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“Superluminal” transmission of light pulses through optically opaque barriers
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Using simple considerations of causal electrodynamics we analyze the occurrence of superluminal transmis-
sion of light pulses through optically opaque barriers. We find that the phenomenon appears whenever the main
frequency components of the pulse are confined to frequency regions where the presence of the barrier
decreases the density of states of the electromagnetic modes of the system. We also show that these frequency
regions correspond to the transmission gaps of sufficiently wide barriers. We discuss a simple theory for the
density of states of the barrier system and compare the results of such a theory with exact numerical calcula-
tions.
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Despite the lack of consensus as to the proper definitiomther[19—-21 lines, and it has already been established that,
and physical interpretation of “superluminal” propagation within the stationary-phase approximation, the time delay
[1-4] and tunneling time$5,6], there is already a host of between the peak of the tunneling pulse and the unimpeded
experiments and proposd,7—14 that address those issues one is given by the phase time. The phase time is defined as
and whose understanding deserves full attention. In the corthe frequency derivative of the phase of the transmission
text of the present report we recall, in particular, the experiamplitude and the stationary-phase approximation demands
ments with light pulses traveling across a dielectric barriefonly a slight distortion in the shape of the pulse due to the
[7] or across media with anomalous dispersion near an alwnneling process. Superluminal transmission occurs when-
sorption or gain lin¢2] or between two gain lingd3,14. In  ever the phase times becomegativeand the main fre-
all these experiments it is shown that the coincidental arl’ivahuency Components of the incident pu|se lie within the gap
of a pair of pulses, one that crossed the medium and ong 7 15 18. Our objective here is to establish the conditions
traveling unimpeded, occurred as if the transmitted pulse hagger which these phase times turn out to be negative. Our
crossed the medium at speeds greater than the speed of lighf51ysis is performed within the framework of classical
in vacuum; and this is what we will address as superluminaly ,sa| electrodynamics and we find that superluminal trans-
transmission. But Fh's apparently par_adoxmal resu_lt may btwission will be possible whenever the presence of a barrier
explained by arguing that the detection of the coincidenta auses a decrease in the density of states of the electromag-

arrival refers to the comudence in arrival of theaksof the netic modes of the system in comparison with the density of
pulses, and therefore there is no causal connection between

them[3]. Here we reexamine this argument by first pointingf;aie;.'nc}he absencez[hof éhe t')tarrI(?r.tF:thhelrmore, we sh?w
out that what is common to all these experiments is the tun- at this decrease In the densily of states always occurs tor

neling of a light pulse through an optically opaque barrier,thiCk enough lossless barriers and that the corresponding

and then we analyze this phenomenon within the frameworle@se times, besides being negative, are proportional to their
of causalclassical electrodynamics. By an optically opaque™idth, whenever this width is not too large. This last state-
barrier we mean any arrangement of optical components th ent is, essentially, the electromagnetic version of the well-
produces, in the frequency domain, gaps in the transmissiof0Wn Hartman effects]. _ _
amplitudes. In these arrangements, a gap can be defined as'/e Start by defining the two models that will be used in

the frequency region in which the normal modes of the cor2U" work and locate the frequency regions corresponding to

responding boundless barrier become evanescent in the difle 9aps(a) The firstis a slab of lengtt made of a medium
sipationless limit, or, more precisely, the frequency region inVith an index of refraf:t|om(w) haVIngza sn;gle Lorentzian
which the density of states of the electromagnetic modes ifésonance[22], that is, n(w)=y1+wp/ (05— 0’ —iyw),
the corresponding boundless system vanishes. According tgherew, is a model parameter with units of frequeney is
this definition, a gap can be found only in lossless materialsthe resonance frequency, andis the damping parameter
since for dissipative materials the propagation is never truly€lated to energy dissipatioth) The second is a multilayer
evanescent and the density of states cannot be properly def alternating media witlirea) high and low indices of re-
fined. However, in real materials one could still identify fre- fraction n; andn, and with equal widthsd/2. This is the
quency regions that will become gaps through a propepystem experimentally analyzed by Spielmatral. [7].
analysis of the dissipationless limit. We illustrate our analy- According to our definition, the gaps are frequency re-
sis by considering plane-wave pulses traveling perpendicula@ions in which the normal modes of the corresponding
to the interface of barriers consisting of slabs of a singleboundless system become evanescent in the disipationless
material or dielectric barriers made of an alternating array ofimit. In model (&) this happens in the frequency window
layered materials. W= W= \/w2p+ woz, which defines the gap. This model has
There are several articles that study this same transmideen extensively analyzed in the literat{it®,17,16,2], and
sion or tunneling phenomenon along simild5—-18 and its similarity with nonrelativistic quantum tunneling through
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a barrier[6] has also been thoroughly discussed. In the caséequency regions wher&(w)<L/c, and it will vanish

of model (b) the corresponding boundless system is a periwhen N(w)=L/c. Now, one expectdN(w) to scale also
odic superlattice with the period given by the total lendth with L in such a way that the differendd(w)—L/c will

of the two layers with indices of refractiom; andn,. For  depend only on the widtikd of the barrier, and will remain
simplicity we will assumen; andn, to be real. In this case, finite in the limitL—c. For example, in the crudest possible
the dispersion relation of the normal modes of the systemapproximation, one might assume that the density of states of
that is, the relation between their Bloch wave vectoand  a finite system of widthd is also given by Eq(2), whereL

the frequencyw, is given by[18,23 should be now replaced bg. In this case one can write
N(w) as a simple superposition of the densities of states in
coskd=cogk,d/2)cogk,d/2) the different regions of space, that isN(w)=(L—d)/c
1/n, n, +d/(dw/dk) for frequencies outside the gaps, amtll(w)
1w + = sin(k,d/2)sin(k,d/2), (1) =(L—d)/c for frequencies within the gaps. Combining now
2 1

Eqg. (2) and mNo(w) =L/c, one gets that the phase timg

wherek, =nyw/c, k,=n,olc, andd/2 is the width of each Can Pe written, for frequenciem.tsidethe gaps, as

layer. Bloch evanescent modes will appear whenever the fre-

-1
quency is such thak becomes purely imaginary. In these T4(d,0)=— E+d 3—w , 4
frequency regions, also known as photonic band gaps, there K
is no energy transport, and there is, in general, an infinitecmd, for frequenciewiithin the gaps, as
number of gaps.
According to our definition, the gaps are also defined as
the frequency regions where the density of states vanishes. In Ty(dw)=— . ©)
the case of a boundless system the density of sh{ed of
the electromagnetic modes is given by In general, in the regions of normal dispersion outside the
ool -1 gaps, one hadw/dx<c, and thus this crude approximation
7N(w)= L‘_“’ , ) leads one to the interesting conclusion thatshould always

dk be positive outside the gaps and always negative within.

Nevertheless, one might expect this conclusion to hold only

whereL (— ