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Energy loss of electrons traveling parallel to the interface of a semi-infinite granular composite

Carlos I. Mendoza and Rube´n G. Barrera
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, 01000 Me´xico D.F., Mexico

Ronald Fuchs
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~Received 15 August 1997!

The energy loss of an electron traveling above a semi-infinite granular composite consisting of randomly
located spherical inclusions is investigated. We express this loss in terms of a surface response function which
is then calculated using an effective medium theory for the bulk dielectric function of the system. Three
different models are analyzed. The first two models correspond to local and nonlocal versions of a truncated
bulk, and the third one includes the effects of the distribution of the spherical inclusions near the surface. We
find that a correct treatment of this distribution is necessary in order to get meaningful results.
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I. INTRODUCTION

Electron energy-loss spectroscopy of high-energy e
trons is becoming an important tool for structural analysis
inhomogeneous materials. Extremely narrow beams of e
trons with energies of the order of 100 KeV are produced
scanning transmission electron microscopes~STEM! and
their energy loss is measured after passing through a
sample.1,2 Here we are interested in granular materials and
the excitation of valence electrons, which means ene
losses from a few eV to less than 100 eV. In this ene
range a dielectric approach becomes appropriate and the
cept of an effective medium with an effective dielectric r
sponse has been recently developed and successfully ap
to a model of identical spherical inclusions in an otherw
homogeneous matrix.3–5 In this theory the energy-loss func
tion is given in terms of an effective nonlocal dielectric r
sponse which is then calculated in the mean-field approxi
tion. Here we pose a related problem: the calculation of
energy loss of electrons traveling close and parallel to
interface of a semi-infinite system of random spherical inc
sions. Since the trajectories of electrons can be contro
very precisely, it is now possible to direct a narrow beam
electrons so it travels a few angstroms away from the sur
of a flat sample. This experimental arrangement offers a
tional flexibility compared to one where the electron be
passes through the interior of the sample and minimizes
sible damage of the sample by the electron beam, but it
quires an analysis of the sensitivity of the experiment to
surface structure. The calculation of the probability of ele
tron energy loss in this experimental setup has already b
done for an ordered system of spheres located in a sem
nite cubic lattice.6,7 Here we deal with a system of rando
spherical inclusions, and our purpose is to analyze, in
same experimental arrangement, the effects of volume f
tion, sizes, and spatial distribution of the inclusions. O
treatment uses the effective bulk dielectric respo
function.3–5 The paper is organized as follows: In Sec. II w
develop the formalism for the calculation of the energy lo
in terms of a surface response functiong(Q,v) for longitu-
570163-1829/98/57~18!/11193~11!/$15.00
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dinal fields, and give an expression forg(Q,v) in terms of a
surface impedance. In Sec. III the surface impedance
three different models is calculated. The first two mod
correspond to local and nonlocal versions of a trunca
bulk, where the surface impedance can be expressed in t
of the bulk dielectric function. The nonlocal version
known in the literature as the semiclassical infinite barr
~SCIB! model. This model is applied to the system of ra
dom spherical inclusions and results for the surface respo
function as well as the energy-loss probability are presen
and discussed. The third model begins with the bulk nonlo
dielectric function, just as in the SCIB model, but the diele
tric function is modified in such a way that the surface
sponse function is consistent with a smooth surface pro
Finally, in Sec. IV we present our conclusions.

II. FORMALISM

Consider a half space filled with a system composed o
collection of identical spherical inclusions of radiusa lo-
cated at random and immersed in an otherwise homogen
matrix; the other half space is vacuum. On the vacuum s
a high-energy electron travels on a classical rectilinear
jectory parallel to the interface at a nearly constant speedv I .
Our objective is to calculate the rate at which work is do
on the electron by the induced electric field. Here we w
neglect the effects of the magnetic field carried along by
traveling electron; this is known as the nonretarded appro
mation and it is valid to order (v I /c)2, wherec is the speed
of light.

Our first assumption is that if the system were unbound
it could be described by an effective~or macroscopic!, non-
local, longitudinal dielectric functione l(k,v), derived by
Barrera and Fuchs.3 In this work it was assumed that th
system appears homogeneous at a length scalel @a, al-
though it is highly inhomogeneous at a length scale of
order ofa.

The effective inverse nonlocal dielectric function is d
fined by
11 193 © 1998 The American Physical Society
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1

e l~k,v!
511

^f ind~k,v!&

fext~k,v!
; ~1!

this relates the average of the potential^f ind& induced in the
system to the external potentialfext, where the averagê•••&
is taken over the macroscopic length scale. Bynonlocalone
means thate l(k,v) depends not only on the frequencyv of
the exciting potential but also on its wave vectork. For an
unbounded, macroscopically homogeneous and isotr
system, the dielectric function depends on the magnitudk
of the wave vector, not on its direction, and the stopp
power of the electrons is directly related to Im@1/e l(k,v)#.8

It has been shown3 that for the random system of sphere
1/e l(k,v) can be written in the following spectral represe
tation:

1

e l~k,v!
5

1

e2
F11 f S Cb~k!

u21
1(

s

Cs~k!

u2ns
D G , ~2!

wherek5uku and

u5
21

e1 /e221
~3!

is the spectral variable, which depends one1 and e2, the
local, frequency-dependent dielectric functions of t
spheres and the matrix, respectively. The quantityf
5(N/V)4pa3/3 is the filling fraction of the spheres, wher
N is the total number of spheres, andV is the total volume of
the system. By spectral representationwe mean that
1/e l(k,v) is written as a sum of terms with simple poles, a
these poles are related to the excitation of the normal mo
of the electric field within the system. In particular, the po
at u51 and u5ns have strengthsCb and Cs , and corre-
spond to the excitation of the bulk mode in medium 1 a
interfacial modes, respectively.9 Furthermore, the strength
Cb andCs fulfill the sum rule

Cb1(
s

Cs51, ~4!

which means that the sum of all mode strengths is conser
or alternatively, that the strength of the bulk mode is redu
due to the presence of the interface, a fact also known as
Begrenzungeffect.

