inclusions have local dielectric function el, and the matrix has local di- 
electric function e2--1. The surface response function 9(Q, o9), in which Q is the 
wave vector parallel to the surface, has been applied to study energy-loss processes by 
homogeneous media in a half-space [3], and this quantity appears in expressions for 
the energy-loss spectrum of electrons moving on trajectories confined to the half-space 
z > 0; for example, a trajectory parallel to the surface [4], or reflected from the surface 
[5]. For the inhomogeneous system we are considering, 9(Q, co) must be regarded as 
an effective response function, describing the system which is effectively homogeneous 
and isotropic parallel to the surface after an appropriate configurational average over 
the sphere positions. 

One takes an extemal potential produced by an extemal charge infinitely distant from 
the interface in the region z > 0, with a single wave-vector component Q = Qi. The 
external potential satisfies Laplace's equation, and is of the form 

vext (r ) = Vo eQ~ e i Qx . (3) 

The time dependence e - i ° ) t  is omitted for simplicity. This external potential induces 
charges on the system of spheres, giving rise to an induced potential. The surface 
response function is defined in terms of this induced potential in the region outside the 
spheres, 

vina(r)= - g(Q,o~) Voe-Qze iQx, z > O. (4) 

If a homogeneous medium filling the half-space z < 0 is described by a local dielectric 
function e(~o), one finds that g(Q, ~o) = (e(o~) - 1 )/(e(o~) + 1 ). 

It will be shown in Section 3.3 that the surface response function can be written in 
the form of a spectral representation 

f ds (5) 
g ( Q ' ~ ) =  - ~ u Z n, ' 

S 
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where u is the same spectral variable as in Eq. (1) and f is the volume fraction of 
spheres infinitely far from the surface, f = l imz~_~ f ( z ) .  The mode strengths ds and 
positions ns depend only on geometry and the wave vector Q. In fact, Eq. (5) should be 
valid for any system of particles of any shape confined to the half-space z < 0, which 
is uniform in the x and y directions after configurational averaging, so that the volume 
fraction is a function only of z. One can derive a sum rule for the strengths ds by going 
to the high-frequency limit, where e l (co) -  1 ~ O(co -2) and u--+ oo. In this limit, the 
polarization of the dielectric is due to the electrons, which can be considered free, and 
the coulomb interaction between the electrons can be neglected. Each electron (labelled 

by the index i) moves independently in response to the external potential, and produces 
an induced dipole moment which gives the induced potential viind(r). The Qth Fourier 

component of this potential is found by taking a two-dimensional Fourier transform, 

1 fe_,ex viina(r)dxdy ' (6) V/nd(o'z) = -£2 

where we are assuming a period length L in the x and y directions. One finds 

vind(Q,z) = - L -2 Vo a4rcQe -9-z e 2Qz~ , (7) 

where a = -e2/mco 2 is the polarizability associated with each electron. The total induced 
potential vi~d(Q,z) from all electrons is found by changing the sum over i to an integral 

over volume, using the expression dN = f ( z ) n o  dv for the average number of electrons 
dN in a volume element dv = dx dy dz, where no is the electron density in the material 
1. Since vind(r)= vind(Q,z)e ig-x, comparison with Eqs. (4) and (5) gives the desired 

sum rule, 

0 

Eds = 7 -  e 2oz f ( z )  dz .  (8) 
S - -  OC~ 

For a constant volume fraction f ( z )  = f ,  - o ¢  < z < 0, Eq. (8) gives the simple result 

~ s  ds = 1. 

3.2. SCIB model for a random system of  spheres 

A simple procedure for calculating the surface response function is to use a model 
known in the literature as the specular reflection or semiclassical infinite barrier 
(SCIB) model [6,7]. This model was originally used in theories of the anomalous 
skin effect for a metal surface and has also been proposed to calculate optical proper- 
ties and screening of external charges for metal surfaces. The advantage of this model 
is that the surface response function g(Q, co) is given as a functional of the bulk lon- 
gitudinal dielectric function e(k, co) of the unbounded system, which is already known 
[Eq. (1)]. Therefore, the model correctly takes into account the nonlocal (k-dependent) 
effects that arise from the size of the spheres and the two-particle distribution function. 
However, it implicitly assumes a model for the surface region in which the surface is 
terminated abruptly. 
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The idea of the SCIB model is to extend the system of spheres that is actually con- 
fined to the half-space z < 0 into an unbounded system of spheres, whose dielectric 
response is correctly given by e(k, to). Then, in order to model the presence of the sur- 
face, one introduces at z = 0  a fictitious external charge of the form p ( r ) = A  e iQx 6(z), 
where A is an unknown constant. The potential V(r) and electric displacement D(r) 
are determined thoughout the entire infinite medium. One assumes that the potential 

