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Substrate effects on the optical properties of spheroidal nanoparticles
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We developed a spectral formalism to study the effective polarizability of a spheroidal particle lying over a
substrate, including multipolar effects. With the help of the spectral representation, we can discuss the optical
response in terms of the excitation of the multipolar modes of the system. As an example of applications, we
provide a spectral representation of the differential-reflectance spectra and we perform calculations for specific
systems.
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I. INTRODUCTION

In the last few decades, the study of optical properties
inhomogeneous thin films has been stimulated by promis
applications. The actual and potential applications cove
wide spectrum of systems and tools ranging from solar
ergy cells and surface-enhanced Raman spectros
~SERS! to the characterization of self-assembled quant
dots. For example, in thin film growth and nanoparticle te
nologies it is crucial to have an accurate characterization
systems consisting of particles lying on a substrate. To at
this description optical spectroscopies have become
tremely useful tools, due to their nondestructive charac
and in situ potentiality.

In addition to supported particles, the focus of surfa
sensitive optical spectroscopies has concentrated on
study of adsorbed molecules. As examples of surfa
sensitive optical spectroscopies, one finds, differential refl
tance~DR!, anisotropy reflectance spectroscopy~ARS!, in-
frared reflectance absorption spectroscopy~IRRAS!, and
SERS. Nevertheless, the information contained in the opt
response of adsorbed molecules and supported particle
nanometric dimensions is actually very different, due, ess
tially, to their difference in size. While the dipolar approx
mation ~DA! might be sufficient for describing the optica
response of a molecule, the inhomogeneities of the subst
induced field acting on the ample volume of the particl
usually described by a macroscopic dielectric functio
might excite, in addition to the dipole, multipolar modes
very high order. While the optical spectra of adsorbed m
ecules might carry information about specific features of
molecular electronic structure or charge transfer mec
nisms, the information sought in the optical response of s
ported particles is related more to their shape, substr
induced multipolar coupling, or local field effects. In the ca
of the electromagnetic effect in SERS,1 both features are
combined, because the anomalous enhancement of the
cal response has been examined by adsorbing molecul
the surface of nonflat metallic surfaces and nanoparticle
different shapes, in particular, spheres and prolate and ob
spheroids.2,3 The calculation of the field at the surface of th
PRB 610163-1829/2000/61~15!/10427~10!/$15.00
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nanoparticles requires the full solution of the optical r
sponse problem. Nevertheless, in the SERS literature the
fect of the substrate on the optical response of sphero
nanoparticles has not been fully treated, although one
find some papers on the problem of the scattered field o
sphere above a flat substrate.4

The optical properties of a system of well-defined p
ticles lying on a flat substrate can be determined through
response of each particle to the local field. The local field
a given particle is the sum of the applied field plus the
duced field. The induced field comes from the charge dis
butions induced at all other particles in the presence of
substrate. But the interaction with the substrate modifies
response of even a single isolated particle, and this mo
cation can be incorporated by assigning to the particle
effective polarizability that takes account of the interacti
with the substrate. This interaction can be regarded as a
interaction, which in dilute systems becomes the domin
one. In the early DR studies on supported particles and
sorbed molecules on flat substrates,5–9 an effective or renor-
malized polarizability was assigned to each particle or m
ecule, in which renormalization intended to include t
interaction with the particle’s or molecule’s own image d
pole. However, it is well known that the image-dipole mod
fails for particles of nanometric dimensions lying very clo
to the substrate, and extensions of this model had to incl
higher-order multipolar interactions. These extensions of
image-dipole model have been worked out for particles
different shapes, in particular, spheres and prolate and ob
spheroids.10–14 The main results of these theories show th
the importance of multipolar interactions increases with
proximity of the particle to the substrate as well as with t
contrast between the dielectric functions of the substrate
the host matrix that surrounds the particle. The accuracy
these models has been tested through the comparison of
quantitative results with the available experimental data. F
thermore, recent DR experiments on free-electron metal
ticles on highly polarizable substrates15 have stimulated a
more systematic study on the effects of multipolar inter
tions in the effective polarizability of particles on a substra

An alternative approach to the optical signature of inh
mogeneous thin films is to look at the optical response
terms of the strength of the coupling to the applied field
10 427 ©2000 The American Physical Society
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10 428 PRB 61ROMÁN-VELÁZQUEZ, NOGUEZ, AND BARRERA
the optically active electromagnetic surface modes of
system. The electromagnetic effect in SERS for adsor
molecules on discontinuous films can also be understoo
the enhancement of the scattered electromagnetic field du
the resonant excitation of these surface modes.16 In the ex-
isting theories the location of the resonant frequencies of
proper modes of the system and the calculation of their c
pling strength to the applied field are not immediate. This
due to the way the theories are constructed, so the locatio
the resonant frequencies of the proper modes usually req
taking the nondissipation limit, a procedure that might c
for a vast amount of numerical effort.

