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Electron energy loss in ordered arrays of polarizable spheres
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We develop a theory for the energy loss of swift electrons traveling parallel to an ordered array of polariz-
able spheres. The energy loss is given in terms of a surface response function which is expressed as a spectral
representation. The poles and weights in this representation are determined through the eigenvalues and
eigenvectors of an interaction matrix. This matrix takes account of the quasistatic electromagnetic interaction
between the polarized spheres to an arbitrary multipolar order. We use our theory to calculate the energy-loss
spectra for cubic arrays of aluminum spheres with various numbers of layers and compare the results with
those obtained using a dielectric continuum mo@e0163-182@09)05843-9

[. INTRODUCTION described by local dielectric responses but the interaction
among the polarized spheres was taken to all multipolar or-
Electron-energy-loss spectroscofELS) of inhomoge-  ders within the mean-field approximation. The calculated
neous systems has been an active field of research during tBpectra using this theory showed well-defined peaks coming
last decades. Here, we will be interested in the calculatiofirom the excitation of the bulk plasmons of the inclusions
and analysis of EELS spectra of granular matter. The calcuand the matrix, as well as the ones coming from the excita-
lation of the energy loss of swift electrons passing through dion of interfacial modes, that is, modes in which the induced
system of nanometric inclusions embedded in an otherwiseharge is located at the interface of the spheres and the ma-
homogeneous matrix was stimulated by the recent experixix. These calculated spectra also agreed with the experi-
ments of WalsH.The concept of an effective medium for the mental spectra of Walsh. Further theoretical developrfients
calculation of the energy-loss function in a granular composalso showed the merits and limitations of athhocphenom-
ite has been very appealing because one might expect thanological theory devised to explain the experimental re-
this function could be written in terms of the effective dielec- sults. These developments have also shown the possibility of
tric function associated with the composite. The first at-defining an effectivdocal dielectric response that could de-
tempts along these lines were done by using the effectivecribe the energy-loss process.
dielectric functions which had proved to be successful in There is also interest in the calculation of energy-loss
describing the optical properties of granular composites,spectra for an experimental setup in which the electron trav-
like the ones devised, for example, by Maxwell GarRett, els parallel to the surface of the sample. Since there are cases
Bruggemart, or Landau and LifshitZ. The main problem in which it is actually not possible to construct very thin
encountered in using these types of effective dielectric funcsamples, one of the advantages of this experimental setup is
tions was that the peaks in energy loss coming from thehat the electron does not have to go through the sample.
excitation of the bulk plasmons of the inclusions did notNevertheless, there is also the question of how much infor-
appear in the calculated spectra. The origin of this problenmation about the surface structure will be contained in these
was the local nature of the effective dielectric response, thagnergy-loss spectra. Answers to this question have been pro-
is, the effective dielectric response depended only on the&ided using different approaches. For example, the authors
frequency of the applied field and had no dependence on itsf Ref. 8 have extended to a half space the idea of a nonlocal
wave vector. This actually means that the response is validffective dielectric response discussed above for a system of
only in the limit as the wave vector tends to zero. Althoughrandom spherical inclusions. In order to do this they used a
this limit might be appropriate when the system interactssimple model for the structure of the interface together with
with light, this is certainly not true when the applied field is anad hocelimination of nonphysical features in the energy-
the field carried by a moving electron, as in the case ofoss spectrum. On the other hand, Pendry and
EELS. One would expect that an effective dielectric functionMartin-Morend (PMM) devised a calculation procedure to
that could describe properly the energy-loss process shoulubtain the energy-loss spectra of fast electrons traveling par-
be nonlocal, that is, should depend on the frequency and thallel to a half spacéor a slab occupied by arorderedsys-
wave vector of the applied field. This approach was taken byem of spheres. In this procedure, the fields are decomposed
Barrera and Fuchswho find a nonlocal effective dielectric on a transverse basis and the reflection coefficients of the
response that could be used to calculate the energy-loss spédwlf space are found by a finite-element numerical technique.
tra of fast electrons passing through a system of randorithe energy loss of the electron traveling along a rectilinear
spherical inclusions contained in a matrix. In their approachglassical trajectory above the half space, or a finite slab, is
it was assumed that both the spheres and the matrix weiglculated in terms of these reflection coefficients. The cal-
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culation includes retardation effects. Although the calcula-
tion procedure cannot be readily extended to an infinite sys-
tem of disordered spheres, the authors argue that their result:
might also be applied to this case. Nevertheless, the systerr
they actually deal with, that is, a half space of an ordered
array of spheres, is interesting in itself. Here, we tackle this
problem in the nonretarded limit by finding a spectral repre-
sentation of the reflection coefficient of longitudinal waves. "
In terms of this reflection coefficient the energy-loss spectra |
are readily calculated. Since the interaction among the polar-
ized spheres is kept to all multipolar orders, our calculation
can be regarded, in the nonretarded limit, as exact. The most |
attractive features of our procedure are tligtits extension '
to a disordered system is straightforward dingits numeri-

cal solution is extremely simple, as it only requires the cal-
culation of the eigenvalues and eigenvectors of a well-
defined interaction matrix. Also, since PMM have not
reported results of their numerical calculation for a case in
which retardation can be neglected, not only our procedure
but also our results are new. In Sec. Il we develop the for- £~ 1 an electron with charge-e moves with velocityv,
malism of our theory and derive an explicit expression for:VIey parallel to an ordered array of spheres. The direcfl90]
the interaction matrix. In Sec. Ill we present the Maxwell of the |attice makes an angle with respect to thex axis.
Garnett theory for the case of a finite slab. We apply this

theory to specific examples which then serve as a wellgyced by the electron will be only its quasistatic longitudinal
defined framework for the analysis of our numerical resultscqoylomb field. This quasistatic approximation will be valid

In Sec. IV we present and analyze our numerical results fogs |ong as ¢, /c)2<1, wherec is the speed of light.

the case of a single-layer slab. The detailed analysis of this \we now proceed to the calculation of the energy loss. It is
case is then used to construct a clear physical picture of thegnyenient to work with Fourier transforms with respect to
results presented for a multilayer slab and the half spacqime and two of the spatial variables. For example, in the

Finally, in Sec. V. we summarize our results. regionz<z,, the time Fourier transform of the potential pro-
duced by external charges locatedzatz,, which will be
Il. FORMALISM called the external potential, satisfies Laplace’s equation and

can be written &9

We consider a cubic array of identical polarizable spheres
of radiusa and a local frequency-dependent dielectric func- ox d?Q oxt iQ-p+ 0z
tion e(w) occupying a slab-shaped region of space. The @ t(PvZ?w):f 5 0(Q,w)e™ P 72<7,,