and displacement within the half-space z < 0, in which the system is actually located, 
are given correctly by this procedure, and that on the vacuum side the potential is the 
sum of the external and induced potentials [Eqs. (3) and (4)]. Imposing the boundary 
conditions that the potential and the normal component of the displacement are con- 
tinuous across the interface at z = 0, one can find both unknowns, the constant A and 

the surface response function, 

g(Q, co) = "{(Q' oo) -- 1 
"{(Q, oJ)-+ 1 ' 

where 

1 

~(Q, to) 

(9) 

q - o o  

dkz 
- - - - Q  / (Q2 +k~)eM(k,~o) (10) 

- - o c  

From the surface response function we find a quantity S(Q,~o)= Img(Q,~o), called 
the surface-loss function, which is used to calculate the energy loss of an electron 

traveling parallel to the interface of the system, with impact parameter z0 and speed Vl 
in the y direction. The probability per unit path length, per unit energy, of scattering 
with energy loss E, is given by [4] 

dzP 1 
dl d----E F ( E )  = _ aoEt ~ (E)  , (11) 

where a0 is the Bohr radius, El is the kinetic energy of the incident electron, E =/~to, 
and 

o o  

f e-ZQz° S 
-~(E)= 1~ j ~ (Q, to)dkx (12) 

0 

with Q = v/k  2 + o92/@ 
In the local limit, that is when one assumes that eM(k, to) is independent of k 

and sets eM(k, ~o) = eM(k = 0, ~o) -- eM(CO), one gets 1/'{(Q, co) = 1/eM(to), and conse- 
quently the surface loss function S(Q, oJ) becomes independent of Q and given by 
S(to) = Im[(eM(to) -- 1)/(eM(OJ) + 1)]. Now, substituting S(to) into Eqs. (10) and (11) 
and performing the integration over kx, one gets the well-known local result [4], 

F ( E )  = a - ~ Z t o c ( E ) ,  (13) 
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where 

Sloe(E)= ~ \v,/~] Im LeM(°J) ÷ ~ . (14) 

Here K0 is the modified Bessel function of order zero. In this case ~(E)  has a pole 

at eM(~O)= -- 1, coming from the excitation of surface plasmons, and the argument of 
K0 establishes the characteristic length vl/co of approach for their excitation. 

We now present results for electron energy loss of  electrons travelling parallel to 

the interface of  a half-space of a system with spherical inclusions described by an 
effective bulk dielectric response eM(k,~o) given by Eq. (1). The bulk dielectric re- 

sponse eM(k, co) is found in the mean-field approximation and we consider only the 
excluded volume correlation between spheres. Also, for simplicity in the calculation 

of eM(k,~o) we use a single-mode approximation [8], in which all interfacial modes 

in Eq. (1) are replaced by a single effective mode located at an average position 

n, and with an average strength C~. In order to have a more transparent picture of  
the underlying physics, we consider a half-space of aluminum spheres in vacuum. In 

this case, one sets ez = 1 and el(CO) will be given by a Drude dielectric function, 
that is, 

~(~)= 1 @ (15) 
o~(o~ + i / r )  ' 

where OJp is the bulk plasma frequency and z is the relaxation time coming from 

dissipation processes. For aluminum hOJp is taken as 16 eV and z will be taken as a 
parameter which simply controls the width of the excitation peaks. The surface plas- 

mon energy hoJs = hogp/V/-2 is then equal to 11.3 eV, and the energy of dipolar mode 

of an isolated sphere hO~d = ho~p/X/~ is 9.2 eV. 
In Fig. 1 we show a 3D-plot of S(Q,o~) as a function of Qa and h~o for f = 0 . 1 ,  

sphere radius 25 .~ and OJpr = 100. We can see that for Q = 0 there is a single pole 
around 9.4 eV. Then, as Qa increases, this pole shifts a little to higher energies. There 
is also another pole located a little below 16 eV, whose strength is zero at Q = 0, and 

then starts to grow, while its location shifts a bit to lower energies, as Qa increases. 
The strength of the low-energy peak decreases, as Qa increases, while that of  the 
high-energy peak increases. 