In this paper we construct a theory that yields both
frequencies of the proper modes and the size of their c
pling strength to the applied field. We do this by building
spectral representation~SR! of the effective polarizability of
a spheroidal particle, located at an arbitrary distance abo
substrate. In this representation the effective polarizabilit
expressed as a sum of terms with single poles. The loca
of the poles is associated with the frequencies of the nor
modes of the particle-substrate system and their stre
with the coupling of these modes to the applied field. T
main advantage of this type of representation is that fo
given substrate, the location of the poles and their stren
are independent of the dielectric properties of the part
and depend only on its shape. Obviously, this allows a m
systematic study of the particle-substrate interaction toge
with a well-defined physical picture. Furthermore, the S
developed here also has computational advantages, w
allows us to calculate the location and strength of the nor
modes of the system to very large multipolar orders. This
especially important in the case of particles very close to
substrate and with a high contrast between the dielec
function of the substrate and the host matrix. Finally, one
our goals is also to show that the formalism constructed h
can be applied to model a system recently characterized
differential reflectance measurements.15

The paper is organized as follows. In Sec. II, we descr
the physical model and solve for the field induced by
applied electromagnetic field. Then we construct the SR
the effective polarizability of spheroidal particles above
substrate. In Sec. III, we present systematic results for
effective polarizability of these particles as a function
their geometry, the substrate properties, and the separ
between the substrate and the particles. In Sec. IV, we a
the formalism to provide a SR for differential reflectan
spectra and we illustrate its merits by performing calcu
tions for a specific system. In Sec. V, we present our con
sions.

II. FORMALISM

A. The model

We consider spheroidal particles generated by the rota
of an ellipse around its major or minor axes; they corresp
to prolate or oblate spheroids, respectively. The length of
major and minor axes of the ellipse is denoted, correspo
ingly, by 2a and 2b, while the distance between its foci b
2c52Aa22b2. The spheroidal particle has a local dielect
function ee and is embedded within a semi-infinite homog
neous matrix with dielectric constantea . The particle is
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placed at a distanced above a semi-infinite substrate wit
dielectric constantes . The symmetry axis of the particle lie
normal to the interface between substrate and matrix,
shown in Fig. 1. We also assume that the three media,
trix, particle, and substrate, are nonmagnetic. In the follo
ing we will assume that the particle is a prolate spheroid
the case of an oblate spheroid, the calculation procedure
be completely analogous, thus only the main steps of
derivations will be given.

Let us consider that the system described above is in
presence of an applied external electric fieldEext(r ,t),
propagating with wave vectork and oscillating with fre-
quencyv, that is, Eext(r ,t)5E0ei (k"r2vt), whereE0 is the
amplitude of the field,r is the position vector, andt denotes
time. We also consider that the relevant length scales in
model, such asa, b, andd, are much smaller than the wave
length l52p/k of the applied field; herek[uku. In this
case, it is well known that the quasistatic~nonretarded! ap-
proximation is valid; thus the applied electric field can
described by an electric potential given byCext(r ,t)
52Eext

•re2 ivt. In the presence of this electric field, th
charge distribution induced at the interface of an isola
spheroidal particle has, in the linear approximation, a dipo
moment p proportional to the applied field, that is,p
5aI0•Eext, whereaJ0 is, in general, a complex function of th
frequencyv and is known as the polarizability tensor of th
particle.

If the spheroid is now located above the substrate,
charges induced on the substrate will modify the charge
tribution induced on the spheroid, changing, consequen
the value of its dipolar component. We now define theeffec-
tive polarizability aI of the spheroid-substrate system as t
relation between the dipole momentp of the charge distribu-
tion induced in the spheroid in the presence of the subst
and the applied fieldEext; thus we writep5aJ•Eext. Due to
symmetry, one of the principal axis of the system will be t
symmetry axis of the spheroid, which is perpendicular (') to
the substrate, while the other two will lie parallel (i) to the
substrate. Consequently, in these axes,aJ will have only two
independent components, which will be denoted bya' and
a i , and they correspond to the dipole moment induced in
particle when the applied field lies either perpendicular
parallel to the substrate. The absorption of energy by
particle is proportional to the imaginary part of the comp
nentsa' anda i of the polarizability tensor. For example, th
peaks in Ima'(v) and Ima i(v), as a function of fre-

FIG. 1. The physical model.
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quency, will correspond to the absorption due to the exc
tion of the collective electromagnetic modes in the partic
substrate system by the long-wavelength applied exte
field. These modes are called optically active. As we w
show later, the richness in the absorption spectra comes
the high multipolar components of the charge density
duced in the particle through the substrate.

The analysis of the behavior of the functionsa'(v) and
a i(v) for a spheroidal particle located above a substrate
been done11–14 by solving Laplace’s equation in spheroid
coordinates with the appropriate boundary conditions
then identifying the dipolar component of the charge den
induced in the particle. The space is divided in three regio
region I, the space occupied by the host matrix that s
rounds the particle; region II, the space occupied by the s
strate; and region III, the interior of the particle. Sin
Laplace’s equation is separable in the spheroidal coordi
system, the potential in each of the three regions can
written as a spheroidal-multipolar expansion, and the bou
ary conditions provide a closed set of equations to calcu
the spheroidal-multipolar coefficients. Here we start from
set of equations for the expansion coefficients of the po
tial in region I, which can be identified as that part of t
potential coming from the charges induced in the partic
Then we propose an alternative procedure to calculate t
coefficients, and we show that this procedure yields exp
sions that provide a SR for the effective polarizabiliti
a'(v) anda i(v) analogous to the expression given in Re
17–19 for the spectral representation of the effective die
tric function of a two-phase composite in three dimensio