S . X . (27)

coordinate system is chosen such thatzlagis points along (1)
the[ 001] direction of the cubic lattice and the spheres are in
the regionz<0. Thexy plane is tangent to the uppermost Wherep=(X,y), andw andQ=(Qy,Q,) are the frequency
layer of spheres whose centers lie on the plare-a. A and the two-dimensional wave vector, which are the Fourier
fast electron is traveling at speegdon a rectilinear trajectory variables corresponding to the time and space transforms,
above the slab and along tiyeaxis. Its coordinates at timte ~ respectively. The magnitude @ is denoted byQ=|Q|.
are given by o,V t,20), andz, is called the impact param-  Similarly, the induced potentiap™® in the regionz>0
eter. The axes of the coordinate system attached to the lattiédso satisfies Laplace’s equation and can be written as
will be denotedx’, y’, andz’, and they lie along thgl00], 420
[010], and [001] crystallographic directions, respectively. i ] i (0. 00z
The primed and umprimed axes have a common origin and d’md(p’z""):f (2m)? ¢"U(Qw)e' P >0,
the angle between theand x’ axes will be denoted by )
(see Fig. 1 Therefore, the two-dimensional unit cell isa . _ )
square tilted an angles from the x axis. In its travel, the Wlth_ln the_spmt of linear response theory we assume alln_ear
electron polarizes the system and the electric field producetglationship between the induced and external potentials,
by this polarization acts back on the electron. Our objectivéVhich can be written, in its most general form, as
is the calculation of the power that would be needed by an
external force, working against the polarization forces, to $"(Q,0)=—2, 9(Q,Q";0) Q" w), 3
keep the electron traveling with a constant speed Since Q'
we are considering very fast electrons, for which the devia- . . -
tion from a rectilinear trajectory is negligible and the changeWhere the response funclig(Q.Q"; ) satisfies
in energy is very small compared with the initial energy, this e N (— O —O) - —
power can be identified with the power lost by the electron. 9(Q.Q%w)=g%( _Q' Qi) @
In our calculation, we will neglect the effects of the magneticdue to the requirement that'"(p,z,t) should be real if
field produced by the moving electron; thus the field pro-¢®*{(p,zt) is real. Herex denotes complex conjugate and
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9(Q,Q’;w) plays the role of dlongitudina) reflection am-  This expression fo(dW/dy); yields the energy loss per unit
plitude in analogy to the reflection of transverse waves. Inength for an electron which travels on a rectilinear trajectory
our case, the square-lattice periodicity parallel to the interalong they axis at a distance, above the interface and at a
face allows us to write lateral distance, from the origin. For simplicity, we now
suppose that the electron beam, at a given impact parameter
i ) z,, performs a lateral scanning, which corresponds to aver-
¢md(Q’w):_%: 9(QQ+Giw)¢™(Q+G,w), (5) aging the electron trajectories over the parameterThis
means that in the expression fatW/dy), given in Eq.(10),
whereG is a two-dimensional reciprocal lattice vector cor- the terms withG,# 0 average to zero, leaving only the single

responding to the square lattice. term with G,=0. Therefore, we can write
The energy lossW of the electron as it moves a distance
dy is given by dw e? e~ 2Q%
) —_ =— wdwf dQ,———Im
dW  9¢™M(x,y,z,t) 6 < dy>t V2 f xq Q 9(Q @),
&y Ty - ® (12

X=Xq,y=Vt,z=2,

where —e is the charge of the electron, and=x,, y where( . . .); x, means time and lateral average and

=v,t, z=z, are the equations of its trajectory. For our case

where the external charge is a moving electron with charge 9(Q,0)=9(Q,Q;w). 13
density p(x,y,z,t)=—eds(x—Xq) 8(y—v,t) 8(z—z0), the _ L
external potential®™{(Q, w) is given by We now wr!'ge the energy los=%w and defl_ned P/dIdE,
the probability per unit path length, per unit energy, for an
e Qn electron to be scattered with energy Id&ssthrough
#%(Q,w)=—e(2m)? e W50 —Qyvy). (7)
_ dw 2
Calculating ¢'"(x,y,z,t) using Egs.(2), (5), and (7), one ay =f0 dEES = (14)
obtains tXo
dw _ todw The dimensionless quantity
—=—|— f dQXE 9(Q.Q+Giw)
dy 27 1 d*P
— — 2
e lQ+Glzg w . :(E)=§mov|aod|dE, (15
XG_QZO—e_lGXXO __Gy) e—levlt' (8)
[Q+Gl Vi will be referred to as the energy-loss probability function.
where Here,mq is the electron rest mass aag is the Bohr radius.
By combining Eqs(12), (14), and(15) one can finally write
w w
Q:(Qx=v__Gy and Q+G= QX+GX7V_)' (9) 1 [+= e 2Q%n
: ! E(E)= e deTlm 9(Q,w), (16)
One can prove that the above expressionddf/dy is a real
quantity by using Eq(4). One can also see that in this ex- \yhere
pression there are terms that oscillate in time, which corre-
sponds to a time-dependent energy loss. Since here we are ©
interested only in the time average of the energy loss, this Q= Qx’v_ (17

implies that in the sum ove@, only the term withG,=0
will survive. Taking this into account, and transforming the . . .
integral over frequency to an integral over positive frequen- The next step is the calculation of the response function
cies in the rhs of Eq(8) by using the symmetry property),  9(Q,®). According to Eq(3), this implies that we must find

one can write the induced potentiath"(Q,») with the sameQ as the
external potential, that is,
dw eZ ind ex
@y =, wde ~do, $"%(Q,0)=~9(Q.®)¢*(Q.0). (18)
t TV
This response function carries information about the interac-
«<Im 9(Q.Q+Glw) e~ 1GxX0 @~ Qzg~1Q+6lz tion among the spheres. Following Ref. 10 the calculation of
|Q+G| ’ 9(Q,w) is performed to all multipolar orders and expressed
(10) as a spectral representation in the following form,
where( . . .); denotes time average, and 4.0} = — 1 E D«(Q) 19
" " 5 u(0)—ng(Q)’
Q=(Qx,— and Q+G= QX+GX,—). (11
v Vi where
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eigenvalues of an interaction matrix

is the spectral variable, which depends on the dielectric prop-

erties of the material. The wordspectral representation

mean thatg(Q,w) is expressed as a sum of terms with

simple poles, where the poles locatedibb ) = ny(Q) yield
the dispersion relations(Q) of the polarization modes of
the system, and the residubg(Q) give the strength of the

coupling of these modes with the external potential. Both
ng(Q) and D4(Q) depend only on the geometry of the sys-
tem and not on the dielectric properties of the material. ThevhereB,,;

procedure for the calculation of(Q) andD4(Q) is outlined
in Appendix A. It turns out that thag(Q) correspond to the

YI*+I’,m—m’(0ij ’(’Dij)

:mTJ_( pte R*+1
!

(Am) (I +1"+m=m)! (I +1"—=m+m’)!

Him(Q)= St Sy Sij

21+1
1 Tal+1"+1pl'm'j iQ-(pi—p)
+E\/ra Bimi "€~ P(1=6;),
(21

|'m' is a matrix which couples the induced multipo-

lar momentq,,; on spherei with the induced multipolar
momentq;,,/; on spherg, and it is given by**

1/2

(21+1)(21"+1)(21+21" + 1)(1+m)! (I —

Here, Rj;=|R;—R|| is the distance between sphgrat R;

22
m)!(I'+m")!1(l"=m")! @2

axis, andL is the size of the system in theandy directions.

and sphere at R;, Y|, is the spherical harmonic of order These results are exact within the above-mentioned assump-
Im, and#;; andg;; are the polar and azimuthal angles of thetions, and Eqs(19)—(25) establish a well-defined procedure

vectorR;; =

Rj—R;. Notice that the location of the spheres for the calculation ofy(Q,w).

is completely arbitrary in the above expressions, so they can Since the size of our system is infinitt ), the di-

be used for either an ordered or disordered system.
Now, we define the matrik,; s as the matrix that diago-

. I’m’j .
nalizesH,,,;' ’, that is,

2 UsImlHIm| Ul’mjs’ n 555’- (23)

Imi,I"'m’j

Then, one can showsee Appendix A that the strengths
D4(Q) can be written as

s(Q)_ 2 AQIm|UIm|5U5|rmJAI’m]Qa (24)

