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Energy loss of electrons traveling parallel to the interface of a semi-infinite granular composite
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The energy loss of an electron traveling above a semi-infinite granular composite consisting of randomly
located spherical inclusions is investigated. We express this loss in terms of a surface response function which
is then calculated using an effective medium theory for the bulk dielectric function of the system. Three
different models are analyzed. The first two models correspond to local and nonlocal versions of a truncated
bulk, and the third one includes the effects of the distribution of the spherical inclusions near the surface. We
find that a correct treatment of this distribution is necessary in order to get meaningful results.
[S0163-182698)03618-2

I. INTRODUCTION dinal fields, and give an expression ffQ, w) in terms of a
surface impedance. In Sec. Il the surface impedance for
Electron energy-loss spectroscopy of high-energy electhree different models is calculated. The first two models
trons is becoming an important tool for structural analysis ofcorrespond to local and nonlocal versions of a truncated
inhomogeneous materials. Extremely narrow beams of eledsulk, where the surface impedance can be expressed in terms
trons with energies of the order of 100 KeV are produced irof the bulk dielectric function. The nonlocal version is
scanning transmission electron microscod&§EM) and  known in the literature as the semiclassical infinite barrier
their energy loss is measured after passing through a thi(SCIB) model. This model is applied to the system of ran-
samplet? Here we are interested in granular materials and irdom spherical inclusions and results for the surface response
the excitation of valence electrons, which means energyunction as well as the energy-loss probability are presented
losses from a few eV to less than 100 eV. In this energyand discussed. The third model begins with the bulk nonlocal
range a dielectric approach becomes appropriate and the coglielectric function, just as in the SCIB model, but the dielec-
cept of an effective medium with an effective dielectric re-tric function is modified in such a way that the surface re-
sponse has been recently developed and successfully appliggonse function is consistent with a smooth surface profile.
to a model of identical spherical inclusions in an otherwiseFinally, in Sec. IV we present our conclusions.
homogeneous matriX.° In this theory the energy-loss func-
tion is given in terms of an effective nonlocal dielectric re-
sponse which is then calculated in the mean-field approxima- Il. FORMALISM
tion. Here we pose a related problem: the calculation of the
energy loss of electrons traveling close and parallel to the Consider a half space filled with a system composed of a
interface of a semi-infinite system of random spherical inclu-collection of identical spherical inclusions of radiaslo-
sions. Since the trajectories of electrons can be controlledated at random and immersed in an otherwise homogeneous
very precisely, it is now possible to direct a narrow beam ofmatrix; the other half space is vacuum. On the vacuum side,
electrons so it travels a few angstroms away from the surfaca high-energy electron travels on a classical rectilinear tra-
of a flat sample. This experimental arrangement offers addiectory parallel to the interface at a nearly constant spged
tional flexibility compared to one where the electron beamOur objective is to calculate the rate at which work is done
passes through the interior of the sample and minimizes po$n the electron by the induced electric field. Here we will
sible damage of the sample by the electron beam, but it reaeglect the effects of the magnetic field carried along by the
quires an analysis of the sensitivity of the experiment to thdraveling electron; this is known as the nonretarded approxi-
surface structure. The calculation of the probability of elec-mation and it is valid to order /c)?, wherec is the speed
tron energy loss in this experimental setup has already beesf light.
done for an ordered system of spheres located in a semiinfi- Our first assumption is that if the system were unbounded,
nite cubic lattic®”” Here we deal with a system of random it could be described by an effectiver macroscopig non-
spherical inclusions, and our purpose is to analyze, in théocal, longitudinal dielectric functiorg (k,w), derived by
same experimental arrangement, the effects of volume fradarrera and FuchIn this work it was assumed that the
tion, sizes, and spatial distribution of the inclusions. Oursystem appears homogeneous at a length dcale, al-
treatment uses the effective bulk dielectric responsdghough it is highly inhomogeneous at a length scale of the
function®° The paper is organized as follows: In Sec. Il we order ofa.
develop the formalism for the calculation of the energy loss The effective inverse nonlocal dielectric function is de-
in terms of a surface response functigfQ, w) for longitu-  fined by
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1 (p"(k,w)) L lim Cy(ka)=1 (5a)
ako) T k) @ ae
. and
this relates the average of the potentil™®) induced in the
system to the external potentiaf, where the average - - ) lim Cy(ka)=0. (5b)
is taken over the macroscopic length scale.r@ylocalone ka—o

means fchah(k,w) erends not on_ly on the frequenayof  rpig means that in the limit of either large spheres or large
the exciting potential but also on its wave veckorFor an wave vectors only the bulk mode will be excited

unbounded, macrogcoplca_lly homogeneous and ISOLrOPIC o\ we turn to the calculation of the energy loss of an
system, the dielectric function depends on the magnitude electron traveling parallel to the planar interface of a semi-

of the wave vector, not on its direction, and the Sto%p'nginfinite system. First we define a coordinate system by taking
power of the electrons is directly related to [ei(k,w)]."  hey axis at the interface and parallel to the electron trajec-
It has been shom?hthat fqr the random system of SIOheres’tory and thez axis pointing towards the system. In this co-
1/§,(k,w) can be written in the following spectral represen- ordinate system the electron trajectory is givenxy0, y
tation: =y t, andz= —z,, wherez, is called the impact parameter.