Another appealing feature of the spectral representa
given in Eq.~2! is that the properties of the material appe
only in the spectral variableu, while the strengths of the
poles depend onk and the geometry of the system. In th
mean-field approximation the information about the geo
etry of the system is given by two statistical parameters:3 the
filling fraction f of spheres and their two-particle distributio
function r (2)(R12), where R12 is the distance between th
centers of two spheres. Ifr (2)(R12) takes account of only the
excluded-volume correlation, that is,r (2)(R12)51 for R12
>2a and 0 otherwise, it can be shown3 that the strengths o
the modesCb andCs and the location of the interface mode
ns become functions ofka and are given by simple expres
sions, shown in detail in Appendix A. Here we need on
note that
ic

g

,

es

d

d,
d
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r

-

lim
ka→`

Cb~ka!51 ~5a!

and

lim
ka→`

Cs~ka!50. ~5b!

This means that in the limit of either large spheres or la
wave vectors only the bulk mode will be excited.

Now we turn to the calculation of the energy loss of
electron traveling parallel to the planar interface of a se
infinite system. First we define a coordinate system by tak
the y axis at the interface and parallel to the electron traj
tory and thez axis pointing towards the system. In this c
ordinate system the electron trajectory is given byx50, y
5v I t, andz52z0, wherez0 is called the impact paramete
If we assume that the system has translational symmetr
the x and y directions, the probability per unit path lengt
per unit energy, of scattering with energy lossE, is given by
~see Appendix B!,

F~E![
d2P

dl dE
5

1

a0EI
J~E!, ~6!

wherea0 is the Bohr radius,EI is the kinetic energy of the
incident electron, and

J~E!5
1

pE0

`e22Qz0

Q
Im g~Q,v! dkx , ~7!

with E5\v and Q5Akx
21v2/v I

2. The quantityg(Q,v),
known as the surface response function, is the complex
flection amplitude which relates the (Q,v) Fourier compo-
nents of the induced and external potentials:

f ind~Q,v!52g~Q,v!fext~Q,v!. ~8!

Here, the Fourier componentf ind(Q,v) of the induced po-
tential is related tof ind(r,z;v) by a two-dimensional Fou-
rier transform

f ind~r,z;v!5E d2Q

~2p!2
f ind~Q,v! eiQ•r1Qz; 2z0<z<0,

~9!

wherer5(x,y) is a two-dimensional vector parallel to th
interface, andQ5(kx ,ky) is a two-dimensional vector ink
space. Similarly, the external potentialfext(Q,v) is defined
by

fext~r,z;v!5E d2Q

~2p!2
fext~Q,v! eiQ•r2Qz; 2z0<z<`.

~10!

The potentials f ind(r,z;v) and fext(r,z;v) satisfy
Laplace’s equation in the regions indicated in Eqs.~9! and
~10!, since the charges that are sources of these potentia
outside these regions. The difference of sign ine6Qz in these
two equations arises because the induced and exte
charges are located in the regionsz>0 andz<z0, respec-
tively. Equation~7! is often written in terms of the surfac
loss function, defined asS(Q,v)[ Im g(Q,v).
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In the following derivations we will takeQ to lie in thex
direction, which simplifies the notation and is permissa
since we are assuming that the disordered system is inva
with respect to rotations about thez axis, sog(Q,v) de-
pends only on the magnitude ofQ, not its direction. By
taking Ex(Q,z,v) and Dz(Q,z,v) as the two-dimensiona
Fourier transforms ofEx(r,z,v) and Dz(r,z,v) and de-
manding their continuity across the interface (z50) one can
expressg(Q,v) as

g~Q,v!5
ZV2Z~Q,v!

ZV1Z~Q,v!
, ~11!

where

Z~Q,v![ i
Ex~Q, z501,v!

Dz~Q, z501,v!
~12!

plays the role of a surface impedance of the medium
ZV51 is the corresponding surface impedance of vacuum
is not surprising that the expression forg(Q,v) in Eq. ~11!
has the characteristic form of a reflection amplitude beca
one can think offext(r,z;v) andf ind(r,z;v) in the region
2z0<z<0, as ‘‘incident’’ and ‘‘reflected’’ potentials, re-
spectively.

III. MODELS

In general, the calculation ofZ would require a precise
model for the bulk and surface region of the system toge
with the complete solution for the fields. Nevertheless, th
are two simple models in which it is possible to obtain
expression forZ in terms of the bulk dielectric respons
functions of the system. These are the local limit and
semiclassical infinite barrier model~SCIB!. Both models
possess a sharp boundary at the surface and they ca
regarded as local and nonlocal variants of a truncated b
Here we will apply them to the system of random spheri
inclusions described above in order to analyze their res
and significance. We will also use a modified SCIB mod
which takes account of the actual sphere density profile n
the surface more accurately.

A. Local limit

In the local limit one assumes that the bulk longitudin
dielectric response of the systemeB(k,v) is independent of
k; i.e., one replaceseB(k,v) by eB(v)5eB(k50,v), for z
>0. In this case the surface impedance is

Zloc~v!5
1

eB
, ~13!

and the substitution of Eq.~13! into Eq. ~11! yields

g~v!5
121/eB

111/eB
5

eB21

eB11
. ~14!

Now, substitutingg(v) into Eq. ~7! and performing the in-
tegration overkx , one gets the well-known local result10
e
nt
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F~E!5
1

a0EI
J loc~E!, ~15!

where

J loc~E!5
1

p
K0S 2z0

v I /v D Im FeB~v!21

eB~v!11G , ~16!

with K0 the modified Bessel function of order zero. Th
argument ofK0 establishes the characteristic lengthv I /v
which determines approximately the maximum value of i
pact parameter for which the probablility of energy loss
appreciable. For the system of random spherical inclusio

1

eB~v!
5

1

e l~k50,v!
5

1

e2
F11 f

1

u2n1
G , ~17!

with n15(112 f )/3. Equation~17! corresponds to the
Maxwell-Garnett bulk dielectric function which takes a
count only of the dipolar modes excited in each sphere,
whose shortcomings were already discussed in Ref. 3. Th
dipolar modes are driven by surface charges induced at
interface of each sphere and their coupling gives rise t
collective dipolar mode known as the dipole interface pl
mon. The location of this mode corresponds to the pole
Eq. ~17! located atu5n15(112 f )/3.

