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Electron energy loss in ordered arrays of polarizable spheres

Carlos I. Mendoza and Rube´n G. Barrera
Instituto de Fı´sica, Universidad Nacional Auto´noma de Mexico, Apartado Postal 20-364, 01000 Mexico Distrito Federal, Mexico

Ronald Fuchs
Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011

~Received 9 June 1998; revised manuscript received 14 June 1999!

We develop a theory for the energy loss of swift electrons traveling parallel to an ordered array of polariz-
able spheres. The energy loss is given in terms of a surface response function which is expressed as a spectral
representation. The poles and weights in this representation are determined through the eigenvalues and
eigenvectors of an interaction matrix. This matrix takes account of the quasistatic electromagnetic interaction
between the polarized spheres to an arbitrary multipolar order. We use our theory to calculate the energy-loss
spectra for cubic arrays of aluminum spheres with various numbers of layers and compare the results with
those obtained using a dielectric continuum model.@S0163-1829~99!05843-9#
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I. INTRODUCTION

Electron-energy-loss spectroscopy~EELS! of inhomoge-
neous systems has been an active field of research durin
last decades. Here, we will be interested in the calcula
and analysis of EELS spectra of granular matter. The ca
lation of the energy loss of swift electrons passing throug
system of nanometric inclusions embedded in an otherw
homogeneous matrix was stimulated by the recent exp
ments of Walsh.1 The concept of an effective medium for th
calculation of the energy-loss function in a granular comp
ite has been very appealing because one might expect
this function could be written in terms of the effective diele
tric function associated with the composite. The first
tempts along these lines were done by using the effec
dielectric functions which had proved to be successful
describing the optical properties of granular composite1

like the ones devised, for example, by Maxwell Garne2

Bruggeman,3 or Landau and Lifshitz.4 The main problem
encountered in using these types of effective dielectric fu
tions was that the peaks in energy loss coming from
excitation of the bulk plasmons of the inclusions did n
appear in the calculated spectra. The origin of this prob
was the local nature of the effective dielectric response,
is, the effective dielectric response depended only on
frequency of the applied field and had no dependence o
wave vector. This actually means that the response is v
only in the limit as the wave vector tends to zero. Althou
this limit might be appropriate when the system intera
with light, this is certainly not true when the applied field
the field carried by a moving electron, as in the case
EELS. One would expect that an effective dielectric functi
that could describe properly the energy-loss process sh
be nonlocal, that is, should depend on the frequency and
wave vector of the applied field. This approach was taken
Barrera and Fuchs,5 who find a nonlocal effective dielectri
response that could be used to calculate the energy-loss
tra of fast electrons passing through a system of rand
spherical inclusions contained in a matrix. In their approa
it was assumed that both the spheres and the matrix w
PRB 600163-1829/99/60~19!/13831~15!/$15.00
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described by local dielectric responses but the interac
among the polarized spheres was taken to all multipolar
ders within the mean-field approximation. The calculat
spectra using this theory showed well-defined peaks com
from the excitation of the bulk plasmons of the inclusio
and the matrix, as well as the ones coming from the exc
tion of interfacial modes, that is, modes in which the induc
charge is located at the interface of the spheres and the
trix. These calculated spectra also agreed with the exp
mental spectra of Walsh. Further theoretical developme6

also showed the merits and limitations of anad hocphenom-
enological theory7 devised to explain the experimental r
sults. These developments have also shown the possibilit
defining an effectivelocal dielectric response that could de
scribe the energy-loss process.

There is also interest in the calculation of energy-lo
spectra for an experimental setup in which the electron tr
els parallel to the surface of the sample. Since there are c
in which it is actually not possible to construct very th
samples, one of the advantages of this experimental setu
that the electron does not have to go through the sam
Nevertheless, there is also the question of how much in
mation about the surface structure will be contained in th
energy-loss spectra. Answers to this question have been
vided using different approaches. For example, the auth
of Ref. 8 have extended to a half space the idea of a nonl
effective dielectric response discussed above for a system
random spherical inclusions. In order to do this they use
simple model for the structure of the interface together w
an ad hocelimination of nonphysical features in the energ
loss spectrum. On the other hand, Pendry a
Martı́n-Moreno9 ~PMM! devised a calculation procedure
obtain the energy-loss spectra of fast electrons traveling
allel to a half space~or a slab! occupied by anorderedsys-
tem of spheres. In this procedure, the fields are decompo
on a transverse basis and the reflection coefficients of
half space are found by a finite-element numerical techniq
The energy loss of the electron traveling along a rectilin
classical trajectory above the half space, or a finite slab
calculated in terms of these reflection coefficients. The c
13 831 ©1999 The American Physical Society
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13 832 PRB 60MENDOZA, BARRERA, AND FUCHS
culation includes retardation effects. Although the calcu
tion procedure cannot be readily extended to an infinite s
tem of disordered spheres, the authors argue that their re
might also be applied to this case. Nevertheless, the sys
they actually deal with, that is, a half space of an orde
array of spheres, is interesting in itself. Here, we tackle t
problem in the nonretarded limit by finding a spectral rep
sentation of the reflection coefficient of longitudinal wave
In terms of this reflection coefficient the energy-loss spec
are readily calculated. Since the interaction among the po
ized spheres is kept to all multipolar orders, our calculat
can be regarded, in the nonretarded limit, as exact. The m
attractive features of our procedure are that:~i! its extension
to a disordered system is straightforward and~ii ! its numeri-
cal solution is extremely simple, as it only requires the c
culation of the eigenvalues and eigenvectors of a w
defined interaction matrix. Also, since PMM have n
reported results of their numerical calculation for a case
which retardation can be neglected, not only our proced
but also our results are new. In Sec. II we develop the
malism of our theory and derive an explicit expression
the interaction matrix. In Sec. III we present the Maxw
Garnett theory for the case of a finite slab. We apply t
theory to specific examples which then serve as a w
defined framework for the analysis of our numerical resu
In Sec. IV we present and analyze our numerical results
the case of a single-layer slab. The detailed analysis of
case is then used to construct a clear physical picture of
results presented for a multilayer slab and the half spa
Finally, in Sec. V we summarize our results.

II. FORMALISM

We consider a cubic array of identical polarizable sphe
of radiusa and a local frequency-dependent dielectric fun
tion es(v) occupying a slab-shaped region of space. T
coordinate system is chosen such that thez axis points along
the @001# direction of the cubic lattice and the spheres are
the regionz,0. Thexy plane is tangent to the uppermo
layer of spheres whose centers lie on the planez52a. A
fast electron is traveling at speedv I on a rectilinear trajectory
above the slab and along they axis. Its coordinates at timet
are given by (x0 ,v I t,z0), andz0 is called the impact param
eter. The axes of the coordinate system attached to the la
will be denotedx8, y8, andz8, and they lie along the@100#,
@010#, and @001# crystallographic directions, respectivel
The primed and umprimed axes have a common origin
the angle between thex and x8 axes will be denoted byf
~see Fig. 1!. Therefore, the two-dimensional unit cell is
square tilted an anglef from the x axis. In its travel, the
electron polarizes the system and the electric field produ
by this polarization acts back on the electron. Our object
is the calculation of the power that would be needed by
external force, working against the polarization forces,
keep the electron traveling with a constant speedv I . Since
we are considering very fast electrons, for which the dev
tion from a rectilinear trajectory is negligible and the chan
in energy is very small compared with the initial energy, th
power can be identified with the power lost by the electr
In our calculation, we will neglect the effects of the magne
field produced by the moving electron; thus the field p
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duced by the electron will be only its quasistatic longitudin
Coulomb field. This quasistatic approximation will be val
as long as (v I /c)2!1, wherec is the speed of light.