Imi,I"'m’j

where

Va4 , o,
A|’m/j,Q=T(_|m )eilm K

I'a 21" +1
% Ql’flIZesz,
21"+ 21)(I"+m)L (1" —m')!
(25)

Aq.imi=(Ami.0)*, nis the angle ofQ with respect to the

mension of the interaction matrix would also, strictly speak-
ing, be infinite. Nevertheless, the periodic structure of the
system with respect to the’,y’ axes allows us to use a
small unit cell containing a finite number of spheres and to
take account of the rest of the spheres through lattice sums,
yielding a modified but finite interaction matrix. For our cu-
bic lattice, the unit cell is a parallelepiped consisting of a pile
of n, cubes, whera, is equal to the number of layers. In this
unit cell, one sphere touches the top side of each cube, and
the lengthL of the sides of the cubes is related to the radius
a of the spheres by ./a=(47/3f)3, wheref is the filling
fraction of spheres. It turns out that the contribution of the
spheres that are not considered explicitly in the unit cell can

be included in the matri},™" through a lattice sum. This

procedure is outlined in Appendix B, and one finds that the

- - . ! I -
interaction matrixH|," ! can be written as

:mr? J(Q) 5II’5mm’5|

I
21+1

+ i‘ 11 /a|+|’+1§:r;qn{]’jeiQ'(pj_pi),

4 (26)

where now the indexes andj denote the location of the
sphereswithin the unit cell and
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*
(9 +R.. 1Py + )
I+17,m—m’\ ¥y RIJ "\ R” eiQ-r)\

Y
Bl i=(-1"™ 3 :
mi N Ay |r>\+Rij||+| +1

(4m)3(1+1"+m=—m) (I +1'—m+m’)! 2

X (27)
21+ 1) 21"+ 1) 21+ 21 + D) (1 +m)L(I—m)L (1 +m) (1" —m")!
|
Here, ry=L.(\ & +\y/€,) is a two-dimensional lattice wg
vector of the square lattica, and\, are integers, ane; e(w)=1— (ot (29

and e, are unit vectors along the’ andy’ axes, respec-

tively. The central unit celCUC) is located at X, =0, wherew,, is the plasma frequency andthe relaxation time.
Ays=0). The two-dimensonal sums in E(R7) were per- But before looking at the results of our exact theory, it will
formed using a method described in Ref. 12. The sums arbe illustrative to show the predictions of the Maxwell Gar-
convergent for all values 0@, |, and!’. Similar three- nett effective-medium theory.

dimensional lattice sums, which depend on a three-

dimensional wave vectdk, are only conditionally conver-- . MAXWELL GARNETT THEORY
gentifl=1"=1, since the results depend on the direction in
which k approaches zero. In the Maxwell Garnett effective-medium theory our in-

Since we are considering a unit cell with spheres and homogeneous system is regarded as a homogeneous slab of
—l<m=+1, the order of the interaction matrix is reduced thicknessd with an effective dielectric responsg,c(w),
to N=n,L madLmaxt2), whereL . is the maximum value of given by?
the multipolar moment included in the calculation. For ex-
ample, for a slab made of six layer$),E6), andL =3, evo(®)= U(w)—(1+2f)/3
the order of the interaction matrix K= 90. MG u(w)—(1—1)/3 "

In the theory we have presented, the array of spherical ) , i
particles is situated in vacuum. Although we shall show the-lere,u(w) is the spectral variable defined abd¥. (20)].
results of calculations using this geometry, it is unlikely that T NiS theory corresponds to a mean-field dipolar approxima-
an EELS experiment could be done with the spheres sufion, which ‘means that the polarlzed spheres interact only
rounded by vacuum. Rather, they would be embedded in H'rough their induced average d|pole.mom¥f‘nt.
matrix with a dielectric functiore (). In Appendix C we In the.case of aluminum spheres in vacuum, the spectral
shall discuss how one can include such a matrix in the/ariable is
theory, and a summary of our result is presented below. We _
assume that the matrix fills the entire half spaee0, and U(w)= w(o+il7)
that there is vacuum in the regian-0, as before. Of course 2 '
a physical matrix would not be infinitely thick, but if it is in P
the form of a layer of material, it should be thick enough where we have used the Drude dielectric function given in
(=50 nm) that the effects of its finite thickness are negli-Eq. (29). On the other hand, the surface response function
gible. First, in the calculation of the surface response funcg(Q,w) for a homogeneous slab of thickne$svith a local
tion using Egs.(19) and (20), e(w) must be replaced by dielectric response(w) is given by*®
es(w)/ep(w) in EqQ.(20), giving a modified surface response

(30

(31)

w

function g,,(Q,w) in place ofg(Q,w). Second, if the array [€2(w)—1](eR9—e~Q9)

of spheres is translated “rigidly ” by a distandein the 9(Quw)= F(QwF.(Quow) (32
—z direction, so the centers of the uppermost layer of

spheres lie on the plane=—(a+b), we find g,(Q,0)  Where

=e ?QPg_(Q,w). Finally, in the calculation oE (E) using

Eq. (16), the quantityg(Q, ) is replaced by F.(Q,0)=e(w)(eR¥2xe QU2) 4 QU253 g~ Q42 .

It can be seen that Ig(Q,w) has two poles whose frequen-
gb(va)[eb(w)+ 1]+ Eb((l))_ 1 cies wi(Q) are given by

0(0 o) ep(@) 11T eg(@) 11’ 20

gv(Qrw):
ReF . (Q,w)=0. (34)

In Appendix C we also compare our procedure with an al-These are the dispersion relations of the two normal modes
ternative method that uses image multipdfe¥* of the electric field within the slab. We now substitutgg

In Sec. IV we will present a numerical solution for given in Egs.(30) and (31) into Eq. (32) to get the surface
0(Q,w) for a system of aluminum spheres in vacuum. Theresponse functioyc(Q,®) of our system. In the case
dielectric response of aluminum is modeled by a Drude di-—c, the dispersion relationv.(Q) of the two normal
electric function modes can be expressed very simply as
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FIG. 2. Dispersion relations, for three different filling fractions,
of the two normal modes of the electric field within the slab as FIG. 3. Surface loss function Ig(Q,w), as a function oQd
given by the Maxwell Garnett theoffeq. (35)]. andfw, for aluminum spheres in vacuum using the Maxwell Gar-
nett theory and a filling fractioi=0.5.