Applying this model to a concrete example, we have c
culated the energy-loss probability functionJ loc(E) for a
half space of aluminum spheres in vacuum. In this casee2
51 ande1(v) is given by a Drude dielectric function

e1~v!512
vp

2

v~v1 i /t!
, ~18!

wherevp is the bulk plasma frequency andt, the relaxation
time coming from dissipation processes, is considered a
parameter which controls the width of the excitation pea
For aluminum\vp516.0 eV, and we takevpt5100. The
dotted line in Fig. 1 shows the results of this local calculati
for two different values of the filling fraction,f 50.15 and
0.5, and two values of the impact parameter,z051 and 10 Å.
In all cases the energy-loss spectrum is a single sharp p
which is shown reduced in height by the factorN given in
the (3N) legend, in order to fit the results of subseque
calculations on the same plot.

This peak arises from the dipole interface-plasmon ex
tations of the system of aluminum spheres in vacuum
simple expression for the position of this peak can be fou
by settingt5` in Eq. ~18!. One can see from Eq.~16! that
in the half space the resonance frequency of the dip
mode, which we denote byvs , is determined by the condi
tion eB(v)521. From Eq.~17! the corresponding pole in
the spectral variableu is ns5(11 f /2)/3 and the resonanc
frequency is vs5vpAns5vpA(11 f /2)/3. These results
show that the dipolar mode frequencyvs increases from
vp /A3 to vp /A2 as f increases from 0 to 1. One readil
finds that the energy of the dipolar excitation for the h
space is\vs59.6 eV for f 50.15 and\vs510.3 eV for f
50.5, values which agree with the positions of the loc
peaks in Fig. 1. The single peak inJ loc(E) is relatively
narrow, since the width of the peak comes solely from
dissipation process included in the Drude dielectric respo
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FIG. 1. ~a! Energy-loss probability functionJ(E) as a function of the energy lossE, for a filling fraction f 50.15 and an impact
parameterz051 Å. The dotted line corresponds to the local model, the dashed line to the SCIB model, and the solid line to the m
SCIB model. The notation (3N) attached to a curve in these figures indicates that the values shown on the ordinate axis for that cur
be multiplied by the factorN. ~b! The same as in~a! but for z0510 Å. ~c! The same as in~a! but for f 50.5. ~d! The same as in~c! but for
z0510 Å.
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e1(v) of the spheres through the parameter 1/t. It is also
evident that the sphere radius does not enter into this l
model.

B. Semiclassical infinite barrier „SCIB… model

1. Description of the model

The SCIB model has traditionally been applied to d
scribe the response of a semi-infinite electron gas.11 In this
model one is able to calculate the surface impedanceZ in
terms of a known bulk nonlocal dielectric responseeB(k,v).
The idea is to replace the system in a half space by an
bounded system described byeB(k,v). Then one looks for
solutions of Maxwell’s equations for the electric and d
placement fields with specular symmetry about the interf
plane, i.e.,Ex(x,y,z,v)5Ex(x,y,2z,v) and Ez(x,y,z,v)
52Ez(x,y,2z,v), with similar equations forDx and Dz .
One assumes that the fields with physical reality are thos
only one side of the interface, the side where the actual
tem is located, and then one matches these fields with
actual fields in the vacuum using the continuity ofEx , Ey ,
andDz . This procedure tacitly assumes a model for the
terface, which in the case of an electron gas can be in
al

-

n-

e

on
s-
he

-
r-

preted as if the surface were acting as an infinite poten
barrier causing the specular reflection of the electrons,
neglecting the quantum interference terms; this is the or
of the termsemiclassical infinite barrierand also of the term
specular reflection modelwhich is often used. This proce
dure yields11,8

Z~Q,v!5
Q

pE2`

1` dkz

~Q21kz
2!eB~k,v!

. ~19!

Here we apply this model to the system of random spher
inclusions by usinge l(k,v) given in Eq. ~2! as the bulk
nonlocal dielectric response functioneB(k,v). In Eq. ~19!,
the magnitude of the wave vector isk5AQ21kz

2. The
electron-energy-loss functionJ(E) is then readily obtained
by using Eqs.~11! and ~7!.

Before presenting the results of this model we will an
lyze the behavior of the fields and the polarization charge
the neighborhood of the interface. The boundary conditio
of the fields at the interface demand the continuity ofEx ,
Ey , andDz , and it can be shown12,13 that

Ez~Q,z502,v!5e`~v! Ez~Q,z501,v!, ~20!
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whereEz(Q,z,v) is the two-dimensional Fourier transform
of the electric fieldEz(x,y,z,v) with respect tox andy, and

e`~v!5 lim
k→`

e l~k,v!, ~21!

is known as the background dielectric function of the syste
In the usual model of a metal, one can write the total diel
tric function as the sum of a contribution from the condu
tion electrons, which goes to zero ask→`, and a
k-independent contribution from core electrons. Therefo
the core electrons are the source of a local background
electric functione`.1.

In our system of random spherical particles, the origin
the background dielectric function is quite different. By com
bining Eqs.~2!, ~3!, and~5a!, and~5b!, we have

1

e`~v!
5

f

e1
1

12 f

e2
. ~22!

In the absence of the spheres, that is, in the limitf→0, one
getse`5e2, which is what is expected, sincee2 plays the
role of a local background for the system of polarizab
spheres. When spheres are present (f .0), a term f /e1 ap-
pears in Eq.~22!. This term arises from the bulk mod
strengthCb(k→`)51 in Eq. ~2! and it corresponds to a
bulk plasmon resonance of the spheres. One can also s
that when there is a background dielectric functione`Þ1, a
surface charge densitys ind(Q,v) at z50 appears:

s ind~Q,v!52
@e`~v!21#

4p
Ez~Q,z501,v!. ~23!

In addition to this surface charge, there is also a volu
distribution of charge due to the nonlocal nature ofe l(k,v)
for finite k.