We now proceed to the calculation of the energy loss. I
convenient to work with Fourier transforms with respect
time and two of the spatial variables. For example, in
regionz,z0, the time Fourier transform of the potential pro
duced by external charges located atz>z0, which will be
called the external potential, satisfies Laplace’s equation
can be written as10

fext~r,z;v!5E d2Q

~2p!2
fext~Q,v!eiQ•r1Qz; z,z0 ,

~1!

wherer5(x,y), andv andQ5(Qx ,Qy) are the frequency
and the two-dimensional wave vector, which are the Fou
variables corresponding to the time and space transfor
respectively. The magnitude ofQ is denoted byQ[uQu.

Similarly, the induced potentialf ind in the regionz.0
also satisfies Laplace’s equation and can be written as

f ind~r,z;v!5E d2Q

~2p!2
f ind~Q,v!eiQ•r2Qz; z.0.

~2!

Within the spirit of linear response theory we assume a lin
relationship between the induced and external potenti
which can be written, in its most general form, as

f ind~Q,v!52(
Q8

g~Q,Q8;v!fext~Q8,v!, ~3!

where the response functiong(Q,Q8;v) satisfies

g~Q,Q8;v!5g* ~2Q,2Q8;2v!, ~4!

due to the requirement thatf ind(r,z,t) should be real if
fext(r,z,t) is real. Here,* denotes complex conjugate an

FIG. 1. An electron with charge2e moves with velocityvI

5v Iey parallel to an ordered array of spheres. The direction@100#
of the lattice makes an anglef with respect to thex axis.
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g(Q,Q8;v) plays the role of a~longitudinal! reflection am-
plitude in analogy to the reflection of transverse waves.
our case, the square-lattice periodicity parallel to the in
face allows us to write

f ind~Q,v!52(
G

g~Q,Q1G;v!fext~Q1G,v!, ~5!

whereG is a two-dimensional reciprocal lattice vector co
responding to the square lattice.

The energy lossdW of the electron as it moves a distan
dy is given by

dW

dy
52e

]f ind~x,y,z,t !

]y U
x5x0 ,y5v I t,z5z0

, ~6!

where 2e is the charge of the electron, andx5x0 , y
5v I t, z5z0 are the equations of its trajectory. For our ca
where the external charge is a moving electron with cha
density r(x,y,z,t)52ed(x2x0)d(y2v I t)d(z2z0), the
external potentialfext(Q,v) is given by

fext~Q,v!52e~2p!2
e2Qz0

Q
e2 iQxx0d~v2Qyv I !. ~7!

Calculatingf ind(x,y,z,t) using Eqs.~2!, ~5!, and ~7!, one
obtains

dW

dy
52 i

e2

v I
E

2`

1`dv

2pE2`

1`

dQx (
Gx ,Gy

g~Q,Q1G;v!

3e2Qz0
e2uQ1Guz0

uQ1Gu
e2 iGxx0S v

v I
2GyDe2 iGyv I t, ~8!

where

Q5S Qx ,
v

v I
2GyD and Q1G5S Qx1Gx ,

v

v I
D . ~9!

One can prove that the above expression fordW/dy is a real
quantity by using Eq.~4!. One can also see that in this e
pression there are terms that oscillate in time, which co
sponds to a time-dependent energy loss. Since here we
interested only in the time average of the energy loss,
implies that in the sum overGy only the term withGy50
will survive. Taking this into account, and transforming t
integral over frequency to an integral over positive frequ
cies in the rhs of Eq.~8! by using the symmetry property~4!,
one can write

K dW

dy L
t

5
e2

pv I
2E0

`

vdv(
Gx

E
2`

`

dQx

3ImFg~Q,Q1G;v!

uQ1Gz e2 iGxx0Ge2Qz0e2uQ1Guz0,

~10!

where^ . . . & t denotes time average, and

Q5S Qx ,
v

v I
D and Q1G5S Qx1Gx ,

v

v I
D . ~11!
n
r-

e
e
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This expression for̂dW/dy& t yields the energy loss per un
length for an electron which travels on a rectilinear trajecto
along they axis at a distancez0 above the interface and at
lateral distancex0 from the origin. For simplicity, we now
suppose that the electron beam, at a given impact param
z0, performs a lateral scanning, which corresponds to av
aging the electron trajectories over the parameterx0. This
means that in the expression for^dW/dy& t given in Eq.~10!,
the terms withGxÞ0 average to zero, leaving only the sing
term with Gx50. Therefore, we can write

K dW

dy L
t,x0

5
e2

pv I
2E0

`

vdvE
2`

`

dQx

e22Qz0

Q
Im g~Q;v!,

~12!

where^ . . . & t,x0
means time and lateral average and

g~Q,v![g~Q,Q;v!. ~13!

We now write the energy lossE5\v and defined2P/dldE,
the probability per unit path length, per unit energy, for
electron to be scattered with energy lossE, through

K dW

dy L
t,x0

5E
0

`

dEE
d2P

dldE
. ~14!

The dimensionless quantity

J~E![
1

2
m0v I

2a0

d2P

dldE
, ~15!

will be referred to as the energy-loss probability functio
Here,m0 is the electron rest mass anda0 is the Bohr radius.
By combining Eqs.~12!, ~14!, and~15! one can finally write

J~E!5
1

2pE2`

1`

dQx

e22Qz0

Q
Im g~Q,v!, ~16!

where

Q5S Qx ,
v

v I
D . ~17!

The next step is the calculation of the response funct
g(Q,v). According to Eq.~3!, this implies that we must find
the induced potentialf ind(Q,v) with the sameQ as the
external potential, that is,

f ind~Q,v!52g~Q,v!fext~Q,v!. ~18!

This response function carries information about the inter
tion among the spheres. Following Ref. 10 the calculation
g(Q,v) is performed to all multipolar orders and express
as a spectral representation in the following form,

g~Q,v!52
1

2 (
s

Ds~Q!

u~v!2ns~Q!
, ~19!

where
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u~v!52
1

es~v!21
~20!

is the spectral variable, which depends on the dielectric pr
erties of the material. The wordsspectral representation
mean thatg(Q,v) is expressed as a sum of terms w
simple poles, where the poles located atu(vs)5ns(Q) yield
the dispersion relationsvs(Q) of the polarization modes o
the system, and the residuesDs(Q) give the strength of the
coupling of these modes with the external potential. B
ns(Q) andDs(Q) depend only on the geometry of the sy
tem and not on the dielectric properties of the material. T
procedure for the calculation ofns(Q) andDs(Q) is outlined
in Appendix A. It turns out that thens(Q) correspond to the
r
he
s
ca

-

p-

h

e

eigenvalues of an interaction matrix

Hlmi
l 8m8 j~Q!5

l

2l 11
d l l 8dmm8d i j

1
1

4p
Al l 8al 1 l 811Blmi

l 8m8 jeiQ•(rj 2ri )~12d i j !,

~21!

whereBlmi
l 8m8 j is a matrix which couples the induced multipo

lar momentqlmi on spherei with the induced multipolar
momentql 8m8 j on spherej, and it is given by5,11
Blmi
l 8m8 j5~21! l 81m8

Yl 1 l 8,m2m8
* ~u i j ,w i j !

Ri j
l 1 l 811

3F ~4p!3~ l 1 l 81m2m8!! ~ l 1 l 82m1m8!!

~2l 11!~2l 811!~2l 12l 811!~ l 1m!! ~ l 2m!! ~ l 81m8!! ~ l 82m8!!
G 1/2

. ~22!
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Here, Ri j 5uRj2Ri u is the distance between spherej at Rj
and spherei at Ri , Ylm is the spherical harmonic of orde
lm, andu i j andw i j are the polar and azimuthal angles of t
vectorRi j [Rj2Ri . Notice that the location of the sphere
is completely arbitrary in the above expressions, so they
be used for either an ordered or disordered system.