If we assume that the system has translational symmetry in
' ) the x andy directions, the probability per unit path length,

per unit energy, of scattering with energy Idssis given by

(see Appendix B

1 _ 1
a(ko) e

+f(Cb(|<)+2 Cs(k))

u—1 s Uu—ng

wherek= k| and

2
~1 FB)= 4 dE~ aE,

©)

E(E), 6

U= ———
€1/e~1 wherea, is the Bohr radiusE, is the kinetic energy of the

is the spectral variable, which depends epand e,, the  incident electron, and

local, frequency-dependent dielectric functions of the 1 (ee-2Q%

spheres and the matrix, respectively. The quantity Z(E)=— ¢ Im g(Q,w) dk,, 7

=(N/V)4ma®/3 is the filling fraction of the spheres, where 7Jo

N is the total number of spheres, avids the total volume of 5 .
the system. Byspectral representationwe mean that With E=fiw and Q=yk+o/vj. The quantityg(Q,w),

1/e,(k, w) is written as a sum of terms with simple poles, andknown as the surface response function, is the complex re-

these poles are related to the excitation of the normal moddtection amplitude which relates th&(w) 'Fou.ner compo-

of the electric field within the system. In particular, the poles"€nts of the induced and external potentials:

at u=1 andu=ng4 have strength€, and Cs, and corre- ind _ ex

spond to the excitation of the bulk mode in medium 1 and ¢"(Q0)=-9(Qw)¢*(Q,w). 8)

interfacial mo.des, respectivelyFurthermore, the strengths Here, the Fourier cqmponea‘f”d(Q,w) of the induced po-

Cp, andC; fulfill the sum rule tential is related tap™(p,z;») by a two-dimensional Fou-
rier transform

Cb+§ CS:J., (4) dZQ

(2m)?

¢i”d(p,z;w>=f ¢"(Quw) €9 —z5<2<0,
which means that the sum of all mode strengths is conserved, ©)
or alternatively, that the strength of the bulk mode is reduced
due to the presence of the interface, a fact also known as thghere p=(x,y) is a two-dimensional vector parallel to the
Begrenzungeffect. interface, andQ=(k, ,k,) is a two-dimensional vector ik

Another appealing feature of the spectral representatiogpace. Similarly, the external potentiaf{(Q,w) is defined

given in Eq.(2) is that the properties of the material appearby
only in the spectral variablel, while the strengths of the
poles depend ok and the geometry of the system. In the
mean-field approximation the information about the geom—ﬁbeXt(P,Z;w):j
etry of the system is given by two statistical parametets 10
filling fraction f of spheres and their two-particle distribution (10
function p®(Ry,), whereRy, is the distance between the The potentials ¢™(p.z;w) and ¢*(p,z;0) satisfy
centers of two spheres. #f?)(R,,) takes account of only the Laplace’s equation in the regions indicated in E(®.and
excluded-volume correlation, that is{®(R;,)=1 for Ry,  (10), since the charges that are sources of these potentials lie
=2a and 0 otherwise, it can be shotvihat the strengths of outside these regions. The difference of sigei®? in these
the mode<C,, andC, and the location of the interface modes two equations arises because the induced and external
ng become functions oka and are given by simple expres- charges are located in the regiorrs0 andz=<z,, respec-
sions, shown in detail in Appendix A. Here we need onlytively. Equation(7) is often written in terms of the surface
note that loss function, defined aS(Q,w)= Im g(Q,w).

d? )
(277?2 ¢*(Q,w) €79 —zi<z<w.
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In the following derivations we will tak®) to lie in thex
direction, which simplifies the notation and is permissable F(E)= a_EEIoc(E)a (15
since we are assuming that the disordered system is invariant o=
with respect to rotations about theaxis, sog(Q,w) de-  where
pends only on the magnitude &, not its direction. By
taking E,(Q,z,w) and D,(Q,z,w) as the two-dimensional 5, (E)= lK ( 27, )
Fourier transforms ofg,(p,z,w) and D,(p,z,w) and de- —loc m v /o
manding their continuity across the interfa@e=0) one can

expresgy(Q,w) as

EB((U)_ 1
eg(w)+1

: (16)

with K, the modified Bessel function of order zero. The
argument ofK, establishes the characteristic lengtfV w
which determines approximately the maximum value of im-

9(Q,w) = Z'-7(Q.») (11) pact parameter for which the probablility of energy loss is
' ZV+Z(Q,w)’ appreciable. For the system of random spherical inclusions,
where 1 1 1
@) ak=0w) & TTomn, @7
 El(Q, z=0",0) i - i
2(Q,w)=i ==~ (12) with n;=(1+2f)/3. Equatloq(17) cgrrequnds to the
D,(Q, z=0",0) Maxwell-Garnett bulk dielectric function which takes ac-

count only of the dipolar modes excited in each sphere, and
plays the role of a surface impedance of the medium an@vhose shortcomings were already discussed in Ref. 3. These
ZV=1 is the corresponding surface impedance of vacuum. Ilipolar modes are driven by surface charges induced at the
is not surprising that the expression @{Q,w) in Eq. (11) interface of each sphere and their coupling gives rise to a
has the characteristic form of a reflection amplitude becauseollective dipolar mode known as the dipole interface plas-
one can think ofp®{(p,z; w) and $"™%(p,z;») in the region  mon. The location of this mode corresponds to the pole in
—2z9<z=<0, as “incident” and *“reflected” potentials, re- Eg.(17) located atu=n;=(1+2f)/3.
spectively. Applying this model to a concrete example, we have cal-
culated the energy-loss probability functid@®,(E) for a
IIl. MODELS half space of aluminum spheres in vacuum. In this cage,
=1 ande;(w) is given by a Drude dielectric function
In general, the calculation o would require a precise
model for the bulk and surface region of the system together wf,
with the complete solution for the fields. Nevertheless, there €1(w)=1- w(w+iln)’ (18)
are two simple models in which it is possible to obtain an
expression forZ in terms of the bulk dielectric response Wherew, is the bulk plasma frequency andthe relaxation
functions of the system. These are the local limit and thdime coming from dissipation processes, is considered as a
semiclassical infinite barrier modéBCIB). Both models parameter which controls the width of the excitation peaks.
possess a sharp boundary at the surface and they can ber aluminumfw,=16.0 eV, and we take»,7=100. The
regarded as local and nonlocal variants of a truncated bulidotted line in Fig. 1 shows the results of this local calculation
Here we will apply them to the system of random sphericalfor two different values of the filling fractionf=0.15 and
inclusions described above in order to analyze their result6.5, and two values of the impact parameggrs 1 and 10 A.
and significance. We will also use a modified SCIB modelln all cases the energy-loss spectrum is a single sharp peak
which takes account of the actual sphere density profile neawhich is shown reduced in height by the factdrgiven in
the surface more accurately. the (XN) legend, in order to fit the results of subsequent
calculations on the same plot.
This peak arises from the dipole interface-plasmon exci-
tations of the system of aluminum spheres in vacuum. A
In the local limit one assumes that the bulk longitudinal simple expression for the position of this peak can be found
dielectric response of the systesg(k, ) is independent of  py settingr= in Eq. (18). One can see from E16) that
k; i.e., one replacegg(k,w) by eg(w)=eg(k=0w), forz  in the half space the resonance frequency of the dipolar
=0. In this case the surface impedance is mode, which we denote by, is determined by the condi-
tion eg(w)=—1. From Eq.(17) the corresponding pole in
7 )= i (19 the spectral variable is ng=(1+f/2)/3 and the resonance
loc( @) = P frequency is ws=wp\Ns=w,\(1+1/2)/3. These results
show that the dipolar mode frequeney, increases from
and the substitution of Eq13) into Eq. (11) yields w,//3 10 w,/\2 asf increases from 0 to 1. One readily
finds that the energy of the dipolar excitation for the half
space ishws=9.6 eV forf=0.15 andh w;=10.3 eV forf
=0.5, values which agree with the positions of the local
peaks in Fig. 1. The single peak i (E) is relatively
Now, substitutingg(w) into Eq. (7) and performing the in- narrow, since the width of the peak comes solely from the
tegration ovek,, one gets the well-known local restflt dissipation process included in the Drude dielectric response