B. The spectral representation

We first review briefly the concept of SR as introduc
originally by Bergman,17 Stroudet al.,18 Fuchs19 and then we
derive the SR of the effective polarizability of a spheroid
a substrate. These authors showed that the effective l
dielectric functioneM of any two-phase composite in thre
dimensions can always be written as

eM

e2
512 f E

0

1g~n!

u2n
dn, ~1!

whereu is a spectral variable defined asu51/(12e1 /e2),
wheree1 ande2 are the local dielectric functions of compo
nents 1 and 2, andf is the filling fraction of component 1
The main advantage of this representation is that the spe
functiong(n) does not depend on the dielectric properties
the components but only on the geometry of the mod
Moreover,g(n) is a measure of the strength of the coupli
to the applied field of the different optically active mod
whose frequency is determined by the poles (u5n) of the
integrand in Eq.~1!.

In our case, a Cartesian coordinate system is chosen
its origin at the center of the spheroid and thez axis lying
along the symmetry axis of the particle and pointing towa
the inward normal of the substrate, as shown in Fig. 1. T
potentialC(r ) induced in region I by the spheroid-substra
system is then written as
-
-
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C I~r !5Cext~r !1(
lm

AlmZl
m~l!Yl

m~m,w!1Csub~r !,

~2!

whereCext(r ) and Csub(r ) are the potentials produced b
the external field and the charges induced in the substr
respectively. Here (l,m,w) denotes spheroidal coordinate
andXl

m(l), Zl
m(l), andYl

m(m,w) are the appropriate multi
polar functions of the spheroidal basis that depend
whether the spheroidal particles are prolate or oblate.
specific form of all these functions can be found in Ref. 1
together with the derivation of the set of coupled equatio
satisfied by the multipolar-spheroidal expansion coefficie
Alm of the potential in region I. We start from this set o
coupled equations which is given, for eachm, by

Alm1
ea2es

ea1es
a l

m (
l 85umu

~21! l 81m
Kll 8

m
~d!

dl 1 l 811
Al 8m

52a l
mVlm

0 d l1 , ~3!

where2 l<m< l and a l
m are the multipolar polarizabilities

of the spheroidal particle. These polarizabilities are defin
through the relationc lm52a l

mc lm
ext , wherec lm is the lm

multipolar component of the potential induced in an isola
particle embedded in the matrix by thelm multipolar com-
ponent of an applied external potential. The coefficie
Kll 8

m (d) are real and relate the multipolar expansion of t
potential around the image position (0,0,2d) in terms of the
multipolar basis functions centered at the particle posit
(0,0,0). Hered is the distance between the center of t
particle and the substrate, andVlm

0 are the multipolar compo-
nents of the potential generated by the applied fieldEext(r ,t)
and are simply given by

V1052A4p

3
Ez

0 , V1152A2p

3
~2Ex

01 iEy
0!,

V12152A2p

3
~Ex

01 iEy
0!. ~4!

Explicit expressions for the calculation ofa l
m and Kll 8

m (d)
can be found in Ref. 13. Here we will use the closed form
las found by Lam21 for Kll 8

0 (d) and Kll 8
1 (d), which are

quoted in the Appendix.
Since the set of numbersAlm correspond to the coeffi

cients of the multipolar expansion of the potential genera
by the particle, Eq.~3! can be interpreted as if the spheroid
particle, in the presence of an external field, acts over it
through the substrate. Also, the effective dipolar polariza
ity will be given in terms of the coefficientsAlm with l 51,
which correspond to the dipole-moment component of
induced potential generated by the particle. Therefore,
effective dipolar polarizability, which is defined as the qu
tient between the induced dipole moment in the particle a
the magnitude of the external field, can be identified as

a i[
2A111A121

Ex
0

, ~5!
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for the applied field lying parallel to the substrate, and

a'[
A10

Ez
0

, ~6!

for the applied field perpendicular to the substrate. We
using cgs units.

Using the expressions fora l
m andKll 8

m given in Ref. 13, it
is possible to solve Eq.~3! and calculate the coefficient
Alm . The exact solution requires, in principle, an infini
number of multipolar excitations (l→`). However, it is al-
ways possible to truncate the multipolar expansion to a gi
order l 5Lmax whenever the contribution of the higher-ord
multipoles becomes negligible to a given order of appro
mation. In this case we shall say that multipolar converge
has been attained.

In this work we will use an alternative procedure to c
culate the coefficientsAlm . This procedure will yield an ex-
pression for theAlm analogous to the expression given
Refs. 17–19 for the SR of the effective dielectric function
a two-phase composite in three dimensions. As mentio
above, the advantage of this representation is that its m
parameters depend only on the shape of the particle.

We follow a procedure similar to that proposed by Fuc
and Claro20 for a random system of spheres in order to der
a SR of the type given in Refs. 17–19 for the effective p
larizabilities a'(v) and a i(v). First, we rewrite the polar-
izabilities a l

m given in Ref. 13, in terms of the spectral var
ableu in the form

2
clm

a lm
5u2nlm

0 , ~7!

whereu5@12ee /ea#21,

clm5
Xl

m~l0!

