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Local-field effects at crystalline surfaces are analyzed on a classical system consistent of ordered
arrays of polarizable spheres. A theory for the energy loss of fast electrons traveling parallel to
these arrays is presented. A spectral representation of the surface response function is used to
calculate this energy loss. The poles and weights in this representation are determined through the
eigenvalues and eigenvectors of an interaction matrix which takes into account the quasi-static
electromagnetic fields to an arbitrary multipolar order. We apply the theory to calculate the en-
ergy-loss spectra for cubic arrays of aluminum spheres embedded in vacuum and compare the
results with those obtained using a dielectric continuum model.

1. Introduction

The effects of the local field (LF) in the optical properties of crystalline surfaces has
been a topic of continuous research during the last decades [1]. The local field at a
point is related to the polarization properties of matter and is defined as the sum of
the applied plus the induced field, the latter being the field produced by the induced-
charge and -current densities. Therefore, the origin of the LF is the two-body electron±
electron interaction, and since the source are charge and current densities it is also a
many-body effect. The inclusion of LF effects in the calculation of the dielectric re-
sponse of matter has a long history. For example, in the case of a system of isolated
isotropic molecules located at random, a mean-field approach yields the celebrated
Clausius-Mossotti relation. By using different approaches [1], it has become clear that
the calculation of the LF effect is a rather complicated computational process, and it
requires, as a starting point, the microscopic dielectric response for all wavevectors on
the reciprocal space; a quantity difficult to calculate. In the case of the bulk, the above
procedure has been tested in some wide bandgap materials and semiconductors, but in
the case of a crystalline surface this has not been possible and alternative approaches
had to be devised. Also, in other schemes like the time-dependent Hartree approxima-
tion (TDH) or in the time-dependent local-density approximation (TDLDA) part of
the LF effects were recently introduced through the use of the dipolium model [2]. In
this model the crystal is thought to be composed by cells with an effective polarizabil-
ity and these cells interact with each other through the dipole±dipole interaction. It
was shown that in the case of cubic semiconductors like Si and Ge, the surface LF
effects were not negligible and their sole inclusion was able to reproduce fairly well
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the profile of the reflectance anisotropy spectra (RAS) [2], [3]. The ideas behind the
use of the dipolium model have been extended by MochaÂn and Tarriba [4] to the case
of metallic surfaces by devising, what is now known as the `Swiss-cheese' model. In
this model the polarizable ion cores are regarded as spherical ``holesº within a homo-
geneous electron gas which mimics the s±p electrons. This model has been successfully
applied to the calculation of the RAS spectra of the (100) face of Ag and Au [4], [5].
The use of either the dipolium or the `Swiss-cheese' model have stressed the fact that,
in essence, the LF effects are not a pure quantum-mechanical effect. The problem of
the LF effect at surfaces appears also in classical systems, inheriting some of the main
complexities present in the quantum-mechanical ones. Due to the importance of the
LF effects at surfaces, it is an important ingredient in the calculation of electron en-
ergy-loss spectra of high energy electrons [6], a technique that is becoming an impor-
tant tool for structural analysis of surfaces [7]. Here we will present the calculation of
the electron energy loss of electrons passing above an ordered array of polarizable
spheres including local-field effects through a multipolar expansion. That is the reason
why we call this model the multipolium. The effect of the induced multipoles beyond
the dipole is displayed and we compare the results with those obtained using a dielec-
tric continuum model.

2. Formalism

Let us consider a cubic array of identical polarizable spheres of radius a and a local
dielectric function es�w� occupying a slab-shaped portion of the region of space z < 0,
as shown in Fig. 1. A fast electron is traveling at speed vI on a rectilinear trajectory
along the y-axis and at a distance z0 above the surface of the slab. Its coordinates at
time t are given by �x0; vIt; z0�. The array is tilted by an angle f with respect to the
x-axis (see Fig. 1). Our aim is to calculate the energy lost by the electron as it travels
above the system of spheres in the quasi-static aproximation.
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Fig. 1. An electron with charge
ÿe moves with velocity vI � vIey

parallel to an ordered array of
spheres. The direction [100] of the
lattice makes an angle f with re-
spect to the x-axis



In order to perform the calculation of the energy loss it is convenient to work with
Fourier transforms with respect to time and two of the spatial variables. For example, in
the region z < z0, the time Fourier transform of the external potential produced by ex-
ternal charges located at z � z0 satisfies the Laplace equation and can be written as [8]

fext�r; z; w� �
�

d2Q

�2p�2 fext�Q;w� eiQ �r�Qz ; z < z0 ; �1�

where r � �x; y�; and w and Q � �Qx;Qy� are the frequency and the two-dimensional
wave vector, respectively. The magnitude of Q is denoted by Q � jQj. A similar expres-
sion is satisfied by the induced potential in the region z > 0.

We assume a linear relationship between the induced and external potentials which
can be written, for systems with crystalline periodicity parallel to the interface, as

find�Q;w� � ÿP
G

g�Q;Q�G; w� fext�Q�G;w� ; �2�

where G is the two-dimensional reciprocal lattice vector corresponding to the crystal
lattice.