2. Results and discussion

Here we present results for the system of random sph
cal inclusions within the SCIB model. The bulk dielectr
responsee l(k,v) is taken in the mean-field approximatio
and we consider only the excluded-volume correlation
tween spheres. In this caseCb , Cs , andns are functions of
ka and are calculated using the expressions given in E
~A1!–~A4!. The calculation is performed by truncating th
multipolar sums to a maximum valueL56. Therefore the
locationsns and the strengthsCs of the first six interfacial
modes are obtained by finding the eigenvalues and eigen
tors of the 636 matrix Hll 8 given by Eq.~A4!. The rest of
the modes~with s.6) are taken into account by including a
additional ‘‘effective’’ mode whose locationneff and
strengthCeff are determined by sum rules, as shown in de
in Appendix C.

We again present results for a half space of alumin
spheres in vacuum, using the same Drude dielectric func
e1(v) for aluminum, Eq.~18!, as for the local model. In
addition to the bulk plasmon energy of 16.0 eV for the a
minum, there are two other important characteristic energ
the surface plasmon energy for a half space filled with a
minum,\vsp5\vp /A2511.3 eV, and the energy of the d
polar mode of an isolated sphere,\vd5\vp /A359.2 eV.
.
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In Fig. 2 we show a plot ofS(Q,v)[ Im g(Q,v) as a
function of Qa and\v for f 50.15 and 0.5, andvpt5100.
For Qa50 there is a single peak around 9.6 eV forf
50.15 and around 10.3 eV forf 50.5. Then, asQa in-
creases, two things happen:~i! a single, isolated peak a
about 16 eV starts to emerge, increasing in height and s
ing slightly towards lower energies, this shift being mo
pronounced forf 50.5 than for f 50.15, and~ii ! a multi-
peaked structure appears in the low-energy region: betw
8.5 and 11.0 eV forf 50.15, and between 7.0 and 12.0 e
for f 50.5. For both values off , this structure becomes
single peak whenQa.10; this occurs because we have r
placed the high-multipolar interfacial modes by a single ‘‘e
fective’’ mode. Nevertheless, since the actual multipo
structure becomes narrower asQa increases, the effective
mode approximation is adequate.

What is the physical origin of these peaks? One can id
tify the low-energy peaks with the usual surface modes co
ing from the term(Cs /(u2ns) in Eq. ~2!, while the high-
energy peak comes from the termCb /(u21) in Eq. ~2!.
First consider theQ→0 limit. In this limit the factor
1/(Q21kz

2) in Eq. ~19! is very sharply peaked atkz50, so

FIG. 2. ~a! Surface loss functionS(Q,v), as a function ofQa
and \v, for aluminum spheres in vacuum using the SCIB mod
and a filling fraction f 50.15. ~b! The same as in~a! but for f
50.5.
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only the local limit e l(k50,v) contributes. Equation~19!
gives Z51/e l(v), wheree l(v)[e l(k50,v)512 f /@u2(1
2 f )/3] is the Maxwell-Garnett dielectric response.3 Accord-
ing to Eq.~11! there is a pole ing(0,v), and a corresponding
peak inS(Q50,v)[ Im g(0,v) whenZ521 or e l(vs)5
21. For an electron gas this condition yieldsvs

5vdA11 f /2, wherevd5vp /A3 is the dipolar resonance o
an isolated sphere. For aluminum\vp516.0 eV, and so,
\vs59.6 eV for f 50.15, while for f 50.5, one has\vs

510.3 eV. Thus, in Fig. 2, the only peak observed inS(Q
50,v) can be identified with the surface mode of a flat
terface described by the corresponding Maxwell-Garnett
cal dielectric function, and this peak has the same locatio
the peak in the energy-loss function obtained using the lo
model. The shift in position and decrease in height of t
peak asQ increases is due to the nonlocal nature of
actual dielectric response.

The other peak which appears at finiteQ close to the bulk
plasmon energy is due to the presence of the aluminum
electric functione1(v) in the backgrounde`(v). The posi-
tion of this peak can be understood by first looking at
Q→` limit. Since k25Q21kz

2 this limit is equivalent to
k→`, so the nonlocal dielectric functione l(k,v) in Eq. ~19!
can be replaced by the background dielectric functione`(v).
Equation ~19! then givesZ51/e`(v). Therefore, a peak in
S(Q5`,v) will appear at an energy\vH such that
e`(vH)521. Now, settinge251 in Eq. ~22! and inserting
for e1 the Drude response of Eq.~18! with t→`, one gets
\vH5\vpA12 f /2, which starts from the bulk plasma fre
quency atf 50 and shifts to lower energies asf increases,
attaining the surface plasmon value\vs5\vp /A2 for f
51. For aluminum, one gets\vH515.4 eV for f 50.15 and
\vH513.9 eV for f 50.5. We identify this peak with the
high-energy peak which appears inS(Q,v) in Fig. 2, in the
limit Qa→`. This also explains why the redshift of th
peak is larger forf 50.5 than for f 50.15. In conclusion,
S(Q,v) has a two-peak structure for any finiteQ, but it has
a single-peak structure in two limiting cases:Q→0 andQ
→`. The small-Q limit corresponds to the excitation by
constant field and can be identified with the Maxwell-Garn
local approximation, and the large-Q limit corresponds to the
excitation of the background.

We now substitute the results forS(Q,v), shown in Fig.
2, into Eq.~7! and perform thekx integration to getJ(E). In
Fig. 1 we plotJ(E) as a function ofE for two values of the
impact parameter,z051 and 10 Å, and two different value
of the filling fraction, f 50.15 and 0.5. The sphere radius
taken asa525 Å. In contrast with the single peak inJ loc(E)
found in the local model, the SCIB model gives a broad a
rich multipeaked structure inJ(E). There is structure in a
low-energy region, from about 8 to 12 eV forf 50.15 and
from 6 to 13 eV forf 50.5, and also in a high-energy regio
below 16 eV. The width of this structure comes from bo
the nonlocal nature of the effective bulk response 1/e l(k,v)
and the dissipation process included in the Drude respo
e1(v). In other words, the profile ofJ(E) is closely related
to the low-energy structure and the high-energy peaks
S(Q,v). For both filling fractions the strengths of the pea
in the low-energy region are greater than the strengths
high-energy peaks. Although the strength in both regions
-
as
al
s
e

i-

e

tt

d

se

of

of
e-

creases asz0 increases, it is also clear that the strength of
high-energy peaks decreases faster. For example, foz0
510 Å, the strength of the high-energy peak is already v
small in comparison with that of the tallest peak in the lo
energy region. Also, the structure in both energy regio
becomes narrower as the filling fraction decreases. For
ample, forz0510 Å and f 50.15 the low-energy structure
becomes almost a single peak with small shoulders on b
the low- and high-energy sides.