Now, we define the matrixUlmi,s as the matrix that diago

nalizesHlmi
l 8m8 j , that is,

(
lmi,l 8m8 j

Us,lmi
21 Hlmi

l 8m8 jUl 8m8 j ,s85nsdss8 . ~23!

Then, one can show~see Appendix A! that the strengths
Ds(Q) can be written as

Ds~Q!5 (
lmi,l 8m8 j

AQ,lmiUlmi,sUs,l 8m8 j
21 Al 8m8 j ,Q , ~24!

where

Al 8m8 j ,Q5
A4p

L
~2 i m8!e2 im8h

3A l 8a2l 811

~2l 811!~ l 81m8!! ~ l 82m8!!
Ql 821/2eQzj ,

~25!

AQ,lmi5(Almi,Q)* , h is the angle ofQ with respect to thex
n

axis, andL is the size of the system in thex andy directions.
These results are exact within the above-mentioned assu
tions, and Eqs.~19!–~25! establish a well-defined procedur
for the calculation ofg(Q,v).

Since the size of our system is infinite (L→`), the di-
mension of the interaction matrix would also, strictly spea
ing, be infinite. Nevertheless, the periodic structure of
system with respect to thex8,y8 axes allows us to use
small unit cell containing a finite number of spheres and
take account of the rest of the spheres through lattice su
yielding a modified but finite interaction matrix. For our cu
bic lattice, the unit cell is a parallelepiped consisting of a p
of nz cubes, wherenz is equal to the number of layers. In th
unit cell, one sphere touches the top side of each cube,
the lengthLc of the sides of the cubes is related to the rad
a of the spheres byLc /a5(4p/3f )1/3, wheref is the filling
fraction of spheres. It turns out that the contribution of t
spheres that are not considered explicitly in the unit cell c

be included in the matrixBlmi
l 8m8 j through a lattice sum. This

procedure is outlined in Appendix B, and one finds that

interaction matrixHlmi
l 8m8 j can be written as

Hlmi
l 8m8 j~Q!5

l

2l 11
d l l 8dmm8d i j

1
1

4p
Al l 8al 1 l 811B̃lmi

l 8m8 jeiQ•(rj 2ri ), ~26!

where now the indexesi and j denote the location of the
sphereswithin the unit cell and
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B̃lmi
l 8m8 j5~21! l 81m8 (

lx8 ,ly8

Yl 1 l 8,m2m8
* ~u rl1Ri j

,w rl1Ri j
!

url1Ri j u l 1 l 811
eiQ–rl

3F ~4p!3~ l 1 l 81m2m8!! ~ l 1 l 82m1m8!!

~2l 11!~2l 811!~2l 12l 811!~ l 1m!! ~ l 2m!! ~ l 81m8!! ~ l 82m8!!
G 1/2

. ~27!
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Here, rl5Lc(lx8ex81ly8ey8) is a two-dimensional lattice
vector of the square lattice,lx8 andly8 are integers, andex8
and ey8 are unit vectors along thex8 and y8 axes, respec-
tively. The central unit cell~CUC! is located at (lx850,
ly850). The two-dimensonal sums in Eq.~27! were per-
formed using a method described in Ref. 12. The sums
convergent for all values ofQ, l, and l 8. Similar three-
dimensional lattice sums, which depend on a thr
dimensional wave vectork, are only conditionally conver-
gent if l 5 l 851, since the results depend on the direction
which k approaches zero.

Since we are considering a unit cell withnz spheres and
2 l<m<1 l , the order of the interaction matrix is reduce
to N5nzLmax(Lmax12), whereLmax is the maximum value of
the multipolar momentl included in the calculation. For ex
ample, for a slab made of six layers, (nz56), andLmax53,
the order of the interaction matrix isN590.

In the theory we have presented, the array of spher
particles is situated in vacuum. Although we shall show
results of calculations using this geometry, it is unlikely th
an EELS experiment could be done with the spheres
rounded by vacuum. Rather, they would be embedded
matrix with a dielectric functioneb(v). In Appendix C we
shall discuss how one can include such a matrix in
theory, and a summary of our result is presented below.
assume that the matrix fills the entire half spacez,0, and
that there is vacuum in the regionz.0, as before. Of course
a physical matrix would not be infinitely thick, but if it is in
the form of a layer of material, it should be thick enoug
(*50 nm) that the effects of its finite thickness are neg
gible. First, in the calculation of the surface response fu
tion using Eqs.~19! and ~20!, es(v) must be replaced by
es(v)/eb(v) in Eq. ~20!, giving a modified surface respons
function gm(Q,v) in place ofg(Q,v). Second, if the array
of spheres is translated ‘‘rigidly ’’ by a distanceb in the
2z direction, so the centers of the uppermost layer
spheres lie on the planez52(a1b), we find gb(Q,v)
5e22Qbgm(Q,v). Finally, in the calculation ofJ(E) using
Eq. ~16!, the quantityg(Q,v) is replaced by

gv~Q,v!5
gb~Q,v!@eb~v!11#1eb~v!21

gb~Q,v!@eb~v!21#1eb~v!11
. ~28!

In Appendix C we also compare our procedure with an
ternative method that uses image multipoles.13,14

In Sec. IV we will present a numerical solution fo
g(Q,v) for a system of aluminum spheres in vacuum. T
dielectric response of aluminum is modeled by a Drude
electric function
re
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al
e
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e
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e
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es~v!512
vp

2

v~v1 i /t!
, ~29!

wherevp is the plasma frequency andt the relaxation time.
But before looking at the results of our exact theory, it w
be illustrative to show the predictions of the Maxwell Ga
nett effective-medium theory.

III. MAXWELL GARNETT THEORY

In the Maxwell Garnett effective-medium theory our in
homogeneous system is regarded as a homogeneous sl
thicknessd with an effective dielectric responseeMG(v),
given by,2

eMG~v!5
u~v!2~112 f !/3

u~v!2~12 f !/3
. ~30!

Here,u(v) is the spectral variable defined above@Eq. ~20!#.
This theory corresponds to a mean-field dipolar approxim
tion, which means that the polarized spheres interact o
through their induced average dipole moment.15

In the case of aluminum spheres in vacuum, the spec
variable is

u~v!5
v~v1 i /t!

vp
2

, ~31!

where we have used the Drude dielectric function given
Eq. ~29!. On the other hand, the surface response func
g(Q,v) for a homogeneous slab of thicknessd with a local
dielectric responsee(v) is given by16

g~Q,v!5
@e2~v!21#~eQd2e2Qd!

F2~Q,v!F1~Q,v!
, ~32!

where

F6~Q,v!5e~v!~eQd/26e2Qd/2!1eQd/27e2Qd/2.
~33!

It can be seen that Img(Q,v) has two poles whose frequen
ciesv6(Q) are given by

ReF6~Q,v!50. ~34!

These are the dispersion relations of the two normal mo
of the electric field within the slab. We now substituteeMG
given in Eqs.~30! and ~31! into Eq. ~32! to get the surface
response functiongMG(Q,v) of our system. In the caset
→`, the dispersion relationv6(Q) of the two normal
modes can be expressed very simply as
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v6
2 5

vp
2

3 F11
22S6

11S6
f G , ~35!

where

S15tanh@Qd/2# and S25coth@Qd/2#. ~36!