One can identify the low-energy peak with the usual surface mode coming from the 
presence of the interface. For example, in the local limit ~M(OJ)= eM(k = O, co)= 1 -- 
f / [u- - (1- - f ) /3]  becomes the Maxwell Garnett dielectric response [2], which according 
to Eq. (14) has a pole when EM(~O0)= -- 1, due to the presence of the interface. For 
Drude spheres this yields oJ0 =~oa¥/1 + f /2 ,  where cod =~Op/X/3 is the dipolar reso- 
nance of an isolated sphere. For aluminum hOJp = 16 eV, thus hoJ0 = 9.4 eV for f = 0.1. 
The physical nature of the other peak which appears at finite Q close to the bulk plas- 
mon energy is more subtle and is due to the fact that e~(o~)_= l i m k ~  eM(k, oJ) # 1, 
because the bulk mode strength Cb -~ 1 in this limit. 
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Fig. 1. Surface loss function S(Q, tn) as a function of Qa and h~o for aluminum spheres of radius 25 ,~, in 
vacuum. The volume fraction of spheres is f=0.1 and ~pz = 100. 

Finally, we substitute the results for S(Q, og), shown in Fig. 1, into Eq. (12) and 

perform the kx integration to get ~(E). In Fig. 2 we plot S(E)  as a function of E 
for three different values of  the impact parameter, z0 = 0.1, 5, and 10. One can clearly 

see two peaks, which correspond, obviously, to the low- and high-energy peaks of 

S(Q, o~). Although the strength of both peaks decreases as z0 increases, it is also clear 

that the strength of the high-energy peak decreases faster; for z0 = 10, the strength of 
the high-energy peak is already very small in comparison with that of  the low-energy 

peak. 
The question about the physical reality of  the high-energy peak in E(E) still remains 

open. It is possible that this high-energy peak is an artifice of  the SCIB model, which 

abruptly terminates the system at the surface plane z - -0 .  It can be shown that for the 
SCIB model, the sum rule in Eq. (8) has the value 1, corresponding to a constant 

volume fraction f ( z ) =  f for z < 0. This is not physically possible for a half-space 
containing spheres of  finite radii, where f ( z )  must be a continuous function of z, 
and cannot jump discontinuously from a constant value inside the system to zero 
outside, assuming that the spheres cannot actually penetrate into the region z > 0. In 
the unbounded system assumed for the SCIB model f is indeed constant, but the z = 0 
plane will cut through the interiors of  the spheres near the surface in an unphysical 
way. However, it still has not been proven that this is the reason for the appearance 
of the high-energy peak. 
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Fig. 2. Energy loss probability -~(E) as a function of E for 25 ,~, aluminum spheres, f = 0 . 1  and three 
different values of the impact parameter z0. 

3.3. Exact formal solution for spheres 

In this section we derive an exact solution for the surface response function, in 
the form of the spectral representation in Eq. (5), of  spherical inclusions with a local 

dielectric function el contained in a matrix with local dielectric function e2 = 1. The 
spheres have radii ai and the centers are at arbitrary fixed locations ri, such that no 
sphere penetrates into the region z > 0. This exact solution will be a useful starting 

point for various approximations, and illustrates nicely how the sum rule in Eq. (8) is 

satisfied. 
We first expand the external potential in Eq. (3) about the sphere whose center is 

at ri in a multipole series 

VeXt(r)= Z Vl~i(rl)1Y1m(O',~o'), (16) 
Im 

where r1= r -  ri. For brevity, the expression for the coefficients Vu~ i will not be given 
here. The induced potential acting on sphere i which arises from the multipole moments 
ql'm'j on all other spheres j can similarly be written in a multipole series 

vind(r)= Z Vl]mi(F')l YIm(Ot'~Ot)' ( 1 7 )  