C. Modified SCIB model

In this section we shall present evidence that the hi
energy peak which appears inS(Q,v) and in the energy-loss
spectrum should not appear when the electron trajector
outside the material and discuss why the abrupt termina
of the surface atz50 in the standard SCIB model gives th
high-energy peak. To remedy these shortcomings, we s
use qualitative arguments to construct a modified SC
model that is consistent with the actual smooth sphere d
sity profile near the surface, and for which the high-ene
peak is absent.

1. Abrupt termination of the surface in the SCIB model

We first discuss why the SCIB model corresponds to
abrupt termination of the surface atz50. One expects this to
be true from the qualitative argument that the SCIB mo
uses the bulk dielectric functione l(k,v) of an unbounded
random system of spheres, so the distribution of sphere
the same near the surface as it is deep within the sys
That is, the volume fraction of spheres has a constant valf
everywhere in the half spacez.0. This also can be shown
quantitively in the following way.

Consider a two-component system with arbitrary geo
etry, confined to the half spacez.0, which has translationa
symmetry in thex andy directions after configurational av
eraging. Let the local dielectric functions of the two comp
nents bee1(v) ande251, respectively, so the spectral var
able isu521/(e121). It has been shown5 that the surface
response functiong(Q,v) has a spectral representation

g~Q,v!52
f

2E0

1D~Q,n! dn

u2n
, ~24!

where f is the volume fraction of component 1 infinitely fa
from the surface, where it is presumed to have a cons
value. The spectral functionD(Q,n) is real and positive,
with a nonzero value only in the region 0<n<1. In Ref. 5
the following sum rule for the zeroth momentm0(Q) of the
spectral function is derived:

m0~Q![E
0

1

D~Q,n! dn5
2Q

f E
0

`

e22Qzf ~z! dz. ~25!

Here f (z), thez-dependent volume fraction of component
is the fraction of a plane surface at a given value ofz that is
within component 1. The ‘‘normalizing constant’’f /2 in Eq.
~24! has been chosen so thatm0(Q)51 for a half space with
a constant volume fraction of component 1,f (z)5 f for z
>0.
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Now, it can be shown that the spectral function cor
sponding to the SCIB model for the surface response fu
tion has zeroth momentm051. The proof involves expand
ing the surface response function in increasing powers ofu
and comparing theu21 terms. From Eqs.~24! and ~25! we
find g52 1

2 f m0 u211O(u22). On the other hand, Eqs.~2!
and ~4! give 1/e l511 f u211O(u22). The integral in Eq.
~19! can be done immediately, soZ511 f u211O(u22),
and Eq.~11! gives g52 1

2 f u211O(u22). Comparing the
u21 terms in these two expressions forg gives the desired
result,m051. Therefore the SCIB model is consistent with
constant volume fraction of spheresf (z)5 f in the half space
z.0.

Following the derivation in the preceding paragraph, b
using Eq.~2! before applying the sum rule in Eq.~4!, one can
show that the zeroth moment is the sum of separate co
butions from the bulk mode and the surface modes:

m05m0
~B!~Q!1m0

~S!~Q!51, ~26!

where

m0
~B!~Q!5

2Q

p E
0

`

Cb~k!
dkz

Q21kz
2

, ~27!

m0
~S!~Q!5

2Q

p E
0

`

(
s

Cs~k!
dkz

Q21kz
2

, ~28!

with k25Q21kz
2 . These equations will be used later for co

structing the modified SCIB model.
We now present some arguments which suggest that

high-energy peak in Figs. 1 and 2, which comes from
bulk mode termCb /(u21) in Eq. ~1!, is an artifact of the
SCIB model and should not appear when the fast electr
travel on a trajectory outside the surface. First, it is w
known that an electron traveling on a classical rectilin
trajectory can excite a bulk plasmon on a sphere describe
a local dielectric function, only in the case this trajecto
crosses the sphere.10,14Since in our case the trajectory of th
electron does not cross any of the spheres, one would ex
a coupling only to the interfacial modes. Second, in the d
vation of the equation fore l(k,v), which is used to calculate
the energy loss of electrons passing through the random
tem of spheres, an external charge density of the fo
r(z)5r0 eikz was applied.3 This work showed that the bulk
mode term arises entirely from the part of the external cha
density inside the spheres. Since this external charge de
represents the overlap of initial and final wave functions
electrons scattered by the system, one would expect th
the electrons did not enter the spheres, the external ch
density inside the spheres would be zero, and that th
would be no bulk mode excitation.

In the SCIB model, the external charge in the fictitio
infinite medium is a surface charge density on thez50 plane
associated with the discontinuity ofDz : 4psext52Dz(z
501). Clearly this external charge is inside those sphe
which are cut by thez50 plane. Indeed, in the limitQ
→` ~or k→`), the potential due to this charge becom
localized at thez50 plane, so no interfacial modes are e
cited. Also, in this limit the inverse dielectric function give
by Eq. ~22! simply represents the screening of the exter
-
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charge by the dielectric functions of the two media, weigh
by the factorsf and 12 f , which are the probabilities that th
external charge lies inside media 1 and 2, respectively.

2. Smooth surface profile

In this section we derive expressions for thez-dependent
volume fraction of spheres,f (z). We shall show that for any
physically reasonable distribution of spheres,f (z) must be a
continuous function ofz, and in particular,f (z) cannot
change discontinuously from a constant valuef for z.0 to
the value zero forz,0, as in the standard SCIB model. W
shall also find a specific result forf (z), assuming a very
simple distribution of sphere positions, and use this resul
calculate the zeroth moment of the half-space spectral fu
tion.

Assume that all spheres have the same radius,a. For an
infinite three-dimensional system that is translationally
variant after suitable configurational averaging, the relat
between the~constant! volume fractionf of spheres and the
densityn of sphere centers isf 5 4/3pa3n. However, if the
spheres are confined to a half space, both the densit
sphere centers and the volume fraction of spheres depen
z.