A. Local limit

1_1/68 _ GB_l
1+1/leg eg+1°

9(w)= (14)
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FIG. 1. (a) Energy-loss probability functioE(E) as a function of the energy logs, for a filling fraction f=0.15 and an impact
parametez,=1 A. The dotted line corresponds to the local model, the dashed line to the SCIB model, and the solid line to the modified
SCIB model. The notationX N) attached to a curve in these figures indicates that the values shown on the ordinate axis for that curve must

be multiplied by the factoN. (b) The same as i) but for z,=10 A. (c) The same as ig) but for f=0.5.(d) The same as ifc) but for
2,=10 A.

€,(w) of the spheres through the parameter. It is also  preted as if the surface were acting as an infinite potential
evident that the sphere radius does not enter into this locddarrier causing the specular reflection of the electrons, but

model. neglecting the quantum interference terms; this is the origin
of the termsemiclassical infinite barrieand also of the term

B. Semiclassical infinite barrier (SCIB) model specular relflgectlon modekhich is often used. This proce-
dure yield$®
1. Description of the model

The SCIB model has traditionally been applied to de- _ Q- dk,

: o : 2(Q,w)= ; : (19
scribe the response of a semi-infinite electron 'gds. this )= (Q%+K) eg(k,w)
model one is able to calculate the surface impedahde . _
terms of a known bulk nonlocal dielectric resporgék,w).  Here we apply this model to the system of random spherical

The idea is to replace the system in a half space by an urinclusions by usingej(k,w) given in Eqg.(2) as the bulk
bounded system described ky(k,»). Then one looks for nonlocal dielectric response functiag(k, ). In Eq. (19),
solutions of Maxwell's equations for the electric and dis-the magnitude of the wave vector is=\Q?+k2. The
placement fields with specular symmetry about the interfacelectron-energy-loss functiof (E) is then readily obtained
plane, i.e.,E\(X,y,Z,w)=E\(X,Y,—z,w) and E,(X,Y,Z,w) by using Eqs(11) and (7).

=—E,(X,Yy,—z,w), with similar equations foD, andD,. Before presenting the results of this model we will ana-
One assumes that the fields with physical reality are those olyze the behavior of the fields and the polarization charges in
only one side of the interface, the side where the actual syshe neighborhood of the interface. The boundary conditions
tem is located, and then one matches these fields with thef the fields at the interface demand the continuityEqf,
actual fields in the vacuum using the continuity®f, E,,  E,, andD,, and it can be showf'®that

andD,. This procedure tacitly assumes a model for the in-

terface, which in the case of an electron gas can be inter- E,(Q,z=0",w)=€.(w) E,(Q,z=0",w), (20



57 ENERGY LOSS OF ELECTRONS TRAVELING PARALLE. .. 11197

whereE,(Q,z,w) is the two-dimensional Fourier transform
of the electric fieldE,(X,Y,z,w) with respect tox andy, and

€x(w)=lim ¢(k,w), (21

K—s o0

is known as the background dielectric function of the system.
In the usual model of a metal, one can write the total dielec-
tric function as the sum of a contribution from the conduc-
tion electrons, which goes to zero ds—«~, and a
k-independent contribution from core electrons. Therefore,
the core electrons are the source of a local background di-
electric functione.,,>1.

In our system of random spherical particles, the origin of
the background dielectric function is quite different. By com-
bining Egs.(2), (3), and(5a), and(5b), we have

@ hw(eV) 15 o
1 f N 1-f -
e o e 22
In the absence of the spheres, that is, in the limit0, one 30 f=0.5

gets e,.,= €5, Which is what is expected, sinag plays the

role of a local background for the system of polarizable
spheres. When spheres are presént@), a termf/e; ap-

pears in EQ.(22). This term arises from the bulk mode =3 20
strengthC,(k—=)=1 in Eq. (2) and it corresponds to a o
bulk plasmon resonance of the spheres. One can also show ¢
that when there is a background dielectric functigr# 1, a 0

surface charge density"!(Q,w) atz=0 appears: g |
} 15
. €.(w)—1 10
o"(Q,w)=— MEZ(Q,FO*,w). (23 Os )
am 10 5 Qa
In addition to this surface charge, there is also a volume (b) fwleV) 0
distribution of charge due to the nonlocal natureek, ) _ _
for finite k. FIG. 2. (a) Surface loss functio®(Q,w), as a function oQa

and e, for aluminum spheres in vacuum using the SCIB model
and a filling fractionf=0.15. (b) The same as irfa) but for f
=0.5.