Im 
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where the coefficients V/li are given by 

~l~m'J ~ , 
v i i i =  Z IJlmi q' mj .  (18) 

l~ rn'j 

R l 'm t j  
An expression for the quantitities Olm i appears m [2]. In the linear approximation, 
the multipole moment qlmi is proportional to the Im multipole coefficient of the total 
potential acting on sphere i: 

2 l + 1  
q l m i -  4~l i (Flemi  + viii),  (19) 

~zi being the /-polarizability of sphere i. We remove the common phase factor e iQx' 
from the multipole moments by defining qlmi = tz,,i e iQx~, and solve Eqs. (18) and (19) 
using the procedure described in Ref. [2]. This is an eigenfunction expansion of the 
Green function, which appears in the form of a spectral representation. Having solved 
for the multipole moments on all spheres, we find the induced potential and calculate 
its two-dimensional Fourier transform using Eq. (6). The result is of the form 

vg'a ( Q, z ) = - ~ Flmitmie -Qz, z > 0 ,  (20) 
Imi 

from which g(Q, co) is found using Eq. (4). 
The surface response function g(Q, co) appears in the form of the spectral represen- 

tation (5). The mode positions ns are eigenvalues of the Hermitian matrix 

Hl ' rn ' j  o 1 /llta2l+la2l,+l oiQ(xl_xi)Rl,m, j (21) 
lmi = nl (~11' •mm' (~ij + ~ V i j ~ ~lmi , 

with n~' = l / (2l  + 1 ), whereas the mode strengths ds are given by 

4~ " - '  v/ll 'a~ l+la21,+l O l + ` ' - '  Ulmi, s ~s , l 'm ' j  " ds = f L  2 Z l m m fill'ram' ' " l [ - - I  eQ(z'+zD 

Imi, l 'm' j  

(22) 

Here, Utmi, s is the unitary matrix which diagonalizes the matrix H in Eq. (21) and 
flzz'~m' = [(2l + 1)(2/' + 1)( /+  m)!(l  - m)!(l '  + m')!(l '  - m')?] -I/2. 

The sum rule (8) is a convenient test for the validity of the above result. The filling 
fraction f ( z )  that appears in the sum rule is the fraction of the area L 2 that is occupied 
by the spheres in the plane at the given value of z. For a single sphere i with radius 
ai and center at 2"i, one has fi(z) = (rc/L 2 ) [a2i - (z - z  i )2] for (z i --  a i ) < Z < (Zi + ai ) and 
j}(z)  = 0 for z outside this range. The filling fraction for all spheres is f ( z )  = ~-],i fi(z); 
inserting this function into Eq. (8), and doing the integration over z, one finds 

27rQ 
Z d, = f L  2 ~ l(}. i)e 2Qzi , (23) 

s i 

where 

l()~i)=4a3{Cosh2i sinh 2i ~ \ ~ ~ ] ,  (24) 
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with 2i = 2Qai. On the other hand, one can calculate Y~-s ds from Eq. (22) using the 
completeness relation for the U matrices, and show that the result is the same as 
Eq. (23). 

Finally, it is useful to examine the relation between the density of sphere centers p(z) 
and the filling fraction f ( z ) ,  for a system where all spheres have the same radius a. 
For an unbounded medium, with p and f constant, one has f =  (4~a3/3)p. However, 
for the system with a surface at z = 0, 

z + a  

f ( z )  = ~ f p(z') [a 2 - (z' - -  2 " )  2 ]  dz' .  
a - - a  

(25) 

Here, one must have p ( z ' ) = 0  for - a < z ' < 0  since no sphere can penetrate into the 
region z > 0 .  Also, f ( z )  must fall continuously to 0 at z = 0  for any reasonable distri- 
bution p(z), as we pointed out in Section 3.2. 

The formal theory developed above may serve as a reliable framework for the in- 
troduction of different kinds of approximations or the performance of numerical calcu- 
lations. For example, the mean-field approximation is obtained by replacing Hl'm'J in 

" ' l m i  

Eq. (21) by its configurational average. However, this is not a simple calculation, since 
performing this configurational average requires detailed statistical information about 
the pair correlations between spheres near the nominal surface of the system. 