To find the relation betweenf (z) and n(z), first take a
single sphere with center atzi , and imagine that the sphere
cut by a plane of areaL2 at a given value ofz. The contri-
bution of the sphere to the volume fraction at this value oz,
which we denotef i(z), is the fraction of the areaL2 that is
contained within the sphere,

f i~z!5p@a22~z2zi !
2#/L2, ~29!

for zi2a<z<zi1a. If uz2zi u .a, the plane does not inter
sect the sphere, sof i(z)50. The total contribution of all
spheres tof (z) is found by replacingzi in Eq. ~29! by a
continuous variablez8, multiplying by L2n(z8) dz8 where
n(z8) is the density of sphere centers, and integrating o
z8:

f ~z!5pE
z2a

z1a

n~z8!@a22~z2z8!2# dz8. ~30!

If the spheres cannot penetrate the surface planez50, the
sphere centers must lie in the regionz>a, so n(z)50 for
z,a. In the regionz.a , n(z) depends on the density o
spheres and their positions in the half space. We can fin
specific expression forf (z) by making the simplest possibl
assumption forn(z) in the region z>a, i.e., n(z)5n5
const. With this assumption, Eq.~30! yields

f ~z!5
3

4F S z

aD 2

2
1

3S z

aD 3G f , 0,z,2a

5 f , z.2a. ~31!

Figure 3 shows the step functionn(z) and the associated
continuous functionf (z).

The zeroth moment of the spectral functionD(n), defined
by Eq.~24!, must have a value given by the sum rule~25!. If
we use the density profilef (z) given by Eq.~31! in Eq. ~25!
to calculate the zeroth moment, which we denote
m0

(M )(Q), the result is
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m0
~M !~Q!5e24Qa1

3

2
Qa l~2Qa!, ~32!

where

l~x!52F 1

x3
2

1

x4
2e22xS 2

3x
2

1

x3
2

1

x4D G . ~33!

Figure 4 shows a plot ofm0
(M )(Q) as a function ofQa.

Recall thatm051 for a constant volume fraction in the ha
space f (z)5 f for z>0. The result limQ→0@m0

(M )(Q)#51
can be understood from the fact that the external poten
penetrates infinitely deeply into the half space in the smalQ
limit, so the falloff of f (z) within a distance 2a from the
surface has no effect, and only the~constant! value f (z)5 f
far from the surface is important. The external potential p

FIG. 3. Thez-dependent volume fraction of spheresf (z) as a
function ofz/a, when the densityn(z) of sphere centers is taken a
a step function. The dashed line is the step functionn(z)/n and the
solid line is the correspondingf (z)/ f .

FIG. 4. The dotted line is the interface-mode contributionm0
(S)

to the zeroth momentm0 of the spectral functionD(Q,n), as a
function of Qa, for the SCIB model. The dashed line is the zero
momentm0

(M ) of the spectral functionD(Q,n), as a function ofQa,
when thez-dependent volume fraction of spheresf (z), shown in
Fig. 3, is used in the sum rule given by Eq.~25!. The solid line
corresponds to the ratioR(Q)5m0

(M )(Q)/ m0
(S)(Q), as a function of

Qa.
al

-

etrates less deeply into the half space asQa increases, so the
continuously decreasingf (z) near the surface causes a co
responding decrease ofm0

(M )(Q).

3. Description of modified SCIB model

The standard SCIB model applied to a system of rand
spherical particles in a half space has two defects. First,
have presented arguments which suggest that the h
energy loss peak, which arises from the bulk mode te
Cb /(u21) in Eq. ~2!, should not be present. Second, t
model does not take account of the continuous surface pr
f (z) correctly since it gives a constant value for zeroth m
ment,m051, which does not agree with the decreasing
roth momentm0

(M )(Q) shown in Fig. 4.
In order to correct these defects, we propose the follow

modified SCIB model. First, we simply omit the bulk mod
term in Eq. ~2! by settingCb50. Second, we modify the
remaining surface mode terms so that the zeroth momen
the spectral function agrees with the ‘‘exact’’ valu
m0

(M )(Q) found from our simple model of a smooth surfa
profile. In order to make this modification, we note that t
surface mode terms in Eq.~2! give a value ofm0

(S)(Q) that
can be calculated from Eq.~28!. If we use an approximate
analytic form for the total strength of the surface modes,4

(
s

Cs~k!.
b

Ar21b2
, ~34!

wherer5ka andb52.262, Eq.~28! gives

m0
~S!~Q!5

2

p
arctanS b

QaD . ~35!

A plot of m0
(S)(Q) as a function ofQa is shown in Fig. 4.

Clearlym0
(S)(Q).m0

(M )(Q), so the zeroth moment is still too
large, even after removing the bulk mode. The most straig
forward way to get the correct zeroth momentm0

(M )(Q) is to
multiply all surface mode strengths by the ratio

R~Q!5
m0

~M !~Q!

m0
~S!~Q!

. ~36!

The ratioR(Q) is plotted as a function ofQa in Fig. 4.
Therefore, the modified SCIB model consists of replac

the inverse bulk dielectric function 1/e l(k,v) in Eq. ~19! by
a modified inverse dielectric function

1

e l
~M !~k,v!

5
1

e2
F11 f R~Q! (

s

Cs~k!

u2ns~k!G . ~37!

SinceR(Q) falls off rapidly asQ increases, the dispersion o
the interfacial modes at large values ofk will play a smaller
role in the modified SCIB model than in the original SCI
model. Therefore, the modified SCIB model should give
narrower energy-loss spectrum, closer to the spectrum of
local model. These qualitative expectations will be borne
by the numerical calculations discussed in the following s
tion.



r

w

v

a
-
om
o
2

de
,

o

el

m-

n
red,
in

gy,
ard
s

ill

her
rum
e

e
ses,
r-

of
pec-
ave

of
del
an-
of
be
ar
e

en-
he
be

the
r-
he
um
ar-
ave
d.

ec-
heri-
ron

(0
-
ns.
le, it
ns
i-

pe
ant

the
an
nlo-

ed

57 11 201ENERGY LOSS OF ELECTRONS TRAVELING PARALLEL . . .
4. Results and discussion