In the extreme dilute limit (f→0) one getsv6→vp /A3,
which corresponds to the dipolar resonance of an isola
metallic sphere. On the contrary, in the limitf→1 ~pure
metal!, one obtainsv6→vp@11S6#21/2, which corre-
sponds to the coupled surface-plasmon resonances of the
tallic slab. Actually, in a cubic lattice of spheres the limitf
→1 is physically unattainable because for this lattice
maximum possible packing isf 5p/6'0.5236. Neverthe-
less, it is interesting that in the Maxwell Garnett theory t
f→1 limit yields the correct results of a pure~local! metal.
In the limit d→` ~half space! the two modes decouple an
one getsv6→vp /A2, which is the frequency correspondin
to the surface plasmon resonance of the metallic half sp

In Fig. 2 we used Eq.~35! to plot v6 as a function ofQd
for three different filling fractions of aluminum spheres,f
50.15, 0.5, and 1.0, where we have taken\vp516 eV. The
two modes start at frequenciesv1

0 5(vp /A3)A112 f and
v2

0 5(vp /A3)A12 f for Qd50, approach each other asQd
increases, and join monotonically atv`5(vp /A3)A11 f /2
for Qd→`. For example, forf 50.15, these frequencies a
\v1

0 '10.53 eV,\v2
0 '8.52 eV, and\v`'9.58 eV, while

for f 51, they are\v1
0 516 eV, \v2

0 50 eV, and \v`

'11.31 eV. This behavior of the two modes can be und
stood by noting that asQd increases, the fields become i
creasingly concentrated at the surfaces. Therefore, the en
splitting between the modes decreases because there is
interaction between the polarization charges on the two
faces.

Although the Maxwell Garnett theory~MGT! is based on
the dipolar approximation and therefore it should be va
only for small filling fractions, here we present some of
predictions for filling fractions as high asf 50.5. We do this

FIG. 2. Dispersion relations, for three different filling fraction
of the two normal modes of the electric field within the slab
given by the Maxwell Garnett theory@Eq. ~35!#.
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because the MGT will be taken as a reference for the an
sis of our exact results, and in this way it will be illustrativ
to compare MGT with our results withLmax51.

In Fig. 3 we show ImgMG as a function of\v for f
50.5, and different values ofQd. The Drude parameter
used here are\vp516 eV andvpt5100. The curves have
a two-peaked structure whose location corresponds to
normal modes frequenciesv6 shown in Fig. 2, and their
heights are proportional to the strength of coupling of the
normal modes with the external field. There is a very ste
growth of both peaks asQd starts to increase fromQd50,
and the peaks get closer each other asQd increases further
while their height increase more slowly. Finally, for larg
values ofQd both peaks merge into one and its height sta
almost constant. For smaller values off, the behavior of
Im gMG is similar to the one shown here, although the ma
mum separation of the peaks atQd50 decreases asf de-
creases, as can be anticipated from Fig. 2.

Now, we use Eq.~16! and ImgMG to calculate the energy
loss probability functionJ(E). In Fig. 4~a! we show the
results of this calculation ford55 nm, z051 nm, f 50.15,
0.5, and 1.0, and an electron incident energyEI5100 keV.
One can see thatJ(E) has a three-peaked structure and h
these peaks separate more from each other asf increases.
This structure can be easily understood when one real
that J(E) is obtained by integrating ImgMG(Q,v) with re-
spect toQxd from vd/v I to `, times a decaying weighting
function. Thus, the two lateral peaks come from the t
peaks in ImgMG , as a function ofv, which are broadened
by the shift of these peaks asQd varies, while the centra
peak arises from the merging of the two peaks of ImgMG for
large values ofQd. For f 50.15, the two lateral peaks get s
close to each other that they merge with the central pe
yielding a broad peak with only some reminiscence of
three-peaked structure.

In Fig. 4~b!, we show the results forJ(E) using the same
parameters as before but changingd to d515 nm. An in-
crease in the thicknessd of the slab makes the two latera

FIG. 3. Surface loss function Img(Q,v), as a function ofQd
and\v, for aluminum spheres in vacuum using the Maxwell Ga
nett theory and a filling fractionf 50.5.
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PRB 60 13 837ELECTRON ENERGY LOSS IN ORDERED ARRAYS OF . . .
peaks, in the three-peaked structure ofJ(E), to get closer to
each other, while the height of the middle peak now becom
larger than the height of the lateral ones. The three-pea
structure arises for the same reasons discussed in the p
ous paragraph, whereas the decrease in splitting betwee
lateral peaks with increasing thicknessd corresponds to the
behavior of the two slab modes, as shown in Figs. 2 and

Finally, we note that the peaks in Fig. 4 have been bro
ened by the finite value oft. As t increases the tails at eac
side of the lateral peaks would tend to disappear, yield
curves with steeper edges and an overall sharper structu
is important to notice that even in the limitt→` the peaks
of J(E) have a broad structure with a finite width. It is on
in the limit of the half space (d→`) that the structure of
J(E) becomes an isolated delta function atv` correspond-
ing to the frequency of the surface plasmon of the syste

In the next section, we will see how the results sho
here are modified by the exact treatment of the perio

FIG. 4. ~a! Energy-loss probability functionJ(E) as a function
of the energy lossE5\v, for a slab of thicknessd55 nm as
obtained using the Maxwell Garnett theory. The solid line cor
sponds to a filling fractionf 50.15, the dashed line tof 50.5, and
the dotted line tof 51. In all the curves an impact parameterz0

51 nm was used.~b! The same as in~a! but for d515 nm.
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structure of the lattice. We shall focus our attention on
role played by the two-dimensional periodicity in each lay
of spheres.

IV. RESULTS FOR LATTICE OF SPHERES

In this section we present numerical solutions f
Im g(Q,v) andJ(E) based on the procedures given by Eq
~19!–~27! and Eqs.~15!–~17!. In all the results presente
below we have chosen a definite set of parameters. For
ample, the Drude parameters for aluminum have been ta
as \vp516 eV and vpt5100. Also, we have fixedEI
5100 keV, which corresponds to the typical incident en
gies for electrons produced in a scanning transmission e
tron microscope, and we have chosena52.5 nm andz0
51 nm. We will show results for systems with differen
numbernz of layers, and for different values of the followin
parameters: the filling fraction of the spheresf, the maximum
multipolar orderLmax and the anglef which the electron
trajectory makes with the@010# direction of the cubic lattice.

A. Single layer

Here, we present results for a single layer of spheres
square lattice takingLmax51, which corresponds to the dipo
lar approximation. In Fig. 5 we plot the dispersion relati
\vs(Q) of the three (s51,2,3) normal modes of the electri
field in the layer. The anglea gives the direction ofQ with
respect to thex8 and y8 axes throughQx85Q cosa and
Qy85Q sina. We have chosenf 50.5, and two different di-
rections of the vectorQ, corresponding toa50° and 30 °.
The three modes correspond to the eigenvalues of the in

action matrixH1m
1m8 , which is a 333 matrix becausem ~and

m8)521, 0, 11, and there is one sphere in the tw
dimensional unit cell. A comparison of these curves with t
ones of Fig. 2, corresponding tov6 of the MGT, shows that
the two-dimensional periodicity in thexy plane introduces a
dependence of the dispersion relations\vs(Q) on the direc-
tion of Q. For example, whena50 °, \vs(Q) is a periodic
function of QLc with period 2p, while for a530 ° it is not
periodic, in agreement with the existence of a square tw
dimensional reciprocal lattice. By symmetry, the dispers
relations coincide fora50° anda590 °, as well as fora
530° anda560 °. The physical nature of these modes
determined by the three (s51,2,3) eigenvectorsU1m,s of

H1m
1m8 . For example, in Fig. 5~a! ( f 50.5 anda50 °) the

lowest-energy mode, labeledY, corresponds to a mode po
larized along they8 direction, which means that in this mod
all the oscillating dipoles point along they8 direction, while
the other two modes, labeledX andZ, are polarized along the
x8 andz directions, respectively. There is no interaction b
tween the different directions of polarization, so the mod
preserve their character when they cross. AtQLc50, the
modes withX and Y polarization become degenerate wi
energy close to 6.53 eV, and the mode withZ polarization
has an energy close to 13.06 eV, which correspond to
energies of the two modes in the dispersion relation of
Maxwell Garnett theory atQd50, as shown in Fig. 2.