3.4. Impedance transfer method usinq e(z) 

An approximate solution for the surface response of the random system of spheres 
in a half-space can be found by keeping only dipole ( / =  1) terms and neglecting 
correlations between spheres. Thus, all effects of the finite size of the spheres and 
correlations between spheres on the Q-dependence of 9(Q, oo) are disregarded, leaving 
only the effects of the z dependence of the filling fraction f ( z ) .  It can be shown that 
when these approximations are made, the exact theory of the previous section reduces 
to a problem in which the system of spheres is replaced by a continuous effective 
medium with a z-dependent dielectric function e(z) given by the expression for the 
Maxwell-Garnett effective dielectric function with the constant filling fraction replaced 
by the z-dependent filling fraction f ( z ) ,  

e ( z ) -  1 /21 - -  1 
g(z) +--""---2 -- f ( z )  ~1 +-~--2 " (26) 

This continuous medium problem is most easily solved using an impedance trans- 
fer method. One imagines breaking the medium into many thin layers and defines 
an impedance W(z)=iDz(z)/Ex(z), with Dz(z)=e(z)Ez(z).  Using the fact that the 
potential in each layer (in which e(z)~const . )  is of the form V(z)=[C1 exp(Qz)+ 
C2 exp(-Qz)]exp(iQx) one can derive an impedance transfer equation which relates 
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the values of  W(z) at the two sides of the layer, z = z l  a n d  z - - z 2 ,  

W(z2 . . . .  [e(~) + W(Zl )]e 2Q(z:-z~) _ [e(~) - W(Zl )] (27) 
) = ~ t z ) [ - - ~ +  W(z~)le2~z~_z,~-- £ [~(~) W(z~)] ' 

with ~ = (zl +z2)/2. Sufficiently far into the material that f (z)= f = const, for z ~<z0, the 

starting value of W is W(zo)= e(z0). Then, since W(z) is continuous at the interfaces 

between layers, Eq. (27) is used iteratively to find W at the each interface, starting 

from the known value at z =z0 and ending at the surface, where its final value is 
W(0). The surface response function is then given by 

W ( 0 ) -  1 
9(Q,~o)- (28) 

w(0)  + 1 

For a system with a large number of spheres in the area L 2, the surface modes are 

numerous and closely spaced, so the discrete modes with strengths ds can be replaced 

by a continuous spectral function D(n), and the spectral representation (5) becomes 

9(Q'c°)=- f / D(n)u-n dn. (29) 

This is also the appropriate form for the spectral representation that is found using the 

impedance transfer method. The spectral function D(n) can be found by calculating 

9(Q,~o) from Eq. (28) not as a function of el(m), but as a function of the spectral 
variable u=n'+ i~. Then Eq. (29) gives D(n~)= [2/(~f)]Img(Q,u ) in the limit as 
f i ~ 0 .  

We have used this procedure to calculate D(n) for a simple filling fraction profile 
f(z) that is derived by assuming that the density of  spheres p(z)= p = const, for z < - a  
and p(z) = 0 for z > - a. Eq. (25) gives f(z) = 3f[(z/a)2 + (z/a)3/3] for 0 > z  > - 2a, 

and f (z)= f for z < - 2 a ,  where f =  ]z~aSp. This filling fraction profile f(z) increases 
smoothly from the value 0 at the surface (z = 0) to the value 0.4 at z = - 2a. Fig. 3 

shows the spectral function D(n) for the selected values f =  0.4 and Qa = 0.05, 0.2,1.0, 

and 5.0. The behavior of D(n) can be understood by noting that D(n) for a constant 
1 ~_1 value of f would have a single sharp peak located at ns = ½(1 + ~ f ) ,  i.e., ns g 

for f =  0 and ns = 0.4 for f = 0.4. For the largest value of Qa the external potential 
samples only the outermost region where f ( z )~  O, and D(n) is indeed quite sharply 

1 peaked at n ~ 7" For Qa = 0.05, the external potential samples deeply into the system, 
where f =  0.4, and D(n) is quite sharply peaked at the corresponding value n = 0.4. 
For intermediate values of Qa the entire surface profile f(z) is sampled, so the spectral 
function is much broader. 

