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Abstract

We start with a brief presentation of the dielectric formalism used to calculate the energy loss of high-energy electrons
(100 keV) passing through a random system of polarizable spheres embedded in a homogeneous matrix. The formalism is
then extended to the case of electrons traveling parallel to a homogeneous slab of "nite thickness in which either ordered
or disordered collections of polarizable spheres are embedded. For an ordered system in which the spheres are in a cubic
array, the calculated energy-loss spectra are compared with those of an alternative theory. For a slab with disordered
collections of spheres we "nd the energy-loss spectra using the recursive Green's function method and compare our
results with the available experimental data as well as with an extension of the semiclassical-in"nite-barrier (SCIB)
model. Finally, we discuss the relevance of our work as well as trends for future research. ( 2000 Elsevier Science B.V.
All rights reserved.
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The problem of calculating the electron energy loss
spectra for systems of polarizable spheres has been dealt
by several authors [1,2]. In this work we present an
approach to this di$cult problem by focusing on spectral
representations for the nonlocal response functions. Besi-
des computational advantages, the method has the ap-
pealing characteristic that the weights and poles of the
spectral representation depend only on geometrical in-
formation and not on the dielectric functions of the
components.

1. Review of the theory for a random system of spheres

Here we give a brief review of the theory of electron
energy loss by an unbounded random system of spheres,
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"rst derived by Barrera and Fuchs [3]. It is assumed that
the system appears to be homogeneous at a length scale
l<a, where a is the radius of the spheres, although it is
highly inhomogeneous at a length scale of the order of a.
This allows us to describe the system by an e!ective
dielectric function e

M
(k, u). The probability per unit

length, per unit energy, for an electron to scatter with
energy loss E is
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where a
0

is the Bohr radius, m
0

is the rest mass of the
electron and v

I
is the speed of the incident electrons. The

relation between N(E) and e
M
(k,u) is given by
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where k
#

is an upper cuto! wave vector usually deter-
mined by the angular aperture of the electron energy-loss
detector.
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Fig. 1. An electron with charge !e moves with velocity
t
I
"v

I
e
y

parallel to an ordered array of spheres. The direction
[1 0 0] of the lattice makes an angle / with respect to the x-axis.

It was shown [3] that 1/e
M
(k, u) can always be written

in the following spectral representation:
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where f"4
3
pa3N/< is the "lling fraction of the spheres,

u"!1/(e
1
/e

2
!1) is the spectral variable, and e

1
and

e
2

are the local, frequency-dependent dielectric functions
of the spheres and the matrix, respectively. Here N is the
total number of spheres and < is the total volume of the
system. By spectral representation we mean that 1/e

M
can

be written as a sum of terms with simple poles, and these
poles are related to the excitation of the normal modes of
the electric "eld within the system. For example, the poles
at u"1 and u"n

s
have strengths C

"
and C

s
, and

correspond to the excitation of bulk and interfacial
modes, respectively. Furthermore, the strengths C

"
and

C
s

ful"ll the following sum rule [3]:
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which means that the sum of all mode strengths is conser-
ved, or alternatively, that the strength of the bulk mode is
reduced due to the presence of the interface, a fact also
known as the Begrenzung e!ect.

Another appealing feature of the spectral representa-
tion given in Eq. (3) is that the properties of the material
appear only in the spectral variable u, while the location
and strength of the poles depend only on k and on the
geometry of the system. In the mean-"eld approximation
the information about the geometry of the system is given
by two statistical parameters [3]: the "lling fraction of
spheres f and their two-particle distribution function
o(2)(r

12
), where r

12
is the distance between the centers of

two spheres. If the two-particle distribution function
takes account of only the excluded volume correlation,
that is, o(2)(r

12
)"1 for r

12
*2a and 0 otherwise, it can

be shown [3] that the strengths of the modes C
"

and
C

s
and the location of the interface modes n

s
become

functions of only ka, and can be calculated by a simple
procedure.

2. Spheres in a slab

Here we extend the formalism to treat the case of
electrons traveling parallel to an homogeneous slab of
"nite thickness in which either ordered or disordered
collections of spheres are embedded.

2.1. Ordered system

First, consider a cubic array of identical polarizable
spheres of radius a and a local dielectric function e

1
(u)

occupying a slab-shaped portion of the region of space
z(0. A fast electron is traveling at speed v

I
on a rectilin-

ear trajectory along the y-axis, lateral position x
0
, and at

a distance z
0

above the surface of the slab, as shown in
Fig. 1.