(39 because the MGT will be taken as a reference for the analy-
sis of our exact results, and in this way it will be illustrative
where to compare MGT with our results with,,,=1.
In Fig. 3 we show Inmgy,¢ as a function ofiw for f
S.=tanfjQd/2] and S_=cotfQd/2]. (36) =0.5, and different values o®d. The Drude parameters
. _ used here aré w,=16 eV andw,7=100. The curves have
In the extreme dilute limit {—0) one getSwi—>wp/\/_§, two-peaked structure whose location corresponds to the
wh|ch.corresponds to the dipolar resonance of an isolate ormal modes frequencies.. shown in Fig. 2, and their
metallic sphere. Qn the contrary, 'n_ar,‘f I|m‘|_t—>1 (pure heights are proportional to the strength of coupling of these
meta), one obtainsw.—wp[1+S.]" 7 which core- 500 odes with the external field. There is a very steep
sponds to the coupled surface-plasmon resonances of the owth of both peaks a@d starts to increase fror@d= 0
taIIic_sIab. Agtually, in a cubic lattice of spheres the lirit and the peaks get closer each otheQasincreases furth’er
—1 i~ physmal]y unatta|'nablle because for this lattice tthhiIe their height increase more slowly. Finally, for larger
maximum p053|b_le packl_ng i6=7/6~0.5236. Neverthe- values ofQd both peaks merge into one and its height stays
less, It1s interesting that in the Maxwell Garnett theory theaImost constant. For smaller values fofthe behavior of
f—1 I|r_n|t_ yields the correct results of a putecal) metal. Im gy is similar to the one shown here, although the maxi-
In the limit d—c (half sp_acé% the two modes decouple a_nd mum separation of the peaks @d=0 decreases asde-
one gets»rﬂwp/\/f, which is the frequency corresponding creases, as can be anticipated from Fig. 2.
to the {surface plasmon resonance of the metallic half space. Now, we use Eq(16) and Imgyc to calculate the energy-
In Fig. 2 we used Eq(35) to plotw.. as a function 0Rd |55 propability function=(E). In Fig. 4a) we show the
for three different filling fractions of aluminum spheres, o5 its of this calculation fod=5 nm, zo=1 nm, f=0.15,
=0.15, 0.5, and 1.0, where we have talﬁe\mﬁ= 16 eV. The g5 and 1.0, and an electron incident enekgy: 100 keV.
tV‘(’)O modes start at frequencies, =(w,/v3)yV1+2f and  ope can see th& (E) has a three-peaked structure and how
0®=(wp/\/3)J1-T for Qd=0, approach each other @1 these peaks separate more from each othefr insreases.
increases, and join monotonically a’gc=(wp/\/§)vl+f/2 This structure can be easily understood when one realizes
for Qd—cc. For example, fof =0.15, these frequencies are that = (E) is obtained by integrating Iy (Q, ) with re-
h©3~10.53 eV,iw® ~8.52 eV, andiw..~9.58 eV, while  spect toQ,d from wd/v, to =, times a decaying weighting
for f=1, they areiw? =16 eV, #w° =0 eV, andhw. function. Thus, the two lateral peaks come from the two
~11.31 eV. This behavior of the two modes can be underpeaks in Ingy,¢, as a function ofw, which are broadened
stood by noting that aQd increases, the fields become in- by the shift of these peaks &3d varies, while the central
creasingly concentrated at the surfaces. Therefore, the energgak arises from the merging of the two peaks oyl for
splitting between the modes decreases because there is ldagge values ofQd. For f=0.15, the two lateral peaks get so
interaction between the polarization charges on the two surlose to each other that they merge with the central peak,
faces. yielding a broad peak with only some reminiscence of its
Although the Maxwell Garnett theoMGT) is based on three-peaked structure.
the dipolar approximation and therefore it should be valid In Fig. 4(b), we show the results fd€ (E) using the same
only for small filling fractions, here we present some of its parameters as before but changithdo d=15 nm. An in-
predictions for filling fractions as high ds=0.5. We do this crease in the thickness of the slab makes the two lateral




PRB 60 ELECTRON ENERGY LOSS IN ORDERED ARRAYS . .. 13 837

3.0 structure of the lattice. We shall focus our attention on the
. Lo e f=1 role played by the two-dimensional periodicity in each layer
. d=5nm ----1=05 of spheres.
o —1§=0.15
20 IV. RESULTS FOR LATTICE OF SPHERES
In this section we present numerical solutions for
— 45 Img(Q,w) and=E (E) based on the procedures given by Egs.
%’T (19—(27) and EQgs.(15—(17). In all the results presented
: below we have chosen a definite set of parameters. For ex-
1.0 ample, the Drude parameters for aluminum have been taken
as fiw,=16 eV and w,7=100. Also, we have fixecE,
0.5 =100 keV, which corresponds to the typical incident ener-
gies for electrons produced in a scanning transmission elec-
0o R tron microscope, and we have chosar 2.5 nm andz,
- LA LA LA LA BN BN N 1 L DL B

=1 nm. We will show results for systems with different
numbem, of layers, and for different values of the following
parameters: the filling fraction of the sphefethe maximum
multipolar orderL . and the anglep which the electron
trajectory makes with the010] direction of the cubic lattice.

1 I LI
3 4 5 6 7 8 9 10 11 12 13 14 15 16

(@) ho (eV)

10

8 — $=015 A. Single layer

% Here, we present results for a single layer of spheres in a
square lattice taking ,,,=1, which corresponds to the dipo-
lar approximation. In Fig. 5 we plot the dispersion relation
hwg(Q) of the three §=1,2,3) normal modes of the electric
field in the layer. The angle gives the direction of) with
respect to thex’ andy’ axes throughQ, =Q cosa and
Qy=Qsina. We have choseh=0.5, and two different di-
rections of the vecto®, corresponding tax=0° and 30°.
The three modes correspond to the eigenvalues of the inter-

s action matrixH m , Which is a 3x 3 matrix becausen (and
— o m’)=-1, 0, +1, and there is one sphere in the two-
13 dimensional unit cell. A comparison of these curves with the
(b) fo (eV) ones of Fig. 2, corresponding te.. of the MGT, shows that
the two-dimensional periodicity in they plane introduces a
dependence of the dispersion relatidns,(Q) on the direc-
tion of Q. For example, whea=0 °, hw(Q) is a periodic
function of QL. with period 2, while for «=30° it is not
periodic, in agreement with the existence of a square two-
dimensional reciprocal lattice. By symmetry, the dispersion
relations coincide fow=0° anda=90°, as well as for

peaks, in the three-peaked structurédE), to get closerto =30~ anda=60°. The physical nature of these modes is
each other, while the height of the middle peak now becomegem,rm'”ed by the threes¢1,2,3) eigenvectord)ypy, s of
larger than the height of the lateral ones. The three—peakeldim . For example, in Fig. & (f=0.5 anda=0 °) the
structure arises for the same reasons discussed in the preldwest-energy mode, labeleq corresponds to a mode po-
ous paragraph, whereas the decrease in splitting between thagized along the/' direction, which means that in this mode
lateral peaks with increasing thicknedorresponds to the all the oscillating dipoles point along the direction, while
behavior of the two slab modes, as shown in Figs. 2 and 3the other two modes, labeleédandZz, are polarized along the

Finally, we note that the peaks in Fig. 4 have been broadx’ andz directions, respectively. There is no interaction be-
ened by the finite value of. As 7 increases the tails at each tween the different directions of polarization, so the modes
side of the lateral peaks would tend to disappear, yieldingreserve their character when they cross.Qit.=0, the
curves with steeper edges and an overall sharper structure.ritodes withX and Y polarization become degenerate with
is important to notice that even in the limit—o the peaks energy close to 6.53 eV, and the mode wittpolarization
of Z(E) have a broad structure with a finite width. It is only has an energy close to 13.06 eV, which correspond to the
in the limit of the half spaced— =) that the structure of energies of the two modes in the dispersion relation of the
2 (E) becomes an isolated delta functionaat correspond- Maxwell Garnett theory aQd=0, as shown in Fig. 2.
ing to the frequency of the surface plasmon of the system. In Fig. 5b), the parameters are the same as in Fi@),5