It can be shown that the spectral function found using the impedance transfer method 
satisfies two sum rules: a zeroth moment sum rule 

0 

D(n) dn= 7 -  f(z) e 20z dz, (30) 
-- cX) 
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Fig. 3. Spectral function D(n) as a function of  n for Qa=O.05,  0.2, 1.0, and 5.0, with a filling fraction 
profile f ( z )  discussed in the text. 

which is the same as the exact sum rule (8), and a first moment sum rule 

0 

f J f(z,]e2 Zaz.  3l) 

The sum rule (31) is not exact, since it would change if the effects o f  finite sphere 

sizes and correlations between spheres were included. 

4 .  I n f i n i t e  s y s t e m  w i t h  a r b i t r a r y  g e o m e t r y  

In this section we consider an unbounded system consisting of  a mixture of  two 

components with local dielectric functions el(co) and e2(co), and arbitrary geometry. 
Calculations of  electron energy loss by objects of  various shapes have been performed 

by Ouyang and Isaacson [9,10], using a method similar to ours, but those papers 

emphasized scanning transmission microscopy, where the electrons are imagined to 
move classically with constant velocity on a well-defined path. In our theory we as- 

sume that the electrons travel randomly through the system, which appears homoge- 
neous on some length scale, and can therefore be described by an effective dielec- 
tric function ~.M(k, og). Just as for the system of  spheres, ~M(k, co) can be written as 

a spectral representation o f  the form (1), with mode strengths that satisfy the sum 
rule (2). 
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4.1. Separation of bulk and surface modes 

The method which we shall present allows us to find the bulk mode strength Cb 
independently of the surface modes, and then, having solved the bulk mode problem, 
to find the surface mode positions ns and strengths Cs. For the sake of simplicity, 
we will write the dielectric function el(~o) as e and take e2(o9)= 1. The external po- 
tential is vext(r)= Iio e ikz and associated with this, there is an external charge density 
peXt(r) = Poe ikz, with P0 = k 2 V0/4n. The total potential V(r) is the sum of the external 
and induced potentials, V( r )=  vext(r)+ vi"d(r), where vi"d(r) can be expressed in 

terms of its charge sources, a volume charge pi"d(r) inside medium 1 and a surface 
charge density aind(r) on the interface of the two media: 

pind(r') a(r ' )  d " ' ,  vina(r)= f Tys- dv' + / l _¢l ~ (32) 
1 

where the subscript 1 signifies that the volume integral is to be taken over region 1, 
which contains the dielectric medium 1, and the surface integral is over the inter- 
face between the two media. Using the identity 1/ (u-  1 ) = ( 1 / e -  1), we can write 
pind(r) =peXt(r)dPl(r)/(u--1), where ~ l ( r ) =  1 (0) inside (outside) medium 1. We also 

have a ( r ) = ( 1 / 4 n ) ( e -  1)E(r) .  n(r), where E ( r ) = -  VV(r) is to be calculated just 
inside the surface of medium 1 and n(r) is a unit vector pointing outward from the 
surface of medium 1. 

The key step in separating the bulk mode, which appears as the term containing 
1/(u-  1) in the spectral representation (1), is to write the surface charge density as 
the sum of two terms, a(r)=a°(r) / (u-  1 ) +  al(r).  Here a°(r), the surface charge 
density associated with the bulk mode, is independent of u, and al(r),  which can 
depend on u, is associated with the surface modes. After doing some algebra we find 
separate equations for the bulk mode, 

I f  peXt(r~)V Ir -r~l  " n(r)dv~ + f - 
a0(r) = 1 1 0 t 1 

a ( r )Vir_---~l  . n ( r )dS '  (33) 

and the surface modes, 

l/ 1 .n(r )dS ,=lEext (r ) .n(r )+aO(r) .  (34) U °'l(r) - ~ ° l ( r ' )  V Ir -- r'~ 

If medium 1 consists of isolated inclusions, the bulk mode equation (33) is equivalent 
to an electrostatics problem in which each inclusion is a vacuum-filled hole containing 
the external charge density peXt(r), cut into a perfectly conducting matrix 2. The surface 
charge density a°(r) is exactly what is needed to make the surface of each hole an 
equipotential ( V = 0). Solving the equivalent problem, one would write V(r) = vext(r)+ 
Vi"d(r), where vext(r)= Voe ikz, and find the potential Vi"a(r) (satisfying Laplace's 
equation) which makes V( r )=  0 at the surface. Thus, the bulk mode excitations are 
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confined completely to the interior of the medium 1 inclusions, so the bulk mode 
strength depends on the sizes and shapes of the inclusions but not on their positions. 