W~l0!

d

dl
Xl

m~l!ul5l0
, ~8!

nlm
0 5

Zl
m~l0!

W~l0!

d

dl
Xl

m~l!ul5l0
, ~9!

W(l0)5(2l 11)/c(l0
221), and l5l0 corresponds to the

actual shape of the spheroidal particle. The poles ofa lm are
given, from Eq.~7!, by u(v lm

0 )5nlm
0 , and the frequencies

v lm
0 correspond to the frequencies of the proper modes of

electric field in the isolated spheroid. The quantitiesnlm
0 are

called the depolarization factors of the spheroid, and it
also be shown thatclm andnlm

0 are real numbers.
Now, with the help of Eq.~7! we rewrite Eq.~3! as

(
l 8

~ud l l 82Hll 8
m

!xl 8
m

52 f l
m , ~10!

where

xl
m5A~2l 11!

clm
Alm , f l

m52A~2l 11!clmVlm
0 d l1 .

~11!

The first term on left-hand side of Eq.~10! is a diagonal,
complex matrix that depends on the dielectric properties
the spheroidal particle and the host matrix. The second t
re

n

-
e

f
d
in

s
e
-

e

n

f
m

Hll 8
m is a matrix that dependsonly on the geometrical prop

erties of the model and on the dielectric properties of
substrate and the host matrix. It is given by

Hll 8
m

5nlm
0 d l l 81 f cDll 8

m , ~12!

where f c5(«a2«s)/(«a1«s) is a parameter related to th
dielectric contrast between substrate and host matrix, an

Dll 8
m

5~21! l 8~2l 11!Kll 8
m A clm

~2l 11!
A cl 8m

~2l 811!
.

~13!

The set of coefficientsKll 8
m are real; thusDll 8

m becomes a rea
and symmetric matrix. Whenf c is a real number, the matrix
Hll 8

m in Eq. ~12! is also real and symmetric.
Now, the solution of the system of equations given in E

~12! can be obtained by using the Green’s operator metho22

Thus the solution can be written in the following form,

xl
m5(

l 8
x l l 8

m f l 8
m , ~14!

wherex l l 8
m is the Green’s operator, which can be express

as

x l l 8
m

52(
s

Uls
m~U21!sl8

m

u2ns
m

. ~15!

Here ns
m are the eigenvalues of the matrixHll 8

m , which are
real numbers, andUls

m is the orthogonal matrix that diagona
izesHll 8

m , that is,

~U21!sl
mHll 8

m Ul 8s8
m

5ns
mdss8 , ~16!

and is formed by the eigenvectors ofHll 8
m . Finally, the solu-

tion of the system of equations in Eq.~3! can be written in
terms of the Green’s operator as

Alm52Aclmc1m

3

2l 11
x l1

mV1m
0 . ~17!

Therefore, in terms of the Green’s operator the effect
polarizabilities of the particle, as defined in Eqs.~5! and~6!,
can be written in the following form:

ã i(')[
4p

3

a i(')

v
52

1

3 (
s

Gs
i(')

u2ns
i(')

. ~18!

Herev is the volume of the spheroidal particle, and

Gs
'[uU1s

0 u2, Gs
i[uU1s

1 u2, ~19!

are the spectral functionsGs
m for m50 andm51, respec-

tively. Both Gs
m are positive real quantities that represent t

strength of the coupling to the applied field of the norm
modes of the system whose eigenfrequenciesvs are deter-
mined by the poles,u(vs)5ns

m , in Eq.~18!. The eigenvalues
0<ns

m<1 are known as the depolarization factors and can
used to label the modes.
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It is important to notice that the information about th
dielectric properties of the spheroidal particle are contai
only in the spectral variableu. On the other hand, the infor
mation about the geometry of the model, as well as the
electric properties of the host and substrate, is containe
ns

m and Gs
m . Therefore, it is now possible to carry out a

analysis of the optically active modes foranyspheroidal par-
ticle.

The first thing to do is to write down the matrixHll 8
m .

From Eq.~12! one sees that explicit expressions fornlm
0 and
o
on
r

ca

c

le
la
tic
d

i-
in

Dll 8
m are required. From Eqs.~9! and the expressions for th

functionsXl
m(l) andZl

m(l), the depolarization factors for a
isolated prolate spheriod are given by

nlm
0 5 i m~l0

221!
~ l 2m!!

~ l 1m!!
Qlm~l0!

d

dl
Plm~l!ul5l0

,

~20!

where Plm and Qlm are the Legendre and the associa
Legendre functions, respectively, withl.1, and
e

clm5~21!m
c~l0

221!

~2l 11! Fcl
2l l ! ~ l 2m!!

~2l !! G2

Plm~l0!
d

dl
Plm~l!ul5l0

. ~21!

In the limiting case of a sphere the depolarization factorsnlm
0 become independent ofm and are equal tonl5 l /@2l 11#.

Explicit expressions for the multipolar-coupling matrixDll 8
0 andDll 8

1 are obtained from Eq.~13! and the expressions for th
coefficientsKll 8

0 andKll 8
1 found by Lam,21 which are given in the Appendix. One gets for prolate spheroids andm50

Dll 8
0

5A cl0cl 80

~2l 11!~2l 811!