In the next section, we will see how the results shownexcept thatxr=30°. An analysis of the eigenvectdds, s,
here are modified by the exact treatment of the periodishows that there is a mode polarized along zhdirection,

ot

FIG. 4. (a) Energy-loss probability functio& (E) as a function
of the energy losE=%w, for a slab of thicknesgi=5 nm as
obtained using the Maxwell Garnett theory. The solid line corre-
sponds to a filling fractiorf =0.15, the dashed line tb=0.5, and
the dotted line tof =1. In all the curves an impact parametgr
=1 nm was usedb) The same as ifia) but ford=15 nm.
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FIG. 5. (a) Dispersion relations of the three normal modes of the
electric field in a single layer of spheres with,,,=1. The filling
fraction is f=0.5 and the vectoQ makes an anglex=0 ° (or
equivalentlya= 90 °) with respect to thgl00] axis of the array of
spheres(b) The same as i@ but for =30 ° (or equivalentlya FIG. 6. (a) Surface loss function Ig(Q,w), as a function of

QL. and# w, for a single layer of aluminum spheres in vacuum as

=60°).
given by the numerical calculation with,,,,=1. The filling fraction

labeledz, and that this polarization direction is not coupled is f=0.5 and the vecto@ makes an angler=0 ° (or equivalently
a=90 °) with respect to thg100] axis of the array of spheref)

to that of the other two modes, label&d¥ andY X. These ! ; ! .
two modes are linearly polarized in the plane, with polar- 1€ same as if@) but for «=30° (or equivalentlya=60°).

ization directions orthogonal to each other. @t.=0, the
XY andY X modes become degenerate, with an energy equalf the coupling of these modes to the external field. The

f0®=6.53 eV, and theZz mode has an energy equal to lowest-energy mode in Fig.(® (labeledY) does not show
hw° =13.06 eV. Thus, aQL.=0 and at any angle, both  up in the plot of Img(Q, ») because a mode with polariza-
modes have the same energies as the mod@slatO in the  tion along they’ direction cannot couple with an external
Maxwell Garnett theory. AQL.=0 the XY mode is polar- longitudinal field that is confined to the€ z plane. Whenx
ized alongQ, thatis, 30°, and aQL increases the angle of =30°, as in Fig. &), two things happen(i) there are now

polarization decreases, becoming equal to 19 °(At, two modes polarized in they plane, as well as a mode
~2.0, and—10° atQL.~4.0. polarized in thez direction, andii) the external electric field

In Fig. 6 we show Ing(Q,w), for f=0.5, as a function hasx’, y’, andz components. Therefore one expects that
of Ziw for different values ofQL., anda=0 and 30°. In three peaks will appear in Ig(Q, w) for all values ofQL. .
Fig. 6(a), we plot the caser=0. There are only two peaks in This is actually what happens, as can be seen in Fig, 6
Im g(Q, w) for each value ofQL., and the position of these where we plot INng(Q, ) for f=0.5 anda=30°. For both
peaks agree with the energies of the correspondiamdZ  «=0° and 30 °, the peaks in Ig(Q, w) rise very sharply as
modes in Fig. 88). The heights of the peaks give the strengthQL,. increases at small values @iL., then they reach a
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the Maxwell Garnett theory, witli=L;. In the MGT the
20 =015 slab has no structure in they plane, sagy(Q,®») does not
% depend on the direction @ and= (E) is independent of the
trajectory anglesp.

All the curves for the different values @f, as well as the
ones corresponding to the Maxwell Garnett theory, have ap-
proximately the same width. This width is determined by the
width of the dispersion of the modes as a functiorQf,.,
and it turns out that the lowest-energy mode and the highest-
energy mode correspond, approximately, to the energies of
the modes aQ=0. But since these two energies dre’
and%w? , respectively, the width of the spectrum will be the
same as the one in the Maxwell Garnett theory for all values
of ¢. One can see also that a changedinmodifies the
profile a bit, the central maxima and minima change their
location, but the size oE remains more or less the same.
1=0.5 In conclusion, we have performed a detailed analysis of
the calculation ofZ (E) for a single ordered layer of spheres
in the dipolar approximation and we have shown the differ-
ences and similarities of these exact results with the ones
obtained in the Maxwell Garnett theory. The inclusion of
higher-order multipoles will give rise to a matrix of higher
order and, consequently, to a larger number of modes. In this
case the analysis of the contribution of all different modes to
E(E) will become more complicated and might not further
clarify the physics of our problem. Nevertheless, as the num-
ber of modes increases the band of energies occupied by the
modes also increases. Thus one expects that as the multipolar
order is increased the energy band of the modes of the sys-
tem will become broader until convergence is attained, that
is, until the inclusion of additional multipolar orders in the

FIG. 7. (a) Energy-loss probability functiof (E) as a function  calculation does not change the spectrunZ¢g). The mul-
of the energy los& =7 for a single layer of spheres with a filling tipolar order required to attain convergence is approximately
fraction f=0.15 andL ,=1. Three different angles of the electron L, ~1+a/A, whereA is the smallest distance between the
trajectory with respect to th@10] axis of the array of spheres were surfaces of adjacent spherésthis is actually what happens

chosen:¢=0° (solid ling), 30° (dashed ling and 45° (dotted  although no figure showing this effect is presented here.
line). The open circles represent the corresponding result as given

by the Maxwell Garnett theory witd=7.58 nm.(b) The same as )
in (a) but for f=0.5 andd=5.07 nm. B. Multilayer

Here we consider a system composednoflayers of

maximum and decrease & increases further, becoming spheres with their centers located, as discussed above, in a
almost negligible aQL ~10. cubic lattice. In Figs. &) and 8b) we show the spectra of

The surface loss function Ig(Q, »), whose behavior we = (E) for systems with various values of, f, andL ... We
have been discussing, can now be used in(E@).to find the  have chosen two filling fractions=0.15 andf=0.30 and
energy-loss probability functioE (E). In order to carry out  three slabs with number of layers=1, 2, and 6. In all
the integration oveQ, in Eq. (16) one must define the ori- these spectra multipolar convergence has been achieved, and
entation of the electron trajectory with respect to the latticethe spectra with the largest number of layers correspond to
The angle¢ has been defined as the angle between thishe semi-infinite half-space limit. Fof=0.15, multipolar
trajectory and th¢ 010] direction of the lattice. Recall that convergence requirds,,,,=3, while for f=0.30 one has to
thex axis is perpendicular to the electron trajectory, which isgo up toL ,,,,=8.
in they direction andk’ andy’ lie along the[ 100] and[010] The energy-loss spectra in Fig. 8 show general features
crystallographic directions. Therefore, the integration ovefyhich can be explained easily. For a fixed number of layers
Qx. with a constant value of the componédf=w/v,, cor-  n,, the spectra become broader fascreases. This occurs
responds to a trajectorf,, =Q, cos¢—(wlv))sing, Q,,  because the spheres approach each other more closely with
=(wlv,)cos¢p+Q,sin¢g when referred to the’, y’ axes. increasing. The most important effect is that the interaction
The anglea used in previous sections, defined by &an energy between dipoles1/r3, so the broadening of the
=Q,//Qy, should not be confused with the trajectory anglespectra due to the dipolar interaction is proportionaf. tm

. addition, ad approaches the close-packed limit, many higher

In Fig. 7 we have plottedE(E) for f=0.15 and 0.5, multipoles are involved in the interaction, causing additional
Lmax=1, and three different angleg,=0°, 30°, and 45°. broadening of the spectra, as discussed in the previous sec-
We also show the corresponding functioB$E) given by tion.