Here we present results for the system of random spheri-
cal inclusions within the SCIB model. The bulk dielectric  In Fig. 2 we show a plot 05(Q,w)= Im g(Q,w) as a
responsee(k,w) is taken in the mean-field approximation function of Qa and#w for f=0.15 and 0.5, and 7= 100.
and we consider only the excluded-volume correlation befor Qa=0 there is a single peak around 9.6 eV fbr
tween spheres. In this ca€y,, C4, andng are functions of =0.15 and around 10.3 eV fof=0.5. Then, asQa in-
ka and are calculated using the expressions given in Eqsreases, two things happefi) a single, isolated peak at
(A1)—-(A4). The calculation is performed by truncating the about 16 eV starts to emerge, increasing in height and shift-
multipolar sums to a maximum value=6. Therefore the ing slightly towards lower energies, this shift being more
locationsng and the strength€ of the first six interfacial pronounced forf=0.5 than forf=0.15, and(ii) a multi-
modes are obtained by finding the eigenvalues and eigenvepeaked structure appears in the low-energy region: between
tors of the 6x6 matrixH,, given by Eq.(A4). The rest of 8.5 and 11.0 eV fof =0.15, and between 7.0 and 12.0 eV
the modegwith s>6) are taken into account by including an for f=0.5. For both values of, this structure becomes a
additional “effective” mode whose locationmn,; and  single peak whei®@a>10; this occurs because we have re-
strengthC¢ are determined by sum rules, as shown in detaiplaced the high-multipolar interfacial modes by a single “ef-
in Appendix C. fective” mode. Nevertheless, since the actual multipolar

We again present results for a half space of aluminunstructure becomes narrower @a increases, the effective-
spheres in vacuum, using the same Drude dielectric functiomode approximation is adequate.
€1(w) for aluminum, Eq.(18), as for the local model. In What is the physical origin of these peaks? One can iden-
addition to the bulk plasmon energy of 16.0 eV for the alu-tify the low-energy peaks with the usual surface modes com-
minum, there are two other important characteristic energiesng from the term=C./(u—ny) in Eq. (2), while the high-
the surface plasmon energy for a half space filled with aluenergy peak comes from the ter@,/(u—1) in Eg. (2).
minum,hwsp:hwp/\/izlls eV, and the energy of the di- First consider theQ—0 limit. In this limit the factor
polar mode of an isolated sphefapdzhwp/ﬁz 9.2 eV. 1/(Q%+ kﬁ) in Eq. (19) is very sharply peaked &.,=0, so

2. Results and discussion
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only the local limit ¢, (k=0,0w) contributes. Equatior{19) creases ag, increases, it is also clear that the strength of the
gives Z=1/¢|(w), wheree(w)=¢€(k=0,0)=1—f/[u—(1  high-energy peaks decreases faster. For examplezgfor

—)/3] is the Maxwell-Garnett dielectric resporidéccord- =10 A, the strength of the high-energy peak is already very
ing to Eq.(11) there is a pole im(0,w), and a corresponding small in comparison with that of the tallest peak in the low-
peak inS(Q=0,w)= Im g(0,0) whenZ=—1 or ¢(ws)= energy region. Also, the structure in both energy regions

—1. For an electron gas this condition yields, bPecomes narrower as the filling fraction decreases. For ex-

= wg 1+ 112, Wherewd=wp/\/§ is the dipolar resonance of ample, forzo=10 A gndf=0.15 t_he low-energy structure

an isolated sphere. For aluminutns,=16.0 eV, and so, t:)hecclnmes alc:nrc])'stha single p_zak with small shoulders on both

hws=9.6 eV for f=0.15, while for f=0.5, one hasiwg € low- and hign-energy sides.

=10.3 eV. Thus, in Fig. 2, the only peak observedS{©Q

=0,w) can be identified with the surface mode of a flat in- C. Modified SCIB model

terface described by the corresponding Maxwell-Garnett lo- |n this section we shall present evidence that the high-

cal dielectric function, and this peak has the same location agnergy peak which appears$Q,») and in the energy-loss

the peak in the energy-loss function obtained using the locadpectrum should not appear when the electron trajectory is

model. The shift in position and decrease in height of thisoutside the material and discuss why the abrupt termination

peak asQ increases is due to the nonlocal nature of theof the surface at=0 in the standard SCIB model gives this

actual dielectric response. high-energy peak. To remedy these shortcomings, we shall
The other peak which appears at finQeclose to the bulk  use qualitative arguments to construct a modified SCIB

plasmon energy is due to the presence of the aluminum dimodel that is consistent with the actual smooth sphere den-

electric functione,(w) in the background.(w). The posi-  sity profile near the surface, and for which the high-energy

tion of this peak can be understood by first looking at thepeak is absent.

Q—o limit. Since k?=Q?%+ k§ this limit is equivalent to

k— o0, so the nonlocal dielectric functiofi(k, w) in Eq.(19) 1. Abrupt termination of the surface in the SCIB model

can be replaced by the background dielectric funcéiofw).

Equation (19) then givesZ=1/e..(w). Therefore, a peak in

S(Q=x,w) will appear at an energyiwy such that

We first discuss why the SCIB model corresponds to an
abrupt termination of the surface &t 0. One expects this to
. . ! . be true from the qualitative argument that the SCIB model
€x(wy) =—1. Now, settinge,=1 in Eq.(22) and inserting ,saq the bulk dielectric functiog(k,) of an unbounded
for €, the Drude response of EL8) with 7—, one gets  5nqom system of spheres, so the distribution of spheres is
hoy=hwpy1-1/2, which starts from the bulk plasma fre- he same near the surface as it is deep within the system.
quency atf=0 and shifts to lower energies d&sincreases, Thq js, the volume fraction of spheres has a constant vialue
attaining the surface plasmon vald@ss=fiw,/\2 for f  eyerywhere in the half space>0. This also can be shown
=1. For aluminum, one getswy=15.4 eV forf=0.15 and guantitively in the following way.
hwy=13.9 eV forf=0.5. We identify this peak with the  consider a two-component system with arbitrary geom-
high-energy peak which appears$(Q, ) in Fig. 2, in the  etry, confined to the half spage-0, which has translational
limit Qa—oc. This also explains why the redshift of this symmetry in thex andy directions after configurational av-
peak is larger forf=0.5 than forf=0.15. In conclusion, eraging. Let the local dielectric functions of the two compo-
S(Q,w) has a two-peak structure for any fini@ butithas  nents bee;(w) ande,=1, respectively, so the spectral vari-
a single-peak structure in two limiting casé€3:~0 andQ  aple isu= —1/(e;—1). It has been showrthat the surface