~2l 11!! ~2l 811!!

dl 1 l 811~ l ! l 8!2 l 1 l 8!2 (
L5 l

`

(
L85 l 8

`

gLlgL8 l 8

~L1L8!!

2L1L811L!L8!
, ~22!

where

gLl5H 0, L2 l is odd or negative

S c

dD L2 l 22lL! ~L/21 l /2!!

~L/22 l /2!! ~L1 l 11!!
, L2 l otherwise.

~23!
the
es
ll
ram-
-
aly-
ion

o-
the
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te.
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e
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ed
The corresponding expression form51 is obtained by using
the relations between the coefficientsKll 8

m given in the Ap-
pendix, and it is given by

Dll 8
1

5A l l 8

~ l 11!~ l 811!

cl1cl 81

cl0cl 80

Dll 8
0 . ~24!

Analogous expressions for oblate spheroids are readily
tained from the corresponding prolate spheroidal functi
by substituting the variablec by c/ i . These expressions fo
Dll 8

m (m50,1) converge only forc/d,1. While this condi-
tion restricts the eccentricity of the oblate spheroids one
deal with, there is no corresponding restriction in the case
prolate spheroids. For example, for an oblate spheroid tou
ing the substrate, the restrictionc/d,1 impliesa,A2b. In
the limit c/d→0 the spheroid becomes a spherical partic
and the corresponding expressions for the multipo
coupling matrixDll 8

m can be obtained using the asympto
properties of the functionsXl

m andZl
m. One gets

Dll 8
0

5
~ l 1 l 8!!

l ! l 8!

@nlnl 8#
1/2

@2d/a# l 1 l 811
. ~25!

The corresponding expression forDll 8
1 is given by Eq.~24!.
b-
s

n
of
h-

,
r-

III. RESULTS AND DISCUSSION

Here we present results for the spectral function of
effective polarizability of spheroidal and spherical particl
located at a distanced from a flat substrate. The results wi
be presented and discussed for different sets of the pa
eters$a/b,d, f c%. The analysis will be done for different val
ues of these parameters in order to perform systematic an
sis of the particle-substrate system. The calculat
procedure is as follows.

First, we construct the matrixHll 8
m by combining Eq.~12!

with Eqs.~20!–~25! depending whether the particle is a pr
late or oblate spheroid or a sphere. One also chooses
value of m as m50 or 1, depending whether the applie
external field lies perpendicular or parallel to the substra
Then, a maximum value of multipolar excitationsLmax is
chosen, and this yields a matrixHll 8

m of dimensionLmax

3Lmax. To diagonalize the matrixHll 8
m , we employed a nu-

merical algorithm described in Ref. 25. The indicesl and l 8
run from 1 toLmax. The parameterLmax is chosen in order
to ensure multipolar convergence in the eigenvalues
eigenvectors ofHll 8

m . Its actual value will depend on th
values ofa/b, f c , andd. One then calculatesGs

m as defined
in Eq. ~19!. Let us recall that theseGs

m give, for a particular
system, the strength of the coupling to the applied field of
optically active modes labeled byns

m . Finally, the effective
polarizabilities for a given spheroidal particle characteriz
by a dielectric function«s are found using Eq.~18!.
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First we start analyzingGs
m in the limiting case of a

spherical particle, because, as we will see below, the m
polar effects are more important for a nanoparticle with t
particular geometry. In this case the matrixHll 8

m is given by
Eqs.~12!, ~24!, and~25!, andGs

m can be calculated following
the computational procedure described above. In Fig. 2
showGs

m as a function of the eigenvaluesns for a sphere of
radiusa embedded in air (ea51) and located at a distanced
from a substrate of sapphire with dielectric constantes
53.132, thusf c520.516. In Figs. 2–5, the panels in the le
~right! side of the figure showGs

0 (Gs
1), corresponding to an

applied electric field perpendicular~parallel! to the substrate
In Fig. 2 we show the behavior ofGs

m as the distanced varies
from d/a51 to d/a51.1, with d/a51 the case when the
sphere is touching the substrate. Figures 2~a!-(a8) corre-
spond to d/a51, 2~b!-(b8) to d/a51.0001, 2~c!-(c8) to
1.001, 2~d!-(d8) to 1.01, and 2~e!-(e8) to 1.1.

Since the modes can be labeled byns , these figures tell us
both the modes in the system that are excited by the app
external field~optically active!, and also the strength of the
coupling to the applied field. We observe that more mo
are excited as the particle gets closer to the substrate, i
pendently of the direction of the external field. The coupli
between the different modes and the applied field~multipolar
interactions! is through the substrate. As expected, the
multipolar interactions become more and more importan
the particle gets closer to the substrate. This means tha
values ofLmax required to achieve multipolar convergen
become larger as the particle gets closer to the substrate