E)
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(E)

00 . ) ) o
6 8 10 12 14
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spheres and with filling fractiofi=0.065. The dashed line corre-
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sponds to results of Pendry and MafMoreno (PMM) in Ref. 9
. - . and the solid line corresponds to our theory. The angle between the
FIG. 8. (a) Energy-loss probability functiof (E) as a function ) ; .
= trajectory of the electron and th®10] axis of the array is¢
of the energy los& =% w for slabs made ofi, layers of spheres and A .
. . _ . . =0 °. The rest of the parameters are the ones reported by PMM in
with filling fraction f=0.015. The maximum multipolar order, . . .
_ . . . Ref. 9 and quoted in the texth) Energy-loss probability function
Lmax=3, was chosen in order to achieve multipolar convergence. I E a function of the enerav lo&= 7w for lab made of
all curves the angle between the trajectory of the electron and th€( ) as a function of the e ergy 1o wloras ade o
; Ao Ch n,=6 layers of spheres and with filling fractidr=0.065 according
[010] axis of the array isp=0 °. The solid line corresponds tg, o .
_ . _ . _ to our theory. The incident energy =3 keV, the dashed line
=1, the dashed line tn,=2, and the dotted line to,=6. (b) The o
same as ir(a) but with f=0.3 andL,—8 corresponds te,7=100 and the solid line te,7=15. The rest of
' max the parameters are the ones reported by PMM in Ref. 9 and quoted
in the text.
For a fixed filling fractionf, the spectra become narrower
as n, increases. This occurs because, with an increasing .
number of layers, the ratio of the number of spheres in th&nergy-loss spectrum for electrons moving parallel to the
interior of the system to the number in the surface layersurface of a cubic lattice of spheres. They used an impact
increases. A sphere in one of the interior layers is effectivelyparameterzop=1 nm, aluminum sphere radius=1.25 nm,
surrounded by a cubic lattice of spheres, and many multipofilling fraction f=0.065, electron velocity,=0.4c, corre-
lar interactions between the sphere and its neighbors tend gponding toE,; =46 keV, a plasma energy 15 eV, and a
cancel. This cancellation does not occur for a sphere at alamping factorw,7=15. They did not assume laterally
near the surface. In other words, a sphere near the surfageeraged electron trajectories, as we did, but took a definite
interacts more strongly with surrounding spheres throughrajectory along th¢ 100] axis, presumably above a row of
multipoles of all orders, tending to broaden the mode specspheres. Their calculated energy-loss spectra for six layers is
trum. Therefore, as the number of layers increases there asdiown in Fig. 9a). They find a large peak at about 6.0 eV
fewer spheres at the surface than in the interior, and thand a smaller peak at 3.7 eV superimposed on a broad back-
spectra become narrower. ground extending from 1 to 13 eV. In Fig(&® we also show
It is appropriate to compare our results with those of Penthe result of our theory, where we have used exactly the
dry and Martn-Moreno (PMM),® who also calculated the same parameters as PMM. Since their results are given in
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arbitrary units, we have normalized their curve so the areaduced. Therefore, the energy-loss spectrum for energies
under both curves are equal. Their larger peak is at an energy20 eV will not be affected by SP radiation.
about 2.8 eV lower than our peak at 8.8 eV, and we find no The energy of Cherenkov radiation can be estimated by
peak that corresponds to their smaller peak. using the MG effective dielectric response for the sphere
How can these differences be explained? We do not exarray. The radiation is produced in a frequency window such
pect a major difference in the energy-loss spectra for IaterthatBTZ< émg(w) <. For 8=0.4 andf =0.065 the corre-
ally averaged electron trajectories and a single trajectorysPonding energy window is between 8.2 and 8.4 eV. Since
since the effective range of interaction between the fast eledhis energy range lies on the low-energy tail of our calculated
tron and the spheres for an energy-léss<10 eV isv, /o peak and the ratio of thg total radlaysve energy loss to the
=8 nm, a distance greater than both the sphere radius adgngitudinal energy loss is-8?=0.16," we conclude that
the distance between spherés=5.0 nm. Moreover, elec- Cherenkov radiation will not substantially modify our calcu-
trons passing directly above a row of spheres will excitdated energy-loss spectrum.
sphere modes with higher multipole orders than electrons on |f we again approximate the system of spheres by a ho-
laterally averaged trajectories. Since the energy of a mod@logeneous half space described by the MG dielectric func-
increases with increasing multipolar order, a single trajectoryion. the inclusion of retardation yields a dispersive suzrface
should give energy loss at a higher energy than laterally avhode with a frequency ws given by Q*c?/wg
eraged trajectories; that is, the difference is in a direction= emc(@s)/[emc(ws) +1]. If we setQ=ws/v,, its mini-
opposite to that observed. mum value, and solve foig, we find an energy 8.76 eV.
This leaves their inclusion of retardation as a possibleThis energy including retardation is only 0.04 eV lower than
explanation for these differences. The numerical calculatiofthe unretarded surface mode energy, 8.80 eV, which is de-
of reflection amplitudes from the sphere lattice is an essentidined by the conditiorey g(ws) = —1. PMM give an analytic
step in the theory of PMM, but no details of this calculation €xpression for the energy-loss spectrum of a homogeneous
are discussed. As we shall explain below, we do not underalf space including retardation, which yields a peak at a
stand how retardation can cause such large downward shiffsequency such that(ws)~—(1+ 5%). Taking e= ey we

in peak positions. find the energy-loss peak at 8.77 eV, essentially the same
A full account of retardation involves additional losses result as above.
arising from the Cherenkov and Smith-Purd&P) radiation Other studies of the effects of retardation arrive at similar

from the induced charges, as well as changes in the dispegonclusions? Therefore, the large downward shift of the
sion relations of surface modes and the coupling to theskrgest peak by about 2.8 eV for the lattice of spheres is
modes due to the inclusion of the magnetic field. In thissurprising. Also, their smaller peak at 3.7 eV is completely
discussion, we shall find it useful to represent the array ofinexplained. We believe that this question could be resolved
spheres as a homogeneous half space described by the MakPMM were to repeat their calculations for a very low-
well Garnett(MG) effective dielectric responsgEq. (30)].  incident electron energy, e.g., 3 keV, correspondingsto
Since the MG theory neglects any effects of retardation ir=0.11. In this case the effects of retardation are negligible
the response of the individual spheres, such effects will b@nd their resulting spectra could be directly compared with
examined here. When retardation is included, all multipolaithe corresponding ones obtained with our theory. We also
surface modes of a sphere become radiative, which causesggest that PMM use a larger value of7 in the Drude
broadening and shifting to lower energies. These effects ardielectric response of the Al spheres, sayr=100 orfy
more pronounced for the dipolar mode than for modes of=0.15 eV, so that differences in the profiles of the spectra
higher multipole orders and become important when the pawill be more evident. In Fig. @) we show the results of
rameterW=<upa/c:~1.18 For a sphere radiua=1.25 nm these calculations using our theory for an incident electron
we find W=0.09, a value so small that retardation is unim-energy of 3 keV ana,7=15 and 100. These results should
portant. This is borne out by calculations of the extinctionbe useful for comparison with suggested calculations by
cross section of Al spheres with various radii by Bohren and®MM.
Huffman® Significant radiative broadening and energy
shifts of about 1 eV occur only for much larger sphere radii,
a~20 nm orW~1.5. If a<5 nm these effects are less than
0.1 eV. Therefore, we expect that radiative corrections to the We have developed a theory for the calculation of the
MG theory will be small. energy-loss probability function of swift electrons traveling
The original explanation of SP radiation involved elec- parallel to the interface of an ordered array of polarizable
trons passing above a metal diffraction grating, the radiatiospheres. The interaction among the polarized spheres can be
being produced by periodic motion of the induced chafes. calculated to all multipolar orders, and the main assumption
If one regards the electric field of the moving electron asof the theory is that the interaction between the electron and
being described by a set of evanescent waves, the Cherenktive system is only through a longitudinal electric field; that
and SP radiation are nothing but the radiation produced bjs, retardation effects are neglected.