The energy loss dW of the electron as it moves a distance dy is given by

dW

dy
� ÿe

@find�x; y; z; t�
@y

����
x�x0 ; y�vIt; z�z0

; �3�

where ÿe is the charge of the electron. For our system it is found that the energy loss
contains terms that oscillate in time, which correspond to a time-dependent energy loss
[9]. Since we are interested only in the time average of the energy loss and performing,
for simplicity, a lateral scanning of the electron beam, then only the term with G � 0
contributes to the averaged energy loss and we can write

dW

dy

� �
t; x0

� e2

pv2
I

�1
0

w dw

�1
ÿ1

dQx
eÿ2Qz0

Q
Im g�Q; w� ; �4�

where h. . .it; x0
means time and lateral average, g�Q;w� � g�Q;Q; w�, and Q � Qx;

w

vI

� �
.

We define d2P=dl dE, the probability per unit path length, per unit energy, for an
electron to be scattered with energy loss E � �hw; through

dW

dy

� �
t; x0

�
�1
0

dE E
d2P

dl dE
� a0EI� �ÿ1

�1
0

dE EX�E� ; �5�

where the dimensionless quantity X�E� is called the energy-loss probability function.
Here a0 is the Bohr radius and EI is the electron incident energy. By combining
Eqs. (4) and (5) one can write

X�E� � 1
2p

��1
ÿ1

dQx
eÿ2Qz0

Q
Im g�Q;w� : �6�

The response function g�Q;w� carries information about the interaction among the
spheres. Following [8] the calculation of g�Q;w� is performed to all multipolar orders
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and expressed as a spectral representation in the following form:

g�Q;w� � ÿ 1
2

P
s

Ds�Q�
u�w� ÿ ns�Q� ; �7�

where

u�w� � ÿ 1
es�w� ÿ 1

�8�

is the spectral variable, which depends on the dielectric properties of the material. The
words spectral representation mean that g�Q;w� is expressed as a sum of terms with
simple poles, where the poles located at u�ws� � ns�Q� yield the dispersion relations
ws�Q� of the polarization normal modes of the system, and the residues Ds�Q� give the
strength of the coupling of these modes with the external potential. Both ns�Q� and
Ds�Q� depend only on the geometry of the system and not on the dielectric properties
of the materials. The procedure for the calculation of ns�Q� and Ds�Q� can be found in
[9]. It turns out that the ns�Q� correspond to the eigenvalues of an interaction matrix

Hl0m0j
lmi �Q� �

l

2l � 1
dll0dmm0dij � 1

4p

����
ll0
p

al�l0�1Bl0m0j
lmi eiQ � �rjÿri� �1ÿ dij� : �9�

An expression for the quantities Bl0m0j
lmi appears in [6]. Notice that the location of the

spheres is completely arbitrary in the above expressions, so they can be used for either
an ordered or disordered system.

Then, one can show (see [9]) that the strengths Ds�Q� can be written as

Ds�Q� �
P

lmi; l0m0 j
AQ;lmiUlmi;s Uÿ1

s;l0m0j Al0m0j;Q : �10�

Here, Ulmi;s is the unitary matrix which diagonalizes the matrix Hl0m0j
lmi and

Al0m0j;Q �
������
4p
p

L
�ÿim

0 � eÿim0h

����������������������������������������������������������
la2l�1

�2l0 � 1� �l0 �m0�! �l0 ÿm0�!

s
Ql0ÿ1=2 eQzi ; �11�

with AQ;lmi � �Almi;Q�*, h the angle of Q with respect to the x-axis, and L !1� � the
size of the system in the x and y directions. These results are exact within the above-
mentioned assumptions, and Eqs. (6) to (11) establish a well-defined procedure for the
calculation of X�E�:

3. Results

In this section we present numerical solutions for X�E� for a system of aluminum
spheres in vacuum. The dielectric response of aluminum is modeled by a Drude dielec-
tric function

es�w� � 1ÿ w2
p

w�w� i=t� ; �12�

where wp is the plasma frequency and t the relaxation time. In the results presented
below the Drude parameters for aluminum have been taken as �hwp � 16 eV and
wpt � 100: Also, we have fixed EI � 100 keV, which corresponds to the typical incident
energies for electrons produced in a scanning transmission electron microscope, and we
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have chosen a � 2:5 nm and z0 � 1 nm. We will show results for systems with differ-
ent number nz of layers, and for different values of the filling fraction of the
spheres f , the maximum multipolar order considered in the calculation Lmax, and
the angle f which the electron trajectory makes with the �010� direction of the cubic
lattice.