In Fig. 5~b!, the parameters are the same as in Fig. 5~a!,
except thata530 °. An analysis of the eigenvectorsU1m,s ,
shows that there is a mode polarized along thez direction,

-
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13 838 PRB 60MENDOZA, BARRERA, AND FUCHS
labeledZ, and that this polarization direction is not couple
to that of the other two modes, labeledXY and YX. These
two modes are linearly polarized in thexy plane, with polar-
ization directions orthogonal to each other. AtQLc50, the
XY andYX modes become degenerate, with an energy eq
\v2

0 56.53 eV, and theZ mode has an energy equal
\v1

0 513.06 eV. Thus, atQLc50 and at any anglea, both
modes have the same energies as the modes atQd50 in the
Maxwell Garnett theory. AtQLc50 theXY mode is polar-
ized alongQ, that is, 30 °, and asQLc increases the angle o
polarization decreases, becoming equal to 19 ° atQLc
'2.0, and210 ° atQLc'4.0.

In Fig. 6 we show Img(Q,v), for f 50.5, as a function
of \v for different values ofQLc , anda50 and 30 °. In
Fig. 6~a!, we plot the casea50. There are only two peaks i
Im g(Q,v) for each value ofQLc , and the position of these
peaks agree with the energies of the correspondingX andZ
modes in Fig. 5~a!. The heights of the peaks give the streng

FIG. 5. ~a! Dispersion relations of the three normal modes of
electric field in a single layer of spheres withLmax51. The filling
fraction is f 50.5 and the vectorQ makes an anglea50 ° ~or
equivalentlya590 °) with respect to the@100# axis of the array of
spheres.~b! The same as in~a! but for a530 ° ~or equivalentlya
560 °).
alof the coupling of these modes to the external field. T
lowest-energy mode in Fig. 5~a! ~labeledY! does not show
up in the plot of Img(Q,v) because a mode with polariza
tion along they8 direction cannot couple with an extern
longitudinal field that is confined to thex8z plane. Whena
530 °, as in Fig. 5~b!, two things happen:~i! there are now
two modes polarized in thexy plane, as well as a mod
polarized in thez direction, and~ii ! the external electric field
has x8, y8, and z components. Therefore one expects th
three peaks will appear in Img(Q,v) for all values ofQLc .
This is actually what happens, as can be seen in Fig. 6~b!,
where we plot Img(Q,v) for f 50.5 anda530 °. For both
a50° and 30 °, the peaks in Img(Q,v) rise very sharply as
QLc increases at small values ofQLc , then they reach a

FIG. 6. ~a! Surface loss function Img(Q,v), as a function of
QLc and\v, for a single layer of aluminum spheres in vacuum
given by the numerical calculation withLmax51. The filling fraction
is f 50.5 and the vectorQ makes an anglea50 ° ~or equivalently
a590 °) with respect to the@100# axis of the array of spheres.~b!
The same as in~a! but for a530 ° ~or equivalentlya560 °).
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PRB 60 13 839ELECTRON ENERGY LOSS IN ORDERED ARRAYS OF . . .
maximum and decrease asQLc increases further, becomin
almost negligible atQLc'10.

The surface loss function Img(Q,v), whose behavior we
have been discussing, can now be used in Eq.~16! to find the
energy-loss probability functionJ(E). In order to carry out
the integration overQx in Eq. ~16! one must define the ori
entation of the electron trajectory with respect to the latti
The anglef has been defined as the angle between
trajectory and the@010# direction of the lattice. Recall tha
thex axis is perpendicular to the electron trajectory, which
in they direction andx8 andy8 lie along the@100# and@010#
crystallographic directions. Therefore, the integration o
Qx , with a constant value of the componentQy5v/v I , cor-
responds to a trajectoryQx85Qx cosf2(v/vI)sinf, Qy8
5(v/v I)cosf1Qx sinf when referred to thex8, y8 axes.
The anglea used in previous sections, defined by tana
5Qy8 /Qx8 , should not be confused with the trajectory ang
f.

In Fig. 7 we have plottedJ(E) for f 50.15 and 0.5,
Lmax51, and three different angles,f50 °, 30 °, and 45 °.
We also show the corresponding functionsJ(E) given by

FIG. 7. ~a! Energy-loss probability functionJ(E) as a function
of the energy lossE5\v for a single layer of spheres with a filling
fraction f 50.15 andLmax51. Three different angles of the electro
trajectory with respect to the@010# axis of the array of spheres wer
chosen:f50 ° ~solid line!, 30 ° ~dashed line! and 45 ° ~dotted
line!. The open circles represent the corresponding result as g
by the Maxwell Garnett theory withd57.58 nm.~b! The same as
in ~a! but for f 50.5 andd55.07 nm.
.
is

s

r

the Maxwell Garnett theory, withd5Lc . In the MGT the
slab has no structure in thexy plane, sogMG(Q,v) does not
depend on the direction ofQ andJ(E) is independent of the
trajectory anglef.

All the curves for the different values off, as well as the
ones corresponding to the Maxwell Garnett theory, have
proximately the same width. This width is determined by t
width of the dispersion of the modes as a function ofQLc ,
and it turns out that the lowest-energy mode and the high
energy mode correspond, approximately, to the energie
the modes atQ50. But since these two energies are\v2

0

and\v1
0 , respectively, the width of the spectrum will be th

same as the one in the Maxwell Garnett theory for all valu
of f. One can see also that a change inf modifies the
profile a bit, the central maxima and minima change th
location, but the size ofJ remains more or less the same

In conclusion, we have performed a detailed analysis
the calculation ofJ(E) for a single ordered layer of sphere
in the dipolar approximation and we have shown the diff
ences and similarities of these exact results with the o
obtained in the Maxwell Garnett theory. The inclusion
higher-order multipoles will give rise to a matrix of highe
order and, consequently, to a larger number of modes. In
case the analysis of the contribution of all different modes
J(E) will become more complicated and might not furth
clarify the physics of our problem. Nevertheless, as the nu
ber of modes increases the band of energies occupied by
modes also increases. Thus one expects that as the multi
order is increased the energy band of the modes of the
tem will become broader until convergence is attained, t
is, until the inclusion of additional multipolar orders in th
calculation does not change the spectrum ofJ(E). The mul-
tipolar order required to attain convergence is approxima
Lmax;11a/D, whereD is the smallest distance between t
surfaces of adjacent spheres.17 This is actually what happen
although no figure showing this effect is presented here.

B. Multilayer

Here we consider a system composed ofnz layers of
spheres with their centers located, as discussed above,
cubic lattice. In Figs. 8~a! and 8~b! we show the spectra o
J(E) for systems with various values ofnz , f, andLmax. We
have chosen two filling fractionsf 50.15 andf 50.30 and
three slabs with number of layersnz51, 2, and 6. In all
these spectra multipolar convergence has been achieved
the spectra with the largest number of layers correspon
the semi-infinite half-space limit. Forf 50.15, multipolar
convergence requiresLmax53, while for f 50.30 one has to
go up toLmax58.

The energy-loss spectra in Fig. 8 show general featu
which can be explained easily. For a fixed number of lay
nz , the spectra become broader asf increases. This occur
because the spheres approach each other more closely
increasingf. The most important effect is that the interactio
energy between dipoles}1/r 3, so the broadening of the
spectra due to the dipolar interaction is proportional tof. In
addition, asf approaches the close-packed limit, many high
multipoles are involved in the interaction, causing addition
broadening of the spectra, as discussed in the previous
tion.

en
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13 840 PRB 60MENDOZA, BARRERA, AND FUCHS
For a fixed filling fractionf, the spectra become narrow
as nz increases. This occurs because, with an increa
number of layers, the ratio of the number of spheres in
interior of the system to the number in the surface lay
increases. A sphere in one of the interior layers is effectiv
surrounded by a cubic lattice of spheres, and many mult
lar interactions between the sphere and its neighbors ten
cancel. This cancellation does not occur for a sphere a
near the surface. In other words, a sphere near the su
interacts more strongly with surrounding spheres throu
multipoles of all orders, tending to broaden the mode sp
trum. Therefore, as the number of layers increases there
fewer spheres at the surface than in the interior, and
spectra become narrower.