V. SUMMARY

the refraction and diffraction of these waveég? SP radia- First, we construct a theory for the response function
tion is produced in wavelength rangas=L (8 '*1)/n  g(Q,Q’;w) for spheres at arbitrary positions in a half space,
wheren=1,2,... andB=v,/c. For =04, L.=5.0 nm, whereQ andQ’ are two-dimensional wave vectors of in-

andn=1, these wavelengths are 17.5 and 7.5 nm, and thduced and external potentials, respectively. This response
corresponding photon energy range is between 71 and 16&nction is expressed as a spectral representation, where the
eV. Forn>1, photons with even higher energies are pro-mode positions and strengths are related to the eigenvalues
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and eigenvectors of a matrix that describes the interaction = APPENDIX A: SURFACE RESPONSE FUNCTION
between spheres to all multipolar orders. Applying this

theory to an ordered array of spheres, the response function Here we outline the procedure to obtain E@sS)—(gS). It.
. . IS essentially the same procedure as the one described in Ref.
assumes the formg(Q,Q+G;w), where G is a two-

dimensional reciprocal lattice vector of the array. 10ebflijrtsth ?i:]ed 'fhgx:zgdggsgo thr?ct?;S(%O(g? mioér(;ﬁq'z ds;gstems.
Next, we show how this response function can be used t P @ y

find the energy-loss probability function for an electron trav-—3- (3) for a system of spheres of radij at arbitrary posi-
eling on a definite trajectory outside the array, parallel to itstIonsri in the half-space<0. .

surface, at arbitrary angle with respect to the symmetry di- Let us consider an external potential
rections of the array. Taking an average over lateral positions

ex — gext —iwt
of the trajectory, we find that only tHé=0 term survives, so ¢=r =9 (e, (AL)
the energy loss depends on the distance of the trajectoryscillating at frequencys, whose spatial pa®*(r) has a

from the surfac-e and on the trajectory qngle, and a simpleging|e wave-vector componer® and satisfies Laplace’s
response functiory(Q,w) can be used in the energy-loss equation in all regions of space, that is,
calculation.

We apply our theory to a sphere array in the form of a d(r) = e P (A2)
slab, where the centers of the spheres are placed on a cubic
lattice, and present results for slabs containing 1 to 6 layer¥Ve now perform a multipole expansion ¢f*{(r) aboutr; ,
of aluminum spheres in vacuum. For a single layer, we showhe center of théth sphere,
the mode positions in the dipolar approximation for various
paths in theQ plane, and also show graphs of the surface ext/s exts 1| .
loss function Ing(Q,w), providing information about both ¢ (r)—% Pimi(1) Yim(6", "), (A3)
the mode positions and strengths. We present calculations of
the energy-loss spectra for various filling fractions of spheresvherer’ =r—r;. Here, the coefficient
and trajectory angles. We also show that a simplified theory, _ _
in which the layer of spheres is replaced by a slab filled with eXl= povam (21 + 1) Bim(—1)Me ™ M7Qle!Q Pigl?,

a homogeneous dielectric medium given by the Maxwell (A4)
Garnett theory, gives energy-loss spectra that agree qualita- ) )
tively with those found using the exact theory in the dipolewhere Bim=1/y(I+m)!(I—m)! and 7 is the angle which
approximation. defines the direction d®:Q,,=Q cosz, Q,,=Qsinz.

Our paper ends with calculations of energy-loss spectra The induced potential acting on spheravhich arises
for various numbers of sphere layers, with several choices dfom the multipole moments/,,/; on all other spherejscan
filling fractions, keeping multipole orders sufficiently high to be similarly written in a multipole series
assure the accuracy of the calculation. We compare our re-
sults with those of Pendry and MartMoreno, who have ind(py — 1 onyl v
done similar calculations for arrays of spheres, but have in- $™(r) % Gimi(r") Yim(0",0"), (AS5)
cluded retardation; however the differences are so large that o L _
we are unable to explain them. We suggest that they repesthere the coefficients;.,; are given by
their calculation in the unretarded regime in order to com-
pare their results with ours in a region where both theories '’
should be valid. ¢'1mi:|,2,_ Bimi i - (AB)

m'j
The multipole momeng,,,; is proportional to thém multi-
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f Yim(6,¢) 20+1 where the first sum is over sphergsi in the central unit

= e Q" rd2p= ?Bmimeim”’(Q’)'S, cell (CUC) and the second is a sum over the imagesf all

r spheres in the cell. By images we mean the spheres that

(A9) are generated from a sphere in the CUC by a translation by
r=Lc(Ax,Ayr). When considering the images on the
cells, the interaction of spheiiewith its images should be
also taken into account. Due to the periodicity in the
plane the induced multipolar moment on sphpgrés related

to the induced multipolar moment on sphereby Olimj,

whereS=(27/Q’)e~?'17 and the angle;’ defines the di-
rection ofQ’.

_After interchangingQ and Q" we find an equation for
$'"(Q,w) in the form of Eq.(3). In this equation the re-
sponse functiog(Q,Q’;w) is expressed as a spectral repre-

sentation =q|mjeiQ'rA. Then, Eq.(B1) can be written as
1 & D(Q.Q) G (2 ' i )
/. - _ = .= B . e A dirme
g(QIQ 1(1)) 2 ES u((l))_ns . (Alo) Imi I'm’j X Imi m”j
The mode positionsg are eigenvalues of a Hermitian matrix _ E ’B:mr? qurm,j ' (B2)
1'm’j
Ml =81 S Sij where we define
21+1
1 ’ ’ ’; ~ ! ’; r r; .
+g-VIaf el i1 ), Bl /=2, By e/, (B3)
(A11)

and the sum runs over all the cells except in the dase
and the mode strengths are for which the CUC is excluded. Finally, substituting the ex-
pression forB:r'n“i"'j given in EqQ.(22) one gets Eq(27). Now

, , - one follows the procedure described in Appendix A, with
DAQQ)=Q" > Aqimlhmi ot Ao ¢ PP

i B}.™"I replaced byB|,™ "/, in order to arrive at Eq(26).
(A12)
Here, APPENDIX C: SPHERES EMBEDDED
IN A DIELECTRIC MATRIX
o /4—W(—i)m'e“m"7' In this appendix, we discuss the derivation of E28).
'm’j,Q" L2 The first step is to take the system of spheres located in the

half spacez<0 and replace the vacuum everywhere by the
le,m,(Q’)I,_la}I+1/29iQ,‘PjeQ,Zj, dielectric function of the matrixe,(w). Since the surface
response function depends on the ratio of the dielectric func-
(A13) tions of the two components, the quantdy w) in the spec-
with W, =772 + 1)(I' +m")I(I'—m’)! and Agmi tral variable u d(_afined by Eq.(200 must be replaced by_
= (Ami.0)* . The unitary matrix/ diagonalizesH as in Eq. es(w)/fb(w)_. This changes trle su_rface response function
(23). Finally, Egs.(18—(25), which are used to calculate 9(QQ";®) in Eq. (A10) to a “modified surface response