First, we present results for a single layer of spheres in a square lattice taking
Lmax � 1; which corresponds to the dipolar approximation. In Fig. 2 we plot the disper-
sion relation �hws�Q� of the three (s � 1, 2, 3) normal modes of the electric field in the
layer. We have chosen f � 0:5 and a definite trajectory in reciprocal space. The two-
dimensional periodicity in the xy plane introduces a dependence of the dispersion rela-
tions �hws�Q� on the direction of Q: Each of these modes has a particular direction of
polarization. One is along the z direction, labeled Z, and two modes, labeled XY and
YX , are linearly polarized in the xy plane and are orthogonal to each other. There is
no interaction between the different directions of polarization, so the modes preserve
their character when they cross.

In Fig. 3 we have plotted X�E� for f � 0:15 and 0:5; Lmax � 1; and three different
angles, f � 0�, 30� and 45�. As a comparison we also show the corresponding functions
X�E� given by the Maxwell Garnett theory (MGT). In this effective-medium theory the
inhomogeneous system is regarded as a homogeneous slab of thickness d � a�4p=3f �1=3

with an effective dielectric response EMG�w�; given by [10]

EMG�w� � u�w� ÿ �1� 2f �=3
u�w� ÿ �1ÿ f �=3

: �13�

This theory corresponds to a mean-field dipolar approximation which means that the
polarized spheres interact only through their induced average dipole moment [11]. On
the other hand, the surface response function g�Q;w� for a homogeneous slab of thick-
ness d with a local dielectric response E�w� is given by [12]

g�Q;w� � �E
2�w� ÿ 1� �eQd ÿ eÿQd�
Fÿ�Q;w� F��Q;w� ; �14�
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Fig. 2. Dispersion relations of
the three normal modes of the
electric field in a single layer
of spheres with Lmax � 1. The
filling fraction is f � 0:5



where

F��Q;w� � E�w� �eQd=2 � eÿQd=2� � eQd=2 � eÿQd=2 : �15�
In the MGT the slab has no structure in the xy plane, so gMG Q;w� � does not depend
on the direction of Q and X�E� is independent of the trajectory angle f:
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Fig. 3. a) Energy-loss probability function ��E� as a function of the energy loss E � �hw for a sin-
gle layer of spheres with a filling fraction f � 0:15 and Lmax � 1. Three different angles of the
electron trajectory with respect to the [010] axis of the array of spheres were chosen: f � 0� (solid
line), 30� (dashed line) and 45� (dotted line). The open circles represent the corresponding result
as given by the Maxwell Garnett theory with d � 7:58 nm. b) The same as in a) but for f � 0:5
and d � 5:07 nm



The inclusion of higher-order mul-
tipoles will give rise to a larger
number of modes. In this case the
analysis of the contribution of all
different modes to X�E� is more
complicated, nevertheless, it turns
out that as the number of modes in-
creases the band of energies occu-

pied by the modes also increases until convergence is attained.
Now we consider a system composed of nz layers of spheres with their centers lo-

cated, as discussed above, in a cubic lattice. In Fig. 4 we show the spectra of X�E� for
systems with various values of nz and f : The value of Lmax is chosen so that multipolar
convergence is achieved. In Fig. 4a we plot X�E� for nz � 1 and f � 0:065, 0:15 and 0:3.
As it can be seen, the larger the filling fraction of the spheres, the higher the maximum
multipolar order to be considered in the calculation to achieve convergence. In Figs. 4b
and c we show the spectra of X�E� for nz � 2 and 6, respectively, and filling fractions
f � 0:065, 0:15 and 0:3: In all these plots, the spectra with the largest number of layers
correspond to the half-space limit.

4. Summary

We presented a theory for the calculation of the energy-loss probability function for an
electron traveling on a definite trajectory outside an ordered array of polarizable
spheres confinated to a slab-shaped region of space. The trajectory makes an arbitrary
angle with respect to the symmetry directions of the array. The local field produced by
the polarized spheres is calculated to all multipolar orders in the nonretarded limit.

The energy loss is given in terms of a surface response function g Q;Q�G; w� � which is
expressed as a spectral representation. Taking a time average and also an average over
lateral positions of the trajectory, we find that only the G � 0 term survives, so the energy
loss depends on the distance of the trajectory from the surface and on the trajectory
angle, and a simpler response function g Q;w� � can be used in the energy-loss calculation.
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Fig. 4. a) Energy-loss probability function
��E� as a function of the energy loss
E � �hw for slabs made of nz � 1 layers of
spheres and with filling fractions
f � 0:065, 0:15, and 0:3. The maximun
multipolar order, Lmax, was chosen in order
to achieve multipolar convergence. For all
curves f � 0�. The solid line corresponds
to f � 0:065 with Lmax � 3, the dashed
line to f � 0:15 with Lmax � 3, and the
dotted line to f � 0:3 with Lmax � 8. b)
The same as in (a) but with nz � 2.
c) The same as in a) but with nz � 6



We apply our theory to an array of spheres with their centers placed on a cubic
lattice, and present results for slabs containing 1 to 6 layers of aluminum spheres in
vacuum.

We also show that a simplified theory, in which the layer of spheres is replaced by a
slab filled with a homogeneous dielectric medium given by the Maxwell Garnett theory,
gives energy-loss spectra that agree qualitatively with those found using the exact theo-
ry in the dipole approximation.
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