By substituting 1/e l
(M )(k,v) into Eq. ~19! for the surface

impedance and using Eq.~11! one obtains an expression fo
the surface loss functionS(M )(Q,v)[ Im g(M )(Q,v) corre-
sponding to the modified SCIB model. In Fig. 5 we sho
S(M )(Q,v) as a function ofQa and\v for f 50.15 and 0.5.
Obviously, since the bulk plasma mode has been remo
from the bulk dielectric response 1/e l , there is no structure
in S(M )(Q,v) around \v'15 eV. For Qa50 there is a
single isolated peak which is the same as in the stand
SCIB model. Then forQa.0 a multipeaked structure ap
pears which is considerably reduced in strength when c
pared with the structure in the low-energy region
S(Q,v) in the standard SCIB model, as shown in Fig.
Also, asQa increases there is an extremely fast overall
crease ofS(M )(Q,v). For example, for both filling fractions
f 50.15 andf 50.5, andQa56, S(M )(Q,v) has almost van-
ished. This behavior comes, obviously, from the fast drop
R(Q), as a function ofQa, as can be seen in Fig. 4.

We now calculateJ(E) for the modified SCIB model by
substitutingS(M )(Q,v) into Eq.~7!. The results are shown in
Fig. 1, together with the results of the other two mod

FIG. 5. ~a! Surface loss functionS(M )(Q,v), as a function of
Qa and \v, for aluminum spheres in vacuum using the modifi
SCIB model and a filling fractionf 50.15. ~b! The same as in~a!
but for f 50.5.
ed

rd

-
f
.
-

f

s

mentioned above, for the same two filling fractions and i
pact parameters, that is,f 50.15 and 0.5 , andz051 and 10
Å. One can see thatJ(E) now has a weak dependence o
z0, that the isolated structure below 16 eV has disappea
and that there is still some multipeaked structure
S(M )(Q,v) at about 10 eV forf 50.15, and 11 eV forf
50.5. The multipeaked structure inJ(E) for the modified
SCIB model is smaller in size and shifted to a higher ener
in comparison with the corresponding peaks in the stand
SCIB model. Also, the shift to higher energy increases af
increases.

Finally, we can expect that the effects of nonlocality w
become smaller as the sphere radiusa decreases, since
e l(k,v) depends onk through the combined variabler
5ka. Therefore, the energy-loss spectrum found for eit
SCIB model should approach the local energy-loss spect
as a→0. Also, the effects of nonlocality should becom
smaller as the impact parameterz0 increases. However, sinc
the total strength of the energy-loss spectrum also decrea
the limit of large impact parameter is probably of little inte
est.

In conclusion, we have shown that the surface region
the system has a strong influence on the energy-loss s
trum. In order to take account of the surface region, we h
constructed a modified SCIB model which corrects some
the defects of the standard SCIB model. However, the mo
is still an approximate theory since it is based on a me
field approximation and does not treat the correlations
sphere positions near the surface correctly. Also it should
noted that the model is applicable only if there is a plan
interface ~at z50) between the host material 2 and th
vacuum region, with the spherical particles contained
tirely within the host material. In fact, depending on how t
interface is formed, the surface of the host material might
rough, the spherical particles might penetrate into
vacuum region beyond thez50 plane, so the outermost pa
ticles would be only partially embedded in the host, or t
portions of those particles that penetrate into the vacu
region might simply be removed, giving nonspherical p
ticle shapes. To treat any of these situations one would h
to go considerably beyond the models we have presente

IV. CONCLUSIONS

In previous work it has been shown that when fast el
trons pass through a disordered sample consisting of sp
cal inclusions at random positions in a host material, elect
energy-loss spectroscopy in the valence electron region
,E,40 eV! can be useful for providing structural informa
tion, such as the size and volume fraction of the inclusio
However, since the fast electrons can damage the samp
is of interest to develop a theory of energy loss for electro
traveling parallel to and outside the interface of a sem
infinite system of random spherical inclusions, with the ho
that structural information can be obtained using a dist
electron beam which does little damage to the sample.

In this work we calculate the energy-loss spectrum of
semi-infinite disordered system starting with models of
infinite disordered system represented by an effective no
cal dielectric response functione l(k,v). An important ingre-
dient in the theory is the surface response functiong(Q,v)
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11 202 57MENDOZA, BARRERA, AND FUCHS
of the half space, since the energy-loss spectrum is relate
an integral overQ of Im g(Q,v). The problem to be solved
is how to calculate the half-space response functiong(Q,v)
from the bulk dielectric functione l(k,v). Although this cal-
culation is, in principle, not possible, we have conside
three models which allow an approximate calculation to
performed.

In the first model a local (k50) limit is used for the bulk
dielectric function. In this limit the bulk dielectric function
reduces to the well-known Maxwell-Garnett dielectric fun
tion, and the calculation of the surface response functio
trivial. We determine the energy-loss spectrum for a sys
of random aluminum spheres in the half space, with vacu
as the host material. We find a single energy-loss peak,
sociated with the dipolar resonant mode of the spheres.
position of the peak depends on the volume fraction
spheres, and is independent of the sphere radius.

The second model is the semiclassical infinite bar
~SCIB! model, which has previously been applied to find t
surface response function of homogeneous nonlocal me
The nonlocal dielectric function of the infinite medium h
many resonances associated with both dipole and hig
multipole interfacial modes which lie below the plasma fr
quency, and a bulk mode at the plasma frequency, wh
arises from those electrons which pass through the sph
The energy-loss peaks associated with these modes als
pear in the half-space energy-loss spectrum, but the peak
shifted to energies lower than those in the infinite mediu

The third model is a modified SCIB model, in which w
introduce information about the spatial distribution of t
spherical inclusions near the surface. It is well known t
the standard SCIB model does not represent the surfac
gion adequately, so the intent of this model is to partia
correct this deficiency. We first eliminate the bulk mod
arguing that the electrons do not pass through the sphe
inclusions. We also modify the strengths of the interfac
modes so that their total strength is consistent with the
tribution of spheres near the surface. A simple model for t
distribution of spheres is derived by assuming that
spheres cannot penetrate the nominal surface plane, bu
otherwise their centers are randomly located. The modi
SCIB model gives an interfacial loss peak structure wh
has both a reduced strength and width, compared to the s
dard SCIB model.
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APPENDIX A: STRENGTHS AND LOCATION
OF THE MODES