(dWidy), ., for a laterally averaged electron trajectory, arefunction” gn(Q,Q";w). In subsequent equations we shall

. . . . . drop the labek.
obtained by replacing the sphere ragiiby a single radius I\Fl)ext if the spheres are moved by a distatci the
and settingQ’ =Q. '

—z direction the sphere center positiansmust be replaced
by zi—b. From Egs.(A10)—(A13) it can be seen that

APPENDIX B: LATTICE SUMS gm(QuQ,) is Changed t(gb(QyQ,)Ee_(Q+Q/)bgm(Qle)-

In this appendix we describe the procedure for deriving Finally, we must replace the dielectric matrix in tkze
Egs.(26) and (27) from Egs.(21) and (22). First, we take a >0 half space by vacuum, and find the surface response
finite number of spheres within a central unit cell, (=0,  functiong,(Q) of the system as seen from the vacuum. If we
\,»=0), and repeat this cell periodically to generate the in-take a single Fourier componeQtfor the external potential
finite system. Then, we split the contribution to the coeffi-in the vacuum and assume that the system is periodic, so the
cients of the induced potential on sphdregiven by Eq. Wave vectorsQ andQ’ differ by a reciprocal lattice vector
(A6), into a part coming from the spheres located in the samé&. expre_ssions for the potential in the vacuum and just inside
cell as sphere (the central unit ce]| plus a part coming the matrix are, respectively,
from the spheres located in the rest of the cells:

V(1)=eiQ"’eQz—2 gV(Q+G,Q)ei(Q+G)-Pe*|Q+G\Z;
1 = 2 Blrm’j rri E 2 Blrm’j)\ m’i.s G
¢Im| el Imi qlmj >\¢CUCI’m’j)\ Imi qlmj)\
(B1) z>0, (C1
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V(Z): 2 [aQ+Ge‘Q+G|Z+ bQ+Ge_|Q+G‘Z]ei(Q+G)'P;
G

0>z>—bh. (C2)

The unknown coefficientsg . ¢, which are Fourier com-
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range of the incident electron must be appreciably larger than
the distance between spheres; conditidmsand(c) state that
neither the electron trajectory nor the spheres should be too
close to the vacuum-matrix interface. Conditidas and (b)
imply that in Eq.(12) the integration trajectory lies close to
origin Q=0 and that the facto® ~lexp(—2Qz) in the inte-

ponents of th_e .induced potential in the region between thgrand falls off rapidly agQ,| increases, so that less than
vacuum-maitrix interface and the spheres, can be expressedif20 of the contribution to the integral occurs Q> G,/2,
terms ofag. g, the unknown external potential coefficients whereGo=2/L . is the reciprocal lattice unit vector. There-

in the same regiof®

boie=—2 On(Q+G,Q+GNaga-  (CI
G!

fore, for the small values d which contribute significantly
to the integral in Eq.(12), we have|Q+G|~G and |Q
+G'|~G’, so from Egs.(A10)—(A13) it follows that

|9p(Q,Q+G")gy(Q+G,Q)|sexp(—2bGy)gy,(Q), and from
Eq. (C1D) we get|W(Q)|= exp(-2bGy)|g,(Q)|. We have

From the continuity of the potential and the normal compo-assumed thatg,(Q)|~1 and that the terms in EqC11)

nent of the displacement at the interface 0, we find two
sets of equations,

860~ 9v(Q+G,Q)=ag,c— 2 9y(Q+G,Q+G)ag. ¢,
G/
(c4

b6t 9y (Q+G,Q)
= e agiat X 9n(Q+G,Q+Gag e|. (CH
GI

For G#0, the sum of Eqs(C4) and (C5) gives

€b+1 , .
——agiat > 9y(Q+G,Q+Gagie=0; G#0.
G/

€Ep— 1
(CH

If the G'=0 term is taken out of the sum in E(C6) and
moved to the right-hand side, the coefficeats,s can be
solved in terms o . Defining the matrix

6b+1 , ,
TGG’:—eb_166G’+gb(Q+G1Q+G ), G,G'#0,
(C7)

the solution can be written using the inverseTof

agrer=— 2 [T Yecth(Q+G,Qag; G'#0.
G#0
(C8)

If we use EQ.(C8) for the coefficientsag,q in Egs.(C4)
and (C5) with G=0 the result is

1-9v(Q)=ag[1-9n(Q) +W(Q)],

1+9,(Q)=€pag[1+9p(Q) —W(Q)],
whereg, (Q)=9,(Q,Q), 9(Q)=09n(Q,Q), and

(C9)

(C10

W(Q) = 2 gu(QQ+G)[T ecdh(Q+G,Q).
G,G’#O
(C1)

Finally, solving Eqs(C9) and(C10 for g,(Q), and neglect-
ing W(Q), we get Eq.(28).

We can show thatV(Q) can be neglected under the fol-

lowing conditions: (&) v,/w=2L.; (b) zg=L//5; (c) b

have many different phases in the complex plane. Condition
(c) implies that|W(Q)|=0.04g,(Q)|. It can also be shown
that if e,~—1, so the termB(e,+1)/(e,—1)]6ge IN Tea!

are small, then conditioic) must be replaced bip=L./2.
Also, the assumptiofg,(Q)|~1 will not be valid near reso-
nances ofg,(Q), so Eqg.(28) cannot be expected to repro-
duce correctly all fine details of energy-loss peaks which
might appear when the damping factor is small.

The evaluation ofV(Q) is difficult; therefore, if the con-
ditions for neglectingNV(Q) are not satisfied, an alternative
method for taking account of the dielectric matrix, that of
image multipoles, may be useftit!* Here, each sphere has
an image formed by the vacuum-matrix interface. The inter-
action between the spheres and their images is taken into
account from the beginning, and appears in the multipolar

interaction, Eq(A6). The coeffients8], ™} will include the
potential produced by the image multipoles, so these coeffi-
cients, as well a%ilr'n'}‘" [Eqg. (A11)] now depend ory(w).

If e,(w) is dissipative, the eigenvaluas of H|™1 will be
complex, and will depend om. The spectral representation
method loses much of its attractiveness, and it may be pref-
erable to solve EgqsiA6) and (A7) for the unknownq;
directly by matrix inversiort? If the spheres are very close to
the interface, both methods will have difficulties: in our
method, manyG,G’ terms will contribute toW(Q), and in

the image multipole method, many high-order multipoles
must be kept.

If the spheres are embedded in a dielectric slab, our
method must be extended to include transmission response
functions, whereas the image multipole method will involve
an infinite series of imagés.

Since no experiments have been done with ordered
spheres in a matrix, we have not presented calculations using
Eq. (28) with particular matrix dielectric functions. Never-
theless, it is instructive to consider a simple example: a semi-
infinite system of small Al spheres, described by the Max-
well Garnett effective dielectric function, with a
nondispersive dielectric functiog,= 2 for the matrix. If the-
spheres are in vacuum, there is a single energy-loss peak at
10.7 eV forf=0.4 and at 9.2 eV fof ~0. When the dielec-
tric matrix is included, the energy-loss peak shifts to 8.2 eV
for f=0.4 and to 7.2 eV fof ~0. If dielectric function of
the matrix is dispersive, its effects can be much more com-
plicated; in particular, there can be additional energy-loss
peaks associated with dielectric-vacuum interfacial surface

=L /4. Condition (a) states that the effective interaction modes.
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