It is appropriate to compare our results with those of P
dry and Martı´n-Moreno ~PMM!,9 who also calculated the

FIG. 8. ~a! Energy-loss probability functionJ(E) as a function
of the energy lossE5\v for slabs made ofnz layers of spheres and
with filling fraction f 50.015. The maximum multipolar order
Lmax53, was chosen in order to achieve multipolar convergence
all curves the angle between the trajectory of the electron and
@010# axis of the array isf50 °. The solid line corresponds tonz

51, the dashed line tonz52, and the dotted line tonz56. ~b! The
same as in~a! but with f 50.3 andLmax58.
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energy-loss spectrum for electrons moving parallel to
surface of a cubic lattice of spheres. They used an imp
parameterz051 nm, aluminum sphere radiusa51.25 nm,
filling fraction f 50.065, electron velocityv I50.4c, corre-
sponding toEI546 keV, a plasma energy 15 eV, and
damping factorvpt515. They did not assume laterall
averaged electron trajectories, as we did, but took a defi
trajectory along the@100# axis, presumably above a row o
spheres. Their calculated energy-loss spectra for six laye
shown in Fig. 9~a!. They find a large peak at about 6.0 e
and a smaller peak at 3.7 eV superimposed on a broad b
ground extending from 1 to 13 eV. In Fig. 9~a! we also show
the result of our theory, where we have used exactly
same parameters as PMM. Since their results are give

In
he

FIG. 9. ~a! Energy-loss probability functionJ(E) as a function
of the energy lossE5\v for a slab made ofnz56 layers of
spheres and with filling fractionf 50.065. The dashed line corre
sponds to results of Pendry and Martı´n-Moreno ~PMM! in Ref. 9
and the solid line corresponds to our theory. The angle between
trajectory of the electron and the@010# axis of the array isf
50 °. The rest of the parameters are the ones reported by PMM
Ref. 9 and quoted in the text.~b! Energy-loss probability function
J(E) as a function of the energy lossE5\v for a slab made of
nz56 layers of spheres and with filling fractionf 50.065 according
to our theory. The incident energy isEI53 keV, the dashed line
corresponds tovpt5100 and the solid line tovpt515. The rest of
the parameters are the ones reported by PMM in Ref. 9 and qu
in the text.
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arbitrary units, we have normalized their curve so the ar
under both curves are equal. Their larger peak is at an en
about 2.8 eV lower than our peak at 8.8 eV, and we find
peak that corresponds to their smaller peak.

How can these differences be explained? We do not
pect a major difference in the energy-loss spectra for la
ally averaged electron trajectories and a single traject
since the effective range of interaction between the fast e
tron and the spheres for an energy-loss\v&10 eV isv I /v
*8 nm, a distance greater than both the sphere radius
the distance between spheres,Lc55.0 nm. Moreover, elec-
trons passing directly above a row of spheres will exc
sphere modes with higher multipole orders than electrons
laterally averaged trajectories. Since the energy of a m
increases with increasing multipolar order, a single traject
should give energy loss at a higher energy than laterally
eraged trajectories; that is, the difference is in a direct
opposite to that observed.

This leaves their inclusion of retardation as a possi
explanation for these differences. The numerical calcula
of reflection amplitudes from the sphere lattice is an essen
step in the theory of PMM, but no details of this calculati
are discussed. As we shall explain below, we do not und
stand how retardation can cause such large downward s
in peak positions.

A full account of retardation involves additional loss
arising from the Cherenkov and Smith-Purcell~SP! radiation
from the induced charges, as well as changes in the dis
sion relations of surface modes and the coupling to th
modes due to the inclusion of the magnetic field. In t
discussion, we shall find it useful to represent the array
spheres as a homogeneous half space described by the
well Garnett~MG! effective dielectric response@Eq. ~30!#.
Since the MG theory neglects any effects of retardation
the response of the individual spheres, such effects will
examined here. When retardation is included, all multipo
surface modes of a sphere become radiative, which ca
broadening and shifting to lower energies. These effects
more pronounced for the dipolar mode than for modes
higher multipole orders and become important when the
rameterW5vpa/c;1.18 For a sphere radiusa51.25 nm
we find W50.09, a value so small that retardation is uni
portant. This is borne out by calculations of the extincti
cross section of Al spheres with various radii by Bohren a
Huffman.19 Significant radiative broadening and ener
shifts of about 1 eV occur only for much larger sphere ra
a;20 nm orW;1.5. If a,5 nm these effects are less tha
0.1 eV. Therefore, we expect that radiative corrections to
MG theory will be small.

The original explanation of SP radiation involved ele
trons passing above a metal diffraction grating, the radia
being produced by periodic motion of the induced charge20

If one regards the electric field of the moving electron
being described by a set of evanescent waves, the Chere
and SP radiation are nothing but the radiation produced
the refraction and diffraction of these waves.21,22 SP radia-
tion is produced in wavelength rangesl5Lc(b

2161)/n
wheren51,2, . . . andb5v I /c. For b50.4, Lc55.0 nm,
and n51, these wavelengths are 17.5 and 7.5 nm, and
corresponding photon energy range is between 71 and
eV. For n.1, photons with even higher energies are p
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duced. Therefore, the energy-loss spectrum for ener
&20 eV will not be affected by SP radiation.

The energy of Cherenkov radiation can be estimated
using the MG effective dielectric response for the sph
array. The radiation is produced in a frequency window su
that b22,eMG(v),`. For b50.4 andf 50.065 the corre-
sponding energy window is between 8.2 and 8.4 eV. Si
this energy range lies on the low-energy tail of our calcula
peak and the ratio of the total radiative energy loss to
longitudinal energy loss is;b250.16,23 we conclude that
Cherenkov radiation will not substantially modify our calc
lated energy-loss spectrum.

If we again approximate the system of spheres by a
mogeneous half space described by the MG dielectric fu
tion, the inclusion of retardation yields a dispersive surfa
mode with a frequency vs given by Q2c2/vs

2

5eMG(vs)/@eMG(vs)11#. If we set Q5vs /v I , its mini-
mum value, and solve forvs , we find an energy 8.76 eV
This energy including retardation is only 0.04 eV lower th
the unretarded surface mode energy, 8.80 eV, which is
fined by the conditioneMG(vs)521. PMM give an analytic
expression for the energy-loss spectrum of a homogene
half space including retardation, which yields a peak a
frequency such thate(vs)'2(11b2). Taking e5eMG we
find the energy-loss peak at 8.77 eV, essentially the sa
result as above.

Other studies of the effects of retardation arrive at sim
conclusions.24 Therefore, the large downward shift of th
largest peak by about 2.8 eV for the lattice of spheres
surprising. Also, their smaller peak at 3.7 eV is complete
unexplained. We believe that this question could be resol
if PMM were to repeat their calculations for a very low
incident electron energy, e.g., 3 keV, corresponding tob
50.11. In this case the effects of retardation are negligi
and their resulting spectra could be directly compared w
the corresponding ones obtained with our theory. We a
suggest that PMM use a larger value ofvpt in the Drude
dielectric response of the Al spheres, sayvpt5100 or \g
50.15 eV, so that differences in the profiles of the spec
will be more evident. In Fig. 9~b! we show the results o
these calculations using our theory for an incident elect
energy of 3 keV andvpt515 and 100. These results shou
be useful for comparison with suggested calculations
PMM.

V. SUMMARY

We have developed a theory for the calculation of t
energy-loss probability function of swift electrons travelin
parallel to the interface of an ordered array of polariza
spheres. The interaction among the polarized spheres ca
calculated to all multipolar orders, and the main assumpt
of the theory is that the interaction between the electron
the system is only through a longitudinal electric field; th
is, retardation effects are neglected.