We assume a linear relationship between the induced
and external potentials which can be written, for systems
with crystalline periodicity parallel to the interface, as

/*/$(Q,u)"!+
G

g(Q, Q#G;u) /%95(Q#G,u), (5)

where u and Q"(Q
x
,Q

y
) are the frequency and the

two-dimensional wave vector, and G is the two-dimen-
sional reciprocal lattice vector corresponding to the crys-
tal lattice.

Taking the time average of the energy loss and per-
forming, for simplicity, a lateral scanning of the electron
beam, one "nds that only the term with G"0 contrib-
utes to the averaged energy loss and we can write
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Q
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where g(Q,u),g(Q, Q;u), Q"(Q
x
, u/v

I
), and Q"DQD.

The response function g(Q,u) carries information
about the interaction among the spheres. Following Ref.
[11] the calculation of g(Q,u) is performed to all multi-
polar orders and expressed as a spectral representation in
the following form:

g(Q,u)"!
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D
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, (7)

where u(u) is the spectral variable de"ned above but with
e
2
"1.
The procedure for calculating n

s
(Q) and D

s
(Q) can be

found in Refs. [7,12]. It turns out that the n
s
(Q) corres-

pond to the eigenvalues of an interaction matrix Hl{m{j
lmi

(Q)
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Fig. 2. Energy-loss probability function N(E) as a function of the
energy loss E"+u for a slab made of n

z
"6 layers of spheres

and with "lling fraction f"0.065. The dashed line corresponds
to results of Pendry and MartmHn-Moreno (PMM) in Ref. [6] and
the solid line corresponds to our theory. The angle between the
trajectory of the electron and the [0 1 0] axis of the array is
/"03. The rest of the parameters are the ones reported by
PMM in Ref. [6].

which is independent of the properties of the materials.
An expression for Hl{m{j

lmi
(Q) appears in Ref. [5]. Then, one

can show (see Ref. [12]) that the strengths D
s
(Q) can be

written as

D
s
(Q)" +

lmi, l{m{ j

A
Q,lmi
;
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;~1
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A
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Here, ;
lmi,s

is the unitary matrix which diagonalizes the
matrix Hl{m{j

lmi
, and A

Q,lmi
"(A

lmi,Q
)H. Expressions for

A
lmi,Q

appear in Ref. [5].
Now, we present numerical solutions for N(E) for

a slab of aluminum spheres in vacuum. The dielectric
response of aluminum is modeled by a Drude dielectric
function e

1
(u)"1!u2

1
/[u(u#i/q)], where u

1
is the

plasma frequency and q the relaxation time. In the results
shown below the Drude parameters for aluminum have
been taken as +u

1
"16 eV and u

1
q"100. Also, we have

"xed E
I
"100keV, which corresponds to the typical

incident energies for electrons produced in a scanning
transmission electron microscope, and we have chosen
a"2.5 nm and z

0
"1 nm.

In Fig. 2 we show the spectra of N(E) for systems with
a number of layers, n

z
, chosen su$ciently large to give

the response of a half-space. The value of ¸
.!9

, the
maximun multipolar order considered in the calculation,
is chosen so that multipolar convergence is achieved. We
plot N(E) for n

z
"6, ¸

.!9
"3, and f"0.065. In this

"gure we also plot the results obtained using an alterna-
tive theory developed by Pendry and Martin-Moreno
[6]. The possible sources of discrepancy between
these two theories have been thoroughly discussed in
Ref. [12].

2.2. Disordered system

In this section we apply the theory to a disordered
system of spheres in a slab [7]. The spheres are located so
that the density of centers of spheres is constant in the
region !(¸

z
#a)(z(!a of the slab. Here ¸

z
is the

thickness of the slab. The surface response function
g(Q,u) is now independent of the direction of Q and the
size of the matrix Hl{m{j

lmi
that we need to diagonalize to

obtain the poles and weights of the spectral representa-
tion is S"N]¸

.!9
](¸

.!9
#2). This means that as the

number of spheres and multipolar orders increase, the
size S of the matrix becomes much too large to use
a diagonalization procedure to obtain the eigenvalues
and eigenvectors, since the computation time JS3. In-
stead of this we use a recursive Green's function method
to "nd g(Q,u) [8,9].

This method consists in expressing g(Q,u) as a con-
tinued fraction
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where b2 t(u)"(u!1/2$iJu(1!u))/2 is a terminating
function, with the sign of the square root chosen so that
Im g(Q,u)'0. The coe$cients b2

0
, a

0
, b2

1
, a

1
,2, are cal-

culated starting with
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where we have used the simplifying notation
Al{,A

l{m{j,Q
, AHl,A

Q,lmi
, and the components of the

vector u
0

are the coe$cients Al{ . The remaining coe$-
cients are calculated recursively as follows:
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for i"0, 1, 2,2, n, and u
~1

"0. Here H is the symbol
for the matrix whose elements are Hl{m{j

lmi
.