In this appendix we quote the formulas for the streng
Cb andCs , and locationns of the modes which appear in th
spectral representation ofe l(k,v) given by Eq.~2! and de-
rived in Ref. 3. The bulk strength is given by

Cb5123(
l 51

`

l ~2l 11!F j l~r!

r G2

, ~A1!

wherer5ka. The strengths of the surface modes are

Cs53(
l l 8

Al l 8~2l 11!~2l 811!
j l~r! j l 8~r!

r2
UlsUl 8s ,

~A2!

whereUsl is a unitary matrix which diagonalizes the matr
Hll 8, i.e.,

(
l l 8

Usl
21Hll 8Ul 8s85nsdss8, ~A3!

and the matrixHll 8 is given by

Hll 85
l

2l 11
d l l 8

13 fA l l 8

~2l 11!~2l 811!

~ l 1 l 8!!

l ! ~ l 8!!
S 1

2D l 1 l 822

3
j l 1 l 821~2r!

2r
. ~A4!

In these equations,j n(x) represents the spherical Bess
function of ordern.

APPENDIX B: DERIVATION OF THE FORMULA
FOR J„E…

In this appendix we derive the expression forJ(E) given
in Eq. ~7!. We assume that the electrons have sufficien
high energy that they travel on a trajectory which devia
only slightly from a straight line and that their energy chan
is very small compared to the initial energy. Taking the c
ordinate system defined in Sec. II, we consider an electro
charge2e traveling along a trajectory given byx50, y
5v I t, z52z0 above the half space (z.0) occupied by the
system. The energy loss of the electron as it moves a dista
dy is given by the negative work done by force on the ele
tron dW52Fy dy5eEy dy, whereEy is the induced elec-
tric field acting on the electron. Therefore, the energy lo
per unit length is

dW

dy
52e

]f ind

]y U
x50, y5v I t, z52z0

. ~B1!
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We can find an expression for the induced potentialf ind in
Eq. ~B1! by starting with the external charge density of t
electronrext(r ,t)52e d(x) d(y2v I t) d(z1z0), which has
the t→v Fourier transform

rext~r ,v!52~e/v I ! d~x! d~z1z0! eivy/v I. ~B2!

One can then use Coulomb’s law to write an expression
the external potentialfext(r ,v). After a trivial integration
over z, the remaining integral overx andy is in the form of
a convolution. Writing Q5(kx ,ky), one can express
fext(Q,z,v), the two-dimensional Fourier transform o
fext(r ,v), as the product of two Fourier transforms. T
result isfext(Q,z,v)5fext(Q,v) e2Qz for z.2z0, where

fext~Q,v!52e
~2p!2

Q
d~v2kyv I ! e2Qz0. ~B3!

Using Eq.~B3! in the relation between the external and i
duced potential given by Eq.~8!, followed Eq. ~9! to find
f ind(r,z,v), and an v→t Fourier transform to give
f ind(r,z,t), which is then substituted into Eq.~B1!, one gets

dW

dy
52

e2

v I
2E

2`

1`dv

2p
vE

2`

1`dkx

Q
i g~Q,v! e22Q z0,

~B4!

where Q5Akx
21(v/v I)

2. Now one can use the relatio
g(Q,2v)5g* (Q,v) in order to rewrite Eq.~B4! as

dW

dy
5

2e2

pv I
2E0

`

v dv E
0

`dkx

Q
Im @g~Q,v!# e22Q z0.

~B5!

The probability per unit path length, per unit ener
d2P/dl dE of an electron losing energyE5\v is defined
llo
r

by

dW

dy
5E

0

`

dE E
d2P

dl dE
. ~B6!

Combining Eqs.~B5! and ~B6! one gets Eqs.~6! and ~7!.

APPENDIX C: LOCATION AND STRENGTH
OF THE EFFECTIVE MODE

Here we use two sum rules to determine the location
strength of the effective mode used in the calculation. T
first sum rule is given in Eq.~4!:

Cb1(
s

Cs51,

and assures that the sum of the strengths of all the mod
always conserved. If we now replace the modes withs.6
with a single ‘‘effective’’ mode, the strength of this effectiv
modeCeff was chosen as

Ceff512Cb2(
s51

6

Cs ~C1!

in order to fulfill the sum rule. The locationns of the modes
with s.6 lies betweenn6

056/13'0.46 andn`
0 50.5 and

they show a very weak dispersion; i.e., their location is
most independent ofka. Therefore we choose, for simplicity
the locationneff of the effective mode as a constant halfw
betweenn6

0 andn`
0 , that is,neff50.48. In order to check tha

this choice is adequate, a second sum rule has to
satisfied,3

(
s

Csns5F~r; f ![(
l l 8

3Al l 8~2l 11!~2l 811!

3r22 j l~r! j l 8~r! Hll 8, ~C2!

whereHll 8 is the matrix given in Eq.~A4!. Therefore, our
values ofCeff andneff should satisfy the equation

Ceff neff1(
s51

6

Csns2F~r; f !50. ~C3!

We have checked that forf 50.5, the left-hand side of Eq
~C3! is always less than 231023. The same happens forf
50.15 , except in the interval 0<ka<2, where the left-hand
side of Eq.~C3! can be at most 1.7531022.
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8 R. Nuñez, P. M. Echenique, and R. H. Ritchie, J. Phys. C13,
4229 ~1980!.

9The spectral representation in Eq.~2! can also be written in a
symmetric form where media 1 and 2 appear on the same f
ing, so there are separate terms for bulk modes in media 1 a
as well as terms corresponding to interfacial modes. This s
metric representation is given in Eqs.~8!–~11! of Ref. 4.

10P. M. Echenique and J. B. Pendry, J. Phys. C8, 2936~1975!.
11K. L. Kliewer and R. Fuchs, Phys. Rev.172, 607 ~1968!.
12R. Fuchs and R. G. Barrera, Phys. Rev. B24, 2940~1981!.
13D. L. Johnson and P. R. Rimbey, Phys. Rev. B14, 2398~1976!.
14D. R. Penn and P. Apell, J. Phys. C16, 5729~1983!.