First, we construct a theory for the response funct
g(Q,Q8;v) for spheres at arbitrary positions in a half spac
where Q and Q8 are two-dimensional wave vectors of in
duced and external potentials, respectively. This respo
function is expressed as a spectral representation, where
mode positions and strengths are related to the eigenva
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and eigenvectors of a matrix that describes the interac
between spheres to all multipolar orders. Applying th
theory to an ordered array of spheres, the response func
assumes the formg(Q,Q1G;v), where G is a two-
dimensional reciprocal lattice vector of the array.

Next, we show how this response function can be use
find the energy-loss probability function for an electron tra
eling on a definite trajectory outside the array, parallel to
surface, at arbitrary angle with respect to the symmetry
rections of the array. Taking an average over lateral positi
of the trajectory, we find that only theG50 term survives, so
the energy loss depends on the distance of the trajec
from the surface and on the trajectory angle, and a sim
response functiong(Q,v) can be used in the energy-los
calculation.

We apply our theory to a sphere array in the form o
slab, where the centers of the spheres are placed on a c
lattice, and present results for slabs containing 1 to 6 lay
of aluminum spheres in vacuum. For a single layer, we sh
the mode positions in the dipolar approximation for vario
paths in theQ plane, and also show graphs of the surfa
loss function Img(Q,v), providing information about both
the mode positions and strengths. We present calculation
the energy-loss spectra for various filling fractions of sphe
and trajectory angles. We also show that a simplified the
in which the layer of spheres is replaced by a slab filled w
a homogeneous dielectric medium given by the Maxw
Garnett theory, gives energy-loss spectra that agree qua
tively with those found using the exact theory in the dipo
approximation.

Our paper ends with calculations of energy-loss spe
for various numbers of sphere layers, with several choice
filling fractions, keeping multipole orders sufficiently high
assure the accuracy of the calculation. We compare ou
sults with those of Pendry and Martı´n-Moreno, who have
done similar calculations for arrays of spheres, but have
cluded retardation; however the differences are so large
we are unable to explain them. We suggest that they re
their calculation in the unretarded regime in order to co
pare their results with ours in a region where both theo
should be valid.
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APPENDIX A: SURFACE RESPONSE FUNCTION

Here we outline the procedure to obtain Eqs.~18!–~25!. It
is essentially the same procedure as the one described in
10 but here is extended to the case of anisotropic syste
We first find the response functiong(Q,Q8;v) defined by
Eq. ~3! for a system of spheres of radiiai at arbitrary posi-
tions r i in the half-spacez,0.

Let us consider an external potential

fext~r ,t !5fext~r !e2 ivt, ~A1!

oscillating at frequencyv, whose spatial partfext(r ) has a
single wave-vector componentQ and satisfies Laplace’s
equation in all regions of space, that is,

fext~r !5f0eiQ•r1Qz. ~A2!

We now perform a multipole expansion offext(r ) aboutr i ,
the center of thei th sphere,

fext~r !5(
lm

f lmi
ext~r 8! lYlm~u8,w8!, ~A3!

wherer 85r2r i . Here, the coefficient

f lmi
ext5f0A4p/~2l 11!b lm~2 i !me2 imhQleiQ•rieQz,

~A4!

where b lm51/A( l 1m)!( l 2m)! and h is the angle which
defines the direction ofQ:Qx85Q cosh, Qy85Qsinh.

The induced potential acting on spherei which arises
from the multipole momentsql 8m8 j on all other spheresj can
be similarly written in a multipole series

f ind~r !5(
lm

f lmi
1 ~r 8! lYlm~u8,w8!, ~A5!

where the coefficientsf lmi
1 are given by

f lmi
1 5 (

l 8m8 j

Blmi
l 8m8 jql 8m8 j . ~A6!

The multipole momentqlmi is proportional to thelm multi-
pole coefficient of the total potential acting on spherei, that
is,

qlmi52
2l 11

4p
a l i ~f lmi

ext1f lmi
1 !, ~A7!

wherea l i is the l polarizability of spherei.5 We solve Eqs.
~A6! and~A7! using the procedure described in Ref. 5. Ha
ing solved for the multipole moments on all spheres, we fi
the induced potentialf ind(r ) and calculate its two-
dimensional Fourier transform,

f ind~Q8,v!5
1

L2E f ind~r !eQ8ze2 iQ8•rd2r, ~A8!

where we are assuming a lengthL of the system in directions
parallel to the interface. In carrying out this Fourier tran
form, we use the identity
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E Ylm~u,w!

r l 11
e2 iQ8•rd2r5A2l 11

4p
b lmi meimh8~Q8! lS,

~A9!

whereS5(2p/Q8)e2Q8uzu and the angleh8 defines the di-
rection ofQ8.

After interchangingQ and Q8 we find an equation for
f ind(Q,v) in the form of Eq.~3!. In this equation the re-
sponse functiong(Q,Q8;v) is expressed as a spectral rep
sentation

g~Q,Q8;v!52
1

2 (
s

Ds~Q,Q8!

u~v!2ns
. ~A10!

The mode positionsns are eigenvalues of a Hermitian matr

H lmi
l 8m8 j5

l

2l 11
d l l 8dmm8d i j

1
1

4p
Al l 8ai

2l 11aj
2l 811Blmi

l 8m8 j~12d i j !,

~A11!

and the mode strengths are

Ds~Q,Q8!5Q8 (
lmi,l 8m8 j

AQ,lmiUlmi,sUs,l 8m8 j
21 Al 8m8 j ,Q8 .

~A12!

Here,

Al 8m8 j ,Q85A4p

L2
~2 i !m8e2 im8h8

3Wl 8m8~Q8! l 821aj
l 811/2eiQ8•rjeQ8zj ,

~A13!

with Wl 8m85Al 8/(2l 811)(l 81m8)!( l 82m8)! and AQ,lmi
5(Almi,Q)* . The unitary matrixU diagonalizesH as in Eq.
~23!. Finally, Eqs. ~18!–~25!, which are used to calculat
^dW/dy& t,x0

for a laterally averaged electron trajectory, a

obtained by replacing the sphere radiiai by a single radiusa
and settingQ85Q.

APPENDIX B: LATTICE SUMS

In this appendix we describe the procedure for deriv
Eqs.~26! and ~27! from Eqs.~21! and ~22!. First, we take a
finite number of spheres within a central unit cell (lx850,
ly850), and repeat this cell periodically to generate the
finite system. Then, we split the contribution to the coe
cients of the induced potential on spherei, given by Eq.
~A6!, into a part coming from the spheres located in the sa
cell as spherei ~the central unit cell!, plus a part coming
from the spheres located in the rest of the cells:

f lmi
1 5 (

l 8m8 j (Þ i )

Blmi
l 8m8 jql 8m8 j1 (

l¹CUC
(

l 8m8 j l

Blmi
l 8m8 j lql 8m8 j l

,

~B1!
-

g

-
-

e

where the first sum is over spheresj Þ i in the central unit
cell ~CUC! and the second is a sum over the imagesj l of all
spheres in the celll. By images we mean the spheres th
are generated from a sphere in the CUC by a translation
rl5Lc(lx8 ,ly8). When considering the images on thel
cells, the interaction of spherei with its images should be
also taken into account. Due to the periodicity in thexy
plane the induced multipolar moment on spherej l is related
to the induced multipolar moment on spherej by qlm jl
5qlm je

iQ–rl. Then, Eq.~B1! can be written as

f lmi
1 5 (

l 8m8 j
S (

l
Blmi

l 8m8 j leiQ–rlDql 8m8 j

5 (
l 8m8 j

B̃lmi
l 8m8 jql 8m8 j , ~B2!

where we define

B̃lmi
l 8m8 j[(

l
Blmi

l 8m8 j leiQ–rl, ~B3!

and the sum runs over all the cells except in the casej 5 i ,
for which the CUC is excluded. Finally, substituting the e

pression forBlmi
l 8m8 j given in Eq.~22! one gets Eq.~27!. Now

one follows the procedure described in Appendix A, w

Blmi
l 8m8 j replaced byB̃lmi

l 8m8 j , in order to arrive at Eq.~26!.