The computation time for each recursive step is JS2,
and only a small number n of terms in the continued
fraction (9) is needed to give an accurate approximation
to g(Q,u). Therefore, the total computation time is
Jn S2, which is much less than the time required for
matrix diagonalization.

In Fig. 3 we show the results for a slab of aluminum
spheres in vacuum, and make a comparison with the
results obtained previously using an e!ective medium
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Fig. 3. Energy-loss probability function N(E) as a function of the
energy loss E"+u for a slab made of n

z
"6 layers of spheres,

with "lling fraction f"0.15, and ¸
.!9

"3. The solid line corres-
ponds to the theory and the dashed line corresponds to the
modi"ed SCIB model of Mendoza et al. [10].

Fig. 4. Energy-loss probability function N(E) as a function of the
energy loss E"+u for a disordered system of spheres in a slab.
The dashed line correspond to the experiment and the solid line
corresponds to the theory. The parameters used for the solid line
were n

z
"6, f"0.3, ¸

.!9
"3, z

0
"5 nm, a"20 nm, and

u
1
q"22 nm. The legend (]N) means that the theoretical spec-

trum was multiplied by N in order to have the same area under
the curve as the experimental one.

(SCIB) model [10]. The curve labeled `simulationa was
obtained using the theory described above for a dis-
ordered system. The location of the spheres was gener-
ated moving at random an originally ordered system of
spheres in a cubic lattice of n

z
layers.

If the spheres are immersed in a semiin"nite dielectric
matrix then the surface response function is calculated
approximately (see Refs. [7,12]) using the formula

g
7
(Q,u)"

g
"
(Q,u)[e

2
(u)#1]#e

2
(u)!1

g
"
(Q,u)[e

2
(u)!1]#e

2
(u)#1

, (14)

where e
2

is the dielectric function of the matrix,
g
"
(Q,u)"e~2Qbg

.
(Q,u), with (a#b) the smallest dis-

tance between the sphere centers and the edge of the
matrix, and g

m
(Q,u) is the calculated response function

using Eqs. (7) and (8) with e
1
/e

2
instead of e

1
in the

spectral variable u. We recall that Eq. (14) can be used for
both, ordered and disordered systems.

In Fig. 4 we plot N(E) for aluminum spheres in alumi-
num #uoride (AlF

3
), and we compare with the experi-

mental results of Walsh [4] for a similar system.

3. Conclusion

We have shown approaches for calculating the energy
loss of collections of spheres, both unbounded in three
dimensions and con"ned to a slab-shaped region. For the
unbounded system, the energy-loss spectrum can be ex-
pressed in terms of a nonlocal e!ective dielectric function.
For the slab-shaped con"guration, a nonlocal surface
response function was used. In both cases, the response

functions were written in the form of a spectral repres-
entation. For disordered spheres in a slab, a recursive
Green's function method proved to be successful for
performing simulations with a large number of spheres
and multipolar orders. This method is being used to
"nd the nonlocal e!ective dielectric function for the
three-dimensional unbounded system of spheres without
making the mean-"eld approximation.

References

[1] P.M. Echenique, J.B. Pendry, J. Phys. C 8 (1975) 2936.
[2] A. Howie, C.A. Walsh, Microsc. Microanal. 2 (1991) 171.
[3] R.G. Barrera, R. Fuchs, Phys. Rev. B 52 (1995) 3256.
[4] C.A. Walsh, Philos. Mag. A 59 (1989) 227.
[5] C.I. Mendoza, R.G. Barrera, R. Fuchs, Phys. Stat. Sol.

A 170 (1998) 349.
[6] J.B. Pendry, L. MartmHn-Moreno, Phys. Rev. B 50 (1994)

5062.
[7] C.I. Mendoza, Ph. D. Thesis, unpublished.
[8] V. Heine, Solid State Phys. 35 (1980) 1.
[9] C.M.M. Nex, Springer Verlag Series in Solid-State

Sciences, Vol. 58, Springer, Berlin, 1985, p. 52.
[10] C.I. Mendoza, R.G. Barrera, R. Fuchs, Phys. Rev. B 57

(1998) 11193.
[11] R. Fuchs, C.I. Mendoza, R.G. Barrera, J.L. Carrillo,

Physica A 241 (1997) 29.
[12] C.I. Mendoza, R.G. Barrera, R. Fuchs, Phys. Rev. B 60

(1999) 13831.

32 R.G Barrera et al. / Physica B 279 (2000) 29}32