FIG. 2. Gs
m(ns) for a sphere withf c520.516 andd/a equal to

~a!-(a8) 1.0, ~b!-(b8) 1.0001,~c!-(c8) 1.001,~d!-(d8) 1.01, and~e!-
(e8) 1.1. The dotted lines in~e!-(e8) correspond to DA.
ti-
s

e

ed

s
e-

e
s
he

or

example, whend/a51.1 one only needs to takeLmax510,
while for d/a51.01 and d/a51.001, one requiresLmax
580 and 700, respectively. When the particle gets very cl
to the substrate, one needs to include a very large numbe
multipolar interactions. In Figs. 2~a! and 2~b! we plot the
strengths of two sets of modes corresponding toLmax
51800 andLmax52000. Here, multipolar convergence h
been partly reached. This means that only part of the mo
have reached convergence, and as we observe they c

FIG. 3. Gs
m(ns) for a prolate spheroid witha/b52 and f c

520.773. The distance between particle and substrate isd
2a)/b equal to~a!-(a8) 0.0001,~b!-(b8) 0.001,~c!-(c8) 0.01, ~d!-
(d8) 0.1, and~e!-(e8) 0.5. The dotted lines correspond to DA.

FIG. 4. Gs
m(ns) for a prolate spheroid withf c520.773 at a

distance (d2a)/b50.001 and witha/b equal to~a!-(a8) 5.0, ~b!-
(b8) 2.0, and~c!-(c8) 1.2. The dotted line corresponds to DA.
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spond to modes with a low indexs.
Now, as the particle is lifted away from the substrate, o

observes that the spectra are dominated by the excitatio
only a few modes. Atd/a51.1 only two modes are excited
Looking at the eigenvectors corresponding to the eigenva
associated to these modes, one can verify that the one w
larger strength has mostly a dipolar character, while the m
tipolar character of the other is mostly quadrupolar. The m
tipolar identity of the excited modes is lost asd/a decreases
and a larger number of modes is excited. But if the parti
were placed at infinity, only the mode with dipolar charac
would be excited. This can be easily checked from Eqs.~12!
and ~25!, where in the limitd→`, the multipole coupling
matrix Dll 8

0 vanishes, andHll 8
0

5nld l l 8 becomes the diagona
matrix given by the multipolar-polarization factors of an is
lated sphere. In this case, the only mode with strength
ferent from zero is that corresponding to the dipolar inter
tion. It is well known that a sphere under the action of
constant electric field acquires only a dipolar moment. Wh
the distance of the particle to the substrate is 1.5<d/a,`,
the termD11

0 of the multipole coupling matrix is dominan
and DA becomes sufficient to describe the system. At th
distances, the mode with dipolar character shifts to sma
values ofns as the particle gets closer to the substrate. W
d/a,1.5, the coupling between multipolar modes withl
.1 becomes more important; thus more modes are exc
and their individual multipolar identity starts to disappe
As a matter of comparison, we have also shown, with a d
ted line in Figs. 2~d!-(d8) and 2~e!-(e8), the mode obtained
at that distance in DA. In the case of a metallic sphere
scribed by a Drude dielectric function in an air matrix (ea
51), it can be shown that the spectral variableu becomes
proportional tov2; thus a shift to lower values ofns is ac-
tually a redshift when the particle approaches the substr

As the sphere gets closer to the substrate and the ext

FIG. 5. Gs
m(ns) for an oblate spheroid withf c520.65 at a

distance (d2b)/b50.01 and witha/b equal to~a!-(a8) 1.4, ~b!-
(b8) 1.3, ~c!-(c8) 1.2, and~d!-(d8) 1.1.
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field lies normal to it, the behavior of the spectral functio
Gs

0(ns) is analogous to that found for a system of tw
spheres and an external field along the line that joining th
centers. The simplest case, when the spheres are iden
corresponds in our model tof c521, or a substrate with
infinite dielectric constant. This case has been already
cussed by Claro.26

Although the general behavior ofGs
0(ns) when the exter-

nal field is parallel to the substrate is very similar to th
discussed above, there are some differences. From Fig
one can see that the eigenvaluesns of the modes that are
excited cover a more extended region of values when
applied field is normal to the substrate than when is para
We can also observe thatGs

m(ns) is more asymmetric when
the applied field is normal (m50) to the substrate.

Now we calculateGs
m for a spheroidal particle. The ma

trix Hll 8
m given in Eq.~12! has two terms, the diagonal term

nlm
0 and the multipolar-coupling matrixDll 8

m . To calculate
the diagonal termsnl

m for prolate spheroids, given by Eq
~20!, it is necessary to evaluateQlm(l0), anddPlm /dl. The
numerical evaluation ofdPlm /dl was done using the recur
rence relations of Legendre’s polynomials given
Refs. 22–24, while for the numerical evaluation ofQlm(l0)
we used a series representation22 in inverse powers ofl. For
oblate spheroids,Qlm( il) turns out to be an alternating se
ries that converges so slowly that it hampers the calculati
for large values ofLmax. In our actual calculations we per
formed this sum using Euler’s method, as described in R
23. For the evaluation of the elements of the multipol
coupling matrixDll 8

m for prolate and oblate spheroids, w
used the explicit expressions found by Lam21 and given in
Eqs.~22!–~24!. The calculation ofcl0 andcl1 was done us-
ing a procedure similar to that used to calculatenlm