APPENDIX C: SPHERES EMBEDDED
IN A DIELECTRIC MATRIX

In this appendix, we discuss the derivation of Eq.~28!.
The first step is to take the system of spheres located in
half spacez,0 and replace the vacuum everywhere by t
dielectric function of the matrix,eb(v). Since the surface
response function depends on the ratio of the dielectric fu
tions of the two components, the quantityes(v) in the spec-
tral variable u defined by Eq.~20! must be replaced by
es(v)/eb(v). This changes the surface response funct
g(Q,Q8;v) in Eq. ~A10! to a ‘‘modified surface respons
function’’ gm(Q,Q8;v). In subsequent equations we sha
drop the labelv.

Next, if the spheres are moved by a distanceb in the
2z direction the sphere center positionszi must be replaced
by zi2b. From Eqs. ~A10!–~A13! it can be seen tha
gm(Q,Q8) is changed togb(Q,Q8)[e2(Q1Q8)bgm(Q,Q8).

Finally, we must replace the dielectric matrix in thez
.0 half space by vacuum, and find the surface respo
functiongv(Q) of the system as seen from the vacuum. If w
take a single Fourier componentQ for the external potentia
in the vacuum and assume that the system is periodic, so
wave vectorsQ and Q8 differ by a reciprocal lattice vecto
G, expressions for the potential in the vacuum and just ins
the matrix are, respectively,

V(1)5eiQ•reQz2(
G

gv~Q1G,Q!ei (Q1G)•re2uQ1Guz;

z.0, ~C1!
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V(2)5(
G

@aQ1GeuQ1Guz1bQ1Ge2uQ1Guz#ei (Q1G)•r;

0.z.2b. ~C2!

The unknown coefficientsbQ1G , which are Fourier com-
ponents of the induced potential in the region between
vacuum-matrix interface and the spheres, can be express
terms ofaQ1G , the unknown external potential coefficien
in the same region:25

bQ1G52(
G8

gb~Q1G,Q1G8!aQ1G8 . ~C3!

From the continuity of the potential and the normal comp
nent of the displacement at the interfacez50, we find two
sets of equations,

dG,02gv~Q1G,Q!5aQ1G2(
G8

gb~Q1G,Q1G8!aQ1G8 ,

~C4!

dG,01gv~Q1G,Q!

5ebFaQ1G1(
G8

gb~Q1G,Q1G8!aQ1G8G . ~C5!

For GÞ0, the sum of Eqs.~C4! and ~C5! gives

eb11

eb21
aQ1G1(

G8
gb~Q1G,Q1G8!aQ1G850; GÞ0.

~C6!

If the G850 term is taken out of the sum in Eq.~C6! and
moved to the right-hand side, the coefficentsaQ1G can be
solved in terms ofaQ . Defining the matrix

TGG85
eb11

eb21
dGG81gb~Q1G,Q1G8!; G,G8Þ0,

~C7!

the solution can be written using the inverse ofT:

aQ1G852 (
GÞ0

@T21#G8Ggb~Q1G,Q!aQ ; G8Þ0.

~C8!

If we use Eq.~C8! for the coefficientsaQ1G8 in Eqs. ~C4!
and ~C5! with G50 the result is

12gv~Q!5aQ@12gb~Q!1W~Q!#, ~C9!

11gv~Q!5ebaQ@11gb~Q!2W~Q!#, ~C10!

wheregv(Q)[gv(Q,Q), gb(Q)[gb(Q,Q), and

W~Q!5 (
G,G8Þ0

gb~Q,Q1G8!@T21#G8Ggb~Q1G,Q!.

~C11!

Finally, solving Eqs.~C9! and~C10! for gv(Q), and neglect-
ing W(Q), we get Eq.~28!.

We can show thatW(Q) can be neglected under the fo
lowing conditions: ~a! v I /v*2Lc ; ~b! z0*Lc/5; ~c! b
*Lc/4. Condition ~a! states that the effective interactio
e
in

-

range of the incident electron must be appreciably larger t
the distance between spheres; conditions~b! and~c! state that
neither the electron trajectory nor the spheres should be
close to the vacuum-matrix interface. Conditions~a! and~b!
imply that in Eq.~12! the integration trajectory lies close t
origin Q50 and that the factorQ21exp(22Qz0) in the inte-
grand falls off rapidly asuQxu increases, so that less tha
1/20 of the contribution to the integral occurs forQ.G0/2,
whereG0[2p/Lc is the reciprocal lattice unit vector. There
fore, for the small values ofQ which contribute significantly
to the integral in Eq.~12!, we have uQ1Gu;G and uQ
1G8u;G8, so from Eqs. ~A10!–~A13! it follows that
ugb(Q,Q1G8)gb(Q1G,Q)u&exp(22bG0)gb(Q), and from
Eq. ~C11! we get uW(Q)u& exp(22bG0)ugb(Q)u. We have
assumed thatugb(Q)u;1 and that the terms in Eq.~C11!
have many different phases in the complex plane. Condi
~c! implies thatuW(Q)u&0.04ugb(Q)u. It can also be shown
that if eb;21, so the terms@(eb11)/(eb21)#dGG8 in TGG8
are small, then condition~c! must be replaced byb*Lc/2.
Also, the assumptionugb(Q)u;1 will not be valid near reso-
nances ofgb(Q), so Eq.~28! cannot be expected to repro
duce correctly all fine details of energy-loss peaks wh
might appear when the damping factor is small.

The evaluation ofW(Q) is difficult; therefore, if the con-
ditions for neglectingW(Q) are not satisfied, an alternativ
method for taking account of the dielectric matrix, that
image multipoles, may be useful.13,14 Here, each sphere ha
an image formed by the vacuum-matrix interface. The int
action between the spheres and their images is taken
account from the beginning, and appears in the multipo

interaction, Eq.~A6!. The coeffientsBlmi
l 8m8 j will include the

potential produced by the image multipoles, so these coe

cients, as well asH lmi
l 8m8 j @Eq. ~A11!# now depend oneb(v).

If eb(v) is dissipative, the eigenvaluesns of H lmi
l 8m8 j will be

complex, and will depend onv. The spectral representatio
method loses much of its attractiveness, and it may be p
erable to solve Eqs.~A6! and ~A7! for the unknownqlmi
directly by matrix inversion.13 If the spheres are very close t
the interface, both methods will have difficulties: in o
method, manyG,G8 terms will contribute toW(Q), and in
the image multipole method, many high-order multipol
must be kept.

If the spheres are embedded in a dielectric slab,
method must be extended to include transmission respo
functions, whereas the image multipole method will invol
an infinite series of images.14

Since no experiments have been done with orde
spheres in a matrix, we have not presented calculations u
Eq. ~28! with particular matrix dielectric functions. Never
theless, it is instructive to consider a simple example: a se
infinite system of small Al spheres, described by the Ma
well Garnett effective dielectric function, with a
nondispersive dielectric functioneb52 for the matrix. If the-
spheres are in vacuum, there is a single energy-loss pea
10.7 eV for f 50.4 and at 9.2 eV forf ;0. When the dielec-
tric matrix is included, the energy-loss peak shifts to 8.2
for f 50.4 and to 7.2 eV forf ;0. If dielectric function of
the matrix is dispersive, its effects can be much more co
plicated; in particular, there can be additional energy-lo
peaks associated with dielectric-vacuum interfacial surf
modes.
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