—00. The smallQ limit corresponds to the excitation by a response function(Q, ) has a spectral representation
constant field and can be identified with the Maxwell-Garnett

local approximation, and the largg-imit corresponds to the f r1D(Q,n) dn
excitation of the background. 9(Q,w)=— EJ

We now substitute the results f&Q, w), shown in Fig.
2, into Eq.(7) and perform thé, integration to geE (E). In
Fig. 1 we plotE(E) as a function oE for two values of the
impact parameteo=1 and 10 A, and two different values
of the filling fraction,f=0.15 and 0.5. The sphere radius is
taken asa=25 A. In contrast with the single peak B..(E)
found in the local model, the SCIB model gives a broad an
rich multipeaked structure i&(E). There is structure in a
low-energy region, from about 8 to 12 eV fé=0.15 and . 20 (=
from 6 to 13 eV forf=0.5, and also in a high-energy region Ef _ _j -2Qz
below 16 eV. The width of this structure comes from both #o(Q) 0 D(Qn)dn=- 0 f(z)dz (29
the nonlocal nature of the effective bulk responsg (k| w)
and the dissipation process included in the Drude respondderef(z), thez-dependent volume fraction of component 1,
€;(w). In other words, the profile d& (E) is closely related is the fraction of a plane surface at a given value tiiat is
to the low-energy structure and the high-energy peaks ofvithin component 1. The “normalizing constant/2 in Eq.
S(Q,w). For both filling fractions the strengths of the peaks(24) has been chosen so tha§(Q)=1 for a half space with
in the low-energy region are greater than the strengths od constant volume fraction of component f{z)=f for z
high-energy peaks. Although the strength in both regions de=0.

0 u—n ' (24)
wheref is the volume fraction of component 1 infinitely far
from the surface, where it is presumed to have a constant
value. The spectral functio®(Q,n) is real and positive,
with a nonzero value only in the regionsh=<1. In Ref. 5

C}he following sum rule for the zeroth moment(Q) of the
spectral function is derived:
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Now, it can be shown that the spectral function corre-charge by the dielectric functions of the two media, weighted
sponding to the SCIB model for the surface response fundby the factord and 1-f, which are the probabilities that the
tion has zeroth momeniy=1. The proof involves expand- external charge lies inside media 1 and 2, respectively.
ing the surface response function in increasing powersiof 1/
and comparing the~! terms. From Eqs(24) and (25) we 2. Smooth surface profile

find g=—3f o u '+ O(u ?). On the other hand, Eqe2) In this section we derive expressions for theependent
and(4) give L =1+f u "+O(u ). The integral in Bq.  yolume fraction of sphered(z). We shall show that for any
(19) can be done |mmeij|ate_l31/, so=1+1u +O(u™),  physically reasonable distribution of spherég) must be a
agd Eq.(ll) givesg=—5fu +_O(u )_.Comparlng Fhe continuous function ofz, and in particular,f(z) cannot
u”* terms in these two expressions frgives the desired change discontinuously from a constant vafuter z>0 to
result,uo=1. Therefore the SCIB model is consistent with athe value zero for<0, as in the standard SCIB model. We
constant volume fraction of sphertg) =f in the half space gng)| also find a specific result fdi(z), assuming a very
z>0. simple distribution of sphere positions, and use this result to

Following the derivation in the preceding paragraph, butcgicylate the zeroth moment of the half-space spectral func-
using Eq.(2) before applying the sum rule in E@), one can  {jon.

show that the zeroth moment is the sum of separate contri- Assume that all spheres have the same radiugor an
butions from the bulk mode and the surface modes: infinite three-dimensional system that is translationally in-
variant after suitable configurational averaging, the relation

— (B (S —
Ho= o (Q)+uo (Q)=1, (26) between thdconstant volume fractionf of spheres and the
where densityn of sphere centers is= 4/3 wa®n. However, if the
spheres are confined to a half space, both the density of
®(Q) ZQJOOC K dk, 7 sphere centers and the volume fraction of spheres depend on
ILLO - T 0 b Q2+ kg 4 Z.

To find the relation betweefi(z) andn(z), first take a
20 dk single sphere with center at, and imagine that the sphere is

MBS)(Q): _Qf 2 Cy(K) g -, (29 cut_by a plane of ared? at a given valu.e of. The contri-
7™ Jo s Q? bution of the sphere to the volume fraction at this value,of

TP , ) which we denotd(z), is the fraction of the areh? that is
with k“=Q“+ k3 . These equations will be used later for con- cyntained within the sphere,

structing the modified SCIB model.
We now present some arguments which suggest that the fi(z)=mla’—(z—z)?]/L?, (29
high-energy peak in Figs. 1 and 2, which comes from the )
bulk mode termC, /(u— 1) in Eq. (1), is an artifact of the 0f Z—asz=z+a. If [z—z] >a, the plane does not inter-
SCIB model and should not appear when the fast electron®€Ct the sphere, s§(z)=0. The total contribution of all
travel on a trajectory outside the surface. First, it is wellSPheres tof(z) is found by replacing; n Eq. (29) by a
known that an electron traveling on a classical rectilineai€ontinuous variable’, multiplying by L“n(z’) dz' where
trajectory can excite a bulk plasmon on a sphere described H)(Z') is the density of sphere centers, and integrating over
a local dielectric function, only in the case this trajectoryZ -
crosses the sphet&!*Since in our case the trajectory of the i
electron does not cross any of the spheres, one would expect f(z):,ﬁf n(z')[a?—(z—2')?] dz'. (30)
a coupling only to the interfacial modes. Second, in the deri-
vation of the equation fog;(k, ), which is used to calculate
the energy loss of electrons passing through the random syg—the spheres cannot_pe_netrate th_e surface piang, the
tem of spheres, an external charge density of the fom§phere centers must lie in the reginkra, son(z)=0 for
p(2) = po €2 was applied This work showed that the bulk %= & In the regionz>a , n(z) depends on the density of
mode term arises entirely from the part of the external charggphe.r.es and the_|r positions in thg half space. We can_flnd a
density inside the spheres. Since this external charge densi ecific expression fc_)fr(z) by ma_lkmg the s_|mplest possible
represents the overlap of initial and final wave functions for ssumption f(_)rn(z) in the regionz=a, 1.e., n(z)=n=
electrons scattered by the system, one would expect that fonst. With this assumption, E(B0) yields
the electrons did not enter the spheres, the external charge 3