0 .
We start our analysis ofGs

m for the case of prolate sphe
roids. First, we analyze the dependence of the mo
strength as a function of the distance of the particle to
substrate. In Fig. 3, we showGs

m for a prolate spheroid with
a/b52 and contrastf c520.773, as a function of the depo
larization factorsns . The distance (d2a)/a, between par-
ticle and substrate in panels Figs. 3~a!-(a8), 3~b!-(b8), 3~c!-
(c8), 3~d!-(d8), and 3~e!-(e8) is equal to 0.0001, 0.001
0.01, 0.1, and 0.5, respectively. We also show~dotted line!
the location of the mode obtained in DA. One can see t
multipolar effects become more evident as the particle g
closer to the substrate, like in the case of the sphere
cussed above. When the particle is far from the substrate
in Figs. 3~e!-(e8), one sees that the dominant mode is ve
close to the mode found in the DA~dotted-line!, this being
more evident when the applied field is perpendicular to
substrate. As the distance between particle and substrat
creases, the location of the mode calculated in the DA sh
to a smaller eigenvalues, independently of the direction
the applied field. When the multipolar coupling is include
for an applied field perpendicular to the substrate, as
particle gets closer to the substrate the dominant mode s
to smaller eigenvalues, while the spectra broadens and
tends towards larger eigenvalues. The same type of beha
of the mode spectra, as the distance from the substra
varied, was found above for the case of a sphere and
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also found for oblate spheroids and will not be reported h
in detail.

Let us now analyze the behavior of the mode strength
function of the eccentricity of the spheroid, given by the ra
a/b. In Figs. 4~a!-(a8), 4~b!-(b8), and 4~c!-(c8), we show
Gs

m(ns) for a prolate spheroid with a contrast factorf c

520.773 at a distance (d2a)/b50.001 and witha/b equal
to 5.0, 2.0, and 1.2, respectively. We also show, with a d
ted line, the mode found using DA. One can see that as
particle becomes more asymmetric. This means that as
ratio a/b increases,Gs

m(ns) becomes narrower and a dom
nant mode appears. This dominant mode turns out to lie v
close to the dipolar mode of the isolated spheroid. T
means that as the ratioa/b increases the spheroid actual
decouples from the substrate. In contrast, asa/b→1 the
dominant mode merges down and the mode-strength di
bution becomes broader and equal to that found above
the sphere. In conclusion, we observe that multipolar effe
become more important as the ratioa/b of a prolate spheroid
tends to the unity, that is, when the actual shape tends t
spherical. The location of the mode in the DA is also sho
in Fig. 4, and one can see that as the spheroid becomes
elongated, its location shifts to lower~higher! eigenvalues
when the applied field is perpendicular~parallel! to the sub-
strate.

Now, we will analyzeGs
m(ns) for an oblate spheroid. As

mentioned above, the dependence of the spectral func
with the distance between particle and substrate is similar
prolate and oblate spheroids. This means that the multip
effects due to the substrate acting on the particle are m
important when particle and substrate are in contact,
their importance decreases as the particle recedes from
substrate. In Fig. 5 we showGs

m(ns) for an oblate spheroid
placed at a distance (d2b)/b50.01, with a contrast facto
f c520.65 and eccentricitiesa/b51.4, 1.3, 1.2, and 1.1
One can see that as the eccentricity increases the centro
spectra for the field parallel~perpendicular! shifts towards
larger ~smaller! eigenvalues. Also, as the eccentricity i
creases a tendency towards the appearance of a dom
mode is stronger for the field parallel to the substrate than
the field perpendicular to it.

IV. APPLICATION: DIFFERENTIAL REFLECTANCE
SPECTROSCOPY

Recently, the characterization of the growth of particles
free-electron metals on dielectric substrates has attracted
attention of some experimental groups.15 For example, in
some of these experiments potassium is evaporated over
substrate,15 in such a way that potassium particles are form
during evaporation over a thin layer of SiO2. This layer
serves as a barrier that prevents chemical contact betw
the potassium particles and the silicon substrate and
keeps the particles at a certain distanced above the substrate
This system has been characterized through differen
reflectance~DR! measurements, and here we will apply t
formalism developed above to the calculation of DR spec
in this particular system. The differential reflectanceDRp /R
is defined by
re
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DRp

R
5

Rp@K/Si#2Rp@Si#

Rp@Si#
, ~26!

whereRp@K/Si# andRp@Si# correspond to the reflectance o
p-polarized light for a system with and without potassiu
particles, respectively. We now assume that the optical
sponse of the supported potassium particles can be rega
as the response a homogeneous layer of thickness equ
d85d1a or d85d1b, depending on whether the spheroi
are prolate or oblate. Ifd8 is much less than the waveleng
l of the applied field, and the system is dilute, that is, t
filling fraction f of potassium particles in the volume occ
pied by the fictitious layer is small,DRp /R can be written
for prolates as

DRp

R
5

16v f a

c
cosu ImF ~es2 sin2u!ã i2es

2 sin2u ã'

~12es!~sin2u2es cos2u!
G ,

~27!

whereu is the angle of incidence of light andã j5a j /ab2

with j 5i or' anda j are the effective polarizabilities of th
supported particles.