The surface mode equation (34) can be solved for trl(r) by converting the dS ~ 
surface integral into a sum over discrete surface areas AS(rj). The solution can be 
written in terms of a Green function containing denominators u -  ns, where the mode 
positions ns are related to eigenvalues of the interaction matrix Rij = V ( 1 / I r i -  r j l ) .  
n(ri) AS(rj), and the numerators are related to eigenvectors of this matrix. We can gain 
some physical insight into why Eq. (34) involves only surface modes by thinking of the 
two terms on the right-hand side of the equation as forcing terms for the surface charge 
density. The source of the first term, the normal component of E ext, is the external 
charge density pext(r)= Po e ikz, which is present in both media. The term a°(r) on the 

right-hand side cancels the part of the first term that is produced by the external charge 
inside medium 1, so the effective driving charge on the right-hand side is the external 
charge that resides outside medium 1, and such a charge cannot excite the bulk mode 
in this medium. 

The effective dielectric function of the system is calculated from 1/e~t(k,~)= 1 + 
pind(k)/po, where pind(k) is found using an inverse Fourier transform of the bulk and 
surface charge densities, pind(k ) = v- l [  f pind(r) exp(- ikz)  dv + f a(r)  exp(- ikz)  dS], 
v being a large periodic volume. The result is 

[ 1/ 11 +_1/ ~M(k, ~o ~ - 1 +  f + - -  e-ik~ ~°(r)dS e-ik~ crl(r)dS. 
pov pov 

(35) 

This is in the desired form of a spectral representation; the second term is bulk 
mode contribution f C b / ( u -  1) and the third term, the surface mode contribution 

f E s  Cs/(U - ns). 
We illustrate an application of this theory by calculating the bulk mode strength Cb 

for a rectangular parallelepiped as a function of kc, where the wave vector k is in the 
z direction and the parallelepiped has dimensions a, b, and c in the x, y, and z direc- 
tions, respectively. It is easiest to use the point of view that the potential must satisfy 
Poisson's equation with the charge density peXt(r)=poeikZ inside the parallelepiped, 

and with the boundary condition V = 0 on the surface. To solve this electrostatics 
problem it is convenient to use a Fourier sine transform method described by Press 
et al. [11]. 

The results of the calculation are shown in Fig. 4, where the bulk mode strength 
is plotted as a function of kc for five different shapes, which are specified by three 
integers proportional to the lengths (abc). The curve marked (co ~ 1) is an infinite 
slab of thickness c. The basic trend of these curves is that Cb is an increasing function 
of kc that rises more slowly as the shape becomes more elongated in the field (z) 
direction. At k = 0, Cb = 0 for any isolated inclusion because of complete cancellation 
of the two terms inside the square brackets in Eq. (35): the quantity f ,  which is the 
Fourier transform of  the bulk induced charge inside the inclusion, cancels the second 
term, which is the Fourier transform of the induced surface charge. As k increases, this 
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Fig. 4. Bulk mode strength Cb as a function of kc for rectangular parallelepipeds. The three integers that 
specify the shape of a parallelepiped are proportional to a, b, and c, the lengths of the sides in the x, y, 
and z directions, respectively. 

cancellation is no longer complete, but a partial cancellation is more easily attained 
for an enlongated inclusion because of the induced charge on the side surfaces of the 

inclusion. 

5. Conclusion 

We have described several approaches to the theory of electron energy-loss spec- 

troscopy of inhomogeneous systems, both unbounded in three dimensions and confined 

to a half-space. The energy-loss spectrum can be expressed in terms of a bulk or 

surface response function, and we have been able to write these response functions 
in the form of spectral representations. What is still missing is a correct inclusion of 

a configurational average, which would yield a relation between the mode positions and 
strengths and the spatial correlations in the system. These problems will be addressed 

in future work. 
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