z

zZ—a

2 1 3

density inside the spheres would be zero, and that there f(z2)=— L f, 0<z<?2a
would be no bulk mode excitation. 4\a) 3la
In the SCIB model, the external charge in the fictitious —f  7>7a. (31)

infinite medium is a surface charge density onzhked plane

associated with the discontinuity db,: 4wc®'=2D,(z  Figure 3 shows the step functiam(z) and the associated
=0+). Clearly this external charge is inside those spheresontinuous functiorf(z).

which are cut by thez=0 plane. Indeed, in the limiQ The zeroth moment of the spectral functibiin), defined
—o (or k—), the potential due to this charge becomesby Eq.(24), must have a value given by the sum r(@®). If
localized at thez=0 plane, so no interfacial modes are ex- we use the density profil&(z) given by Eq.(31) in Eq. (25)
cited. Also, in this limit the inverse dielectric function given to calculate the zeroth moment, which we denote by
by Eg. (22) simply represents the screening of the externang)(Q), the result is
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' ' T ' ' ‘ etrates less deeply into the half spac&asincreases, so the
1.0 1 continuously decreasinffz) near the surface causes a cor-
responding decrease pf")(Q).
08} .
3. Description of modified SCIB model
el ’ The standard SCIB model applied to a system of random
spherical particles in a half space has two defects. First, we
04r 1 have presented arguments which suggest that the high-
energy loss peak, which arises from the bulk mode term
0.2 - T Cp/(u—1) in Eq. (2), should not be present. Second, the
model does not take account of the continuous surface profile
00r 1 f(z) correctly since it gives a constant value for zeroth mo-
(') 1' 2' ment, uo=1, which does not agree with the decreasing ze-
Ja roth momentu ™ (Q) shown in Fig. 4.

In order to correct these defects, we propose the following
FIG. 3. Thez-dependent volume fraction of spherfig) as a  modified SCIB model. First, we simply omit the bulk mode
function ofz/a, when the density(z) of sphere centers is taken as term in Eq.(2) by settingC,=0. Second, we modify the
a step function. The dashed line is the step functi@z)/n and the  remaining surface mode terms so that the zeroth moment of
solid line is the correspondinfy(z)/f. the spectral function agrees with the “exact” value
wSM(Q) found from our simple model of a smooth surface

(M)/ ) _ o408 3 5 32 profile. In order to make this modification, we note that the
mo  (Q)=e "+ 5Qak(2Qa), (32 surface mode terms in EqQ) give a value oful(Q) that
can be calculated from E¢28). If we use an approximate
where analytic form for the total strength of the surface mofles,
o=z Lo 2 _ZX( 2 1 1 )] @3 o
X)=2| —=———-€ N e—=—>—=—— .
3 4 3x 3 4 Cik)= —, 34
X X X X ES s( ) \/m ( )

Figure 4 shows a plot of{")(Q) as a function ofQa. _

Recall thatu,=1 for a constant volume fraction in the half Wherep=ka andb=2.262, Eq.(28) gives

spacef(z)=f for z=0. The result limy_o[ x5 (Q)1=1

can be understood from the fact that the external potential

penetrates infinitely deeply into the half space in the siQall-

limit, so the falloff of f(z) within a distance 2@ from the

surface has no effect, and only theonstantvaluef(z)=f A plot of u{7(Q) as a function ofQa is shown in Fig. 4.

far from the surface is important. The external potential penCIearIy,uE,S)(Q)>,LL§)M)(Q), so the zeroth moment is still too
large, even after removing the bulk mode. The most straight-

Qa) (35

(S) 2
no (Q)= p arctan

L L forward way to get the correct zeroth momedﬁ")(Q) is to
1.0 7 multiply all surface mode strengths by the ratio
08+t B (M)
Mo (Q)
- RQ="—1g (36)
06} - mo (Q)
04l i The ratioR(Q) is plotted as a function da in Fig. 4.
' Therefore, the modified SCIB model consists of replacing
the inverse bulk dielectric function &(k,) in Eq. (19) by
02 . o ; . .
a modified inverse dielectric function
*or ] 1 1 Co(k)
' T —=—|1+f R —= 3
0 5 N 10 15 k) € (Q) ES U= na(K) (37)

FIG. 4. The dotted line is the interface-mode contributigf? ~ SinceR(Q) falls off rapidly asQ increases, the dispersion of
to the zeroth momeng, of the spectral functioD(Q,n), as a  the interfacial modes at large valueslowill play a smaller
function of Qa, for the SCIB model. The dashed line is the zeroth role in the modified SCIB model than in the original SCIB
momentu{™ of the spectral functio®(Q,n), as a function ofa, model. Therefore, the modified SCIB model should give a
when thez-dependent volume fraction of spherig), shown in  narrower energy-loss spectrum, closer to the spectrum of the
Fig. 3, is used in the sum rule given by EQ5). The solid line  local model. These qualitative expectations will be borne out
corresponds to the ratR(Q) = u{(Q)/ u{¥(Q), as a function of by the numerical calculations discussed in the following sec-
Qa. tion.
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mentioned above, for the same two filling fractions and im-
pact parameters, that i6=0.15 and 0.5 , andy=1 and 10

A. One can see tha (E) now has a weak dependence on
Zo, that the isolated structure below 16 eV has disappeared,
and that there is still some multipeaked structure in
SM(Q,w) at about 10 eV forf=0.15, and 11 eV forf
=0.5. The multipeaked structure #(E) for the modified
SCIB model is smaller in size and shifted to a higher energy,
in comparison with the corresponding peaks in the standard
SCIB model. Also, the shift to higher energy increased as
increases.