We are now ready to provide a SR of the different
reflectance by substituting in Eq.~27! the spectral represen
tation of the effective polarizabilitiesã i andã' given by Eq.
~18!. The main advantage of this representation is tha
allows, in a straightforward way, an analysis of th
differential-reflectance spectra in terms of the optical exc
tion of the multipolar modes of the system. The strength
the coupling of the modes to the applied field in
differential-reflectance experiment is given through the sp
tral functions ofã i and ã' in Eq. ~27!. According to this
equation the contributions ofã i andã' have opposite signs
Therefore, one can see how the shape of the spectrum
pends on the relative location and relative size of these m
strengths.

In Fig. 6 we showDRp /R as a function of the photon
energy for a potassium sphere located at different distan
from a silicon substrate with a real dielectric constantes
515, and thenf c520.875. The dielectric function of potas
sium was modeled by the Drude model, that is,e(v)51
2vp

2/(v21 iv/t) with the following parameters:\vp53.8
eV andG5\/t 50.4 eV. We also show, with straight lines

FIG. 6. DR atu560° for a sphere on a substrate of silicon
different distancesd/b5 ~a! 1.0005,~b!, 1.01, ~c! 1.035, and~d!
1.12. Experimental data in black dots.
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the strength and location of the modes that contribute to
differential reflectance. It is evident that for a sphere alm
touching the substrate, Fig. 6~a!, the spectrum become
broad due to the frequency span and density of the exc
multipolar modes, something one could callmultipolar
broadening. But as the sphere is lifted from the substrate t
broadening effect transforms into a spectrum with we
defined peaks and/or shoulders. In this case, the appea
of the shoulders is due, not only because the excited mo
are more separated in energy, but also to the fact of ha
two neighboring modes, one with a positive and the ot
with a negative strength.

In Fig. 6~d! we also show the experimental measureme
made by Beitiaet al.,15 where excellent agreement with ou
calculations is found. Here, we can see that the main feat
of the spectra are reproduced, and the main multipolar c
tributions from the effective polarizabilities and the
strengths are plotted. For energies above 1.9 eV, the ex
mental and calculated data fit very well, and the shoulde
2.2 eV is well reproduced. For energies below 1.9 eV,
experimental and calculated data have a small redshift
tween them. This shift could be due to small differences
the average ratio between the experimental particle and
calculated one, or due to differences of their shapes. Furt
more, we can conclude that the interaction among parti
are less important compared with the effect of the substr
which dominates the profile and intensity of the spectra. I
also interesting to notice that the distinct multipolar struct
in the DR spectra of Beitiaet al.15 arises from the presenc
of the SiO2 layer which ‘‘lifts’’ the particles from the silicon
substrate. If the particles would have been allowed to to
with the substrate, the distinct multipolar structure of the D
spectra would have been ‘‘washed out,’’ giving rise to
broad peak whose broadness would be the result of an
raveled combination of dissipation and multipolar broad
ing, as shown in Fig. 6~a!.

V. CONCLUSIONS

We developed a spectral representation to calculate
effective polarizability of a spheroidal particle lying on a fl
substrate, including high-order multipolar effects. T
method is quite general and allows a systematic study of
spheroid-substrate system. We showed that the spectral
resentation can be very helpful to understand accurately
simultaneously the strengths and location of all optically
cited multipolar modes. Then, we systematically studied
spheroid-substrate system as a function of the dielec
properties of the substrate and ambient, the distance of
particle to the substrate, and the specific shape and mat
properties of the particle. The method was applied to und
stand DR spectra of potassium particles over different s
strates. We found that DR spectra with well-defined mu
le
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polar features require that the particles should lie at a cert
distance above the substrate. We have also found that at
filling fractions of potassium particles, the substrate effe
on the particles are more important than the interacti
among them.
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APPENDIX: MULTIPOLAR COUPLING MATRIX

The multipolar coupling termDll 8
m of Eq. ~13! for prolates

spheroids is given by the following matrix coefficients. Fo
d.c Lam21 found explicit expression forKll 8

0 given by

Kll 8
0

5~21! l 8
~2l !! ~2l 811!!

~ l ! l 8!2 l 1 l 8!2

3(
L5 l

`

(
L85 l 8

`

gLlgL8 l 8

~L1L8!!

2L1L811L!L8!
, ~A1!

where gLl is given by Eq.~23!, and Kll 8
1 is related to the

above expression by

Kll 8
1

52A l

~ l 11!

l 8

~ l 811!
Kll 8

0 . ~A2!

We see that contributions from different multipoles are giv
by the termc/d, which determines the convergence of Eq
~A1! and ~A3!. In the limit for c/d→0 the interaction be-
tween spheroidal multipoles has the form of an interacti
between spherical multipoles, which is expected due to
asymptotic properties of the functionsXl

m and Zl
m . Analo-

gous expressions for oblate spheroids can be obtained f
the corresponding prolate spheroidal expressions by sub
tuting the variablec by c/ i .

Bedeaux and collaborators14 also found a complete set o
relations the for coefficientKll 8

m (d) that satifies the following
relations:

Kll 8
0

~d!5~21! l 1 l 8F2l 811

2l 11 GKll 8
0

~d!,

Kll 8
1

~d!52F l l 8

~ l 11!~ l 811!
GKll 8

0
~d!, ~A3!

Kll 8
1

~d!5Kll 8
21

~d!.
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