Finally, we can expect that the effects of nonlocality will
become smaller as the sphere radausdecreases, since
€(k,w) depends onk through the combined variablp
=ka. Therefore, the energy-loss spectrum found for either
SCIB model should approach the local energy-loss spectrum
as a—0. Also, the effects of nonlocality should become
smaller as the impact paramemgrincreases. However, since
the total strength of the energy-loss spectrum also decreases,
the limit of large impact parameter is probably of little inter-
est.

In conclusion, we have shown that the surface region of
the system has a strong influence on the energy-loss spec-
trum. In order to take account of the surface region, we have
constructed a modified SCIB model which corrects some of
the defects of the standard SCIB model. However, the model
is still an approximate theory since it is based on a mean-
field approximation and does not treat the correlations of
sphere positions near the surface correctly. Also it should be
noted that the model is applicable only if there is a planar
interface (at z=0) between the host material 2 and the
vacuum region, with the spherical particles contained en-
tirely within the host material. In fact, depending on how the
interface is formed, the surface of the host material might be

FIG. 5. (a) Surface loss functio$™)(Q,®), as a function of rough, the spherical particles might penetrate into the
Qa andfw, for alumi_num spheres in vacuum using the modified vacuum region beyond the=0 plane, so the outermost par-
SCIB model and a filling fractiori=0.15.(b) The same as &)  tjcles would be only partially embedded in the host, or the
but for f=0.5. portions of those particles that penetrate into the vacuum
region might simply be removed, giving nonspherical par-
ticle shapes. To treat any of these situations one would have

By substituting 16 (k, ) into Eq.(19) for the surface to go considerably beyond the models we have presented.
impedance and using E¢L1) one obtains an expression for
the surface loss functioB®™)(Q,w)= Im g™ (Q,w) corre-
sponding to the modified SCIB model. In Fig. 5 we show
S™(Q,w) as a function oRa and# w for f=0.15 and 0.5. In previous work it has been shown that when fast elec-
Obviously, since the bulk plasma mode has been removegons pass through a disordered sample consisting of spheri-
from the bulk dielectric responseel/ there is no structure cal inclusions at random positions in a host material, electron
in S™(Q,w) aroundw~15 eV. ForQa=0 there is a energy-loss spectroscopy in the valence electron region (0
single isolated peak which is the same as in the standaret E<40 eV) can be useful for providing structural informa-
SCIB model. Then foQa>0 a multipeaked structure ap- tion, such as the size and volume fraction of the inclusions.
pears which is considerably reduced in strength when comHowever, since the fast electrons can damage the sample, it
pared with the structure in the low-energy region ofis of interest to develop a theory of energy loss for electrons
S(Q,w) in the standard SCIB model, as shown in Fig. 2.traveling parallel to and outside the interface of a semi-
Also, asQa increases there is an extremely fast overall dedinfinite system of random spherical inclusions, with the hope
crease o5 (Q,w). For example, for both filling fractions, that structural information can be obtained using a distant
f=0.15 andf=0.5, andQa=6, S™(Q, ») has almost van- electron beam which does little damage to the sample.
ished. This behavior comes, obviously, from the fast drop of In this work we calculate the energy-loss spectrum of the
R(Q), as a function oQa, as can be seen in Fig. 4. semi-infinite disordered system starting with models of an

We now calculateZ (E) for the modified SCIB model by infinite disordered system represented by an effective nonlo-
substitutingS™)(Q, w) into Eq.(7). The results are shown in cal dielectric response functian(k, ). An important ingre-
Fig. 1, together with the results of the other two modelsdient in the theory is the surface response funcg¢®, )

4. Results and discussion

IV. CONCLUSIONS



11 202 MENDOZA, BARRERA, AND FUCHS 57

of the half space, since the energy-loss spectrum is related taboratory is operated for the U.S. Department of Energy by
an integral oveRQ of Im g(Q,w). The problem to be solved lowa State University under Contract No. W-7405-Eng-82.
is how to calculate the half-space response funagig@, »)

from _the 'bulk diel_ec'_tric functiom(k,w). Although this c.al— APPENDIX A: STRENGTHS AND LOCATION

culation is, in prl_nC|pIe, not p055|ble_, we have co_nS|dered OF THE MODES

three models which allow an approximate calculation to be

performed. In this appendix we quote the formulas for the strengths

In the first model a localk=0) limit is used for the bulk C, andCg, and locatioms of the modes which appear in the
dielectric function. In this limit the bulk dielectric function spectral representation ef(k,w) given by Eq.(2) and de-
reduces to the well-known Maxwell-Garnett dielectric func-rived in Ref. 3. The bulk strength is given by
tion, and the calculation of the surface response function is
trivial. We determine the energy-loss spectrum for a system °°
of random aluminum spheres in the half space, with vacuum Cp= 1—32 1(21+1)
as the host material. We find a single energy-loss peak, as- -t
sociated with the dipolar resonant mode of the spheres. Thgherep=ka. The strengths of the surface modes are
position of the peak depends on the volume fraction of
spheres, and is independent of the sphere radius. () i1(p)

The second model is the semiclassical infinite barrier ¢ =33 \/”'(2|+1)(2|'+1)MU|SUVS,
(SCIB) model, which has previously been applied to find the n’ 2
surface response function of homogeneous nonlocal media. (A2)
The nonlocal dielectric function of the infinite medium has
many resonances associated with both dipole and highe
multipole interfacial modes which lie below the plasma fre-
quency, and a bulk mode at the plasma frequency, which
arises from those electrons w_hich pass through the spheres. 2 U;1H”,U|IS,:nS5SS“ (A3)
The energy-loss peaks associated with these modes also ap- TQ
pear in the half-space energy-loss spectrum, but the peaks are
shifted to energies lower than those in the infinite medium.and the matrix+,;. is given by

The third model is a modified SCIB model, in which we
introduce information about the spatial distribution of the o
spherical inclusions near the surface. It is well known that =911
the standard SCIB model does not represent the surface re-
gion adequately, so the intent of this model is to partially I’ (|+|')!/1 I+1"-2
correct this deficiency. We first eliminate the bulk mode, +3f I+ 12+ 1) [ \5)
arguing that the electrons do not pass through the spherical @+D2"+1) td")!
inclusions. We also modify the strengths of the interfacial i1s1-1(2p)
modes so that their total strength is consistent with the dis- XZ—'
tribution of spheres near the surface. A simple model for this p
distribution of spheres is derived by assuming that th§, these equationsj,(x) represents the spherical Bessel
spheres cannot penetrate the nominal surface plane, but thath ction of ordery.
otherwise their centers are randomly located. The modified
SCIB model gives an interfacial loss peak structure which
has both a reduced strength and width, compared to the stan- APPENDIX B: DER'VAT'EN OF THE FORMULA
dard SCIB model. FOR E(E)

In this appendix we derive the expression BXE) given
in Eq. (7). We assume that the electrons have sufficiently
high energy that they travel on a trajectory which deviates
Part of this work was done at the Cavendish Laboratorypnly slightly from a straight line and that their energy change
Department of Physics, University of Cambridge. We areis very small compared to the initial energy. Taking the co-
grateful to A. Howie, J. Rodenburg, and other members obrdinate system defined in Sec. I, we consider an electron of
the Microstructural Physics Group for their hospitality andcharge —e traveling along a trajectory given by=0, y
for making the facilities of the laboratory available to us. We =vt, z= —z, above the half space$0) occupied by the
acknowledge interesting discussions with P. M. Echeniquesystem. The energy loss of the electron as it moves a distance
A. Rivacoba, and J. Aizpurua. R.G.B. acknowledges the fidy is given by the negative work done by force on the elec-
nancial support of Direccio General de Asuntos del Per- trondW=—F, dy=eE, dy, whereE, is the induced elec-
sonal Acadmico of Universidad Nacional Autdma de tric field acting on the electron. Therefore, the energy loss
México through Grant Nos. IN-102493 and IN-104195. per unit length is
C.I.M. acknowledges the support of DireccicGeneral de
Intercambio Acadeico of Universidad Nacional Autmma dw dpnd
de Mexico and Fundacio UNAM, A.C. through “Recono- dy —e ay
cimiento a estudiantes distinguidos de la UNAM.” Ames x=0,y=v, t, z= =7

2

Ji(p) , (A1)

p

vhereUy, is a unitary matrix which diagonalizes the matrix
117 |e,

(A4)

ACKNOWLEDGMENTS

(B1)



57 ENERGY LOSS OF ELECTRONS TRAVELING PARALLE. .. 11 203

We can find an expression for the induced potentidf in by

Eq. (B1) by starting with the external charge density of the 2
electronp®(r,t) = —e 5(x) 3(y—wvyt) 8(z+2,), which has dw_ f "dE - (B6)
thet— w Fourier transform dy Jo dl dE’

Combining Eqgs(B5) and(B6) one gets Eqs6) and (7).

p¥(r,w)=—(elv|) 8(x) 8(z+z0) Y. (B2 APPENDIX C: LOCATION AND STRENGTH
OF THE EFFECTIVE MODE

One can then use Coulomb’s law to write an expression for Here we use two sum rules to determine the location and
the external potentia}peXt(r,w)_ After a trivial integration strength of the ef]‘ecti\(e mode used in the calculation. The
overz, the remaining integral over andy is in the form of  first sum rule is given in Eq4):
a convolution. Writing Q=(k,,k,), one can express
¢®YQ,z,0), the two-dimensional Fourier transform of Cp+ > C=1
¢®Y(r,w), as the product of two Fourier transforms. The s
result is pY(Q,z,w) = ¢¥(Q,w) e for z>—2z,, where  and assures that the sum of the strengths of all the modes is
always conserved. If we now replace the modes sithé
with a single “effective” mode, the strength of this effective
(2m)? modeC.; was chosen as

¢6XI(Q'(U):_ Q 5(w_kyv|) e_QZO. (Bg)

6
ceﬁ=1—cb—s§l Cs (CD

Using Eq.(B3) in the relation between the external and in-
duced potential given by Ed8), followed Eq.(9) to find
$"(p,z,w), and an w—t Fourier transform to give
¢'"(p,z,t), which is then substituted into E¢B1), one gets

in order to fulfill the sum rule. The locatiomg of the modes
with s>6 lies betweennd=6/13~0.46 andn2=0.5 and
they show a very weak dispersion; i.e., their location is al-
most independent dfa. Therefore we choose, for simplicity,
the locationng of the effective mode as a constant halfway

5 betweem? andn?, that is,n.s=0.48. In order to check that
d_W: & tedw Fedky i g(Q,0) e Q7% this choice is adequate, a second sum rule has to be
dy v2) e 27 “)_.Q satisfied®

(B4)

2 Cne=F(p;H)=2, 3Il'(21+1)(2l' +1)
I’
where Q=x/kxz+(w/v|)2. Now one can use the relation s )
) =g* : : Xp~“Jilp) Jir(p) Hyr (C2
0(Q,— w)=9g*(Q,w) in order to rewrite Eq(B4) as ,
whereH,,, is the matrix given in Eq(A4). Therefore, our
values ofC.4 and ng should satisfy the equation

dW 2e? d J’ x| —20 6
—_—=— m e .
ay m,z @ do [9(Q.)] Cott Neirt 3, Ceny=F(pif) =0, 3
(B5) s=1
We have checked that fdr=0.5, the left-hand side of Eq.
(C3) is always less than:210 3. The same happens fdr
The probability per unit path length, per unit energy =0.15, except in the interval€ka<2, where the left-hand
d?P/dl dE of an electron losing energy=+%w is defined side of Eq.(C3) can be at most 1.2610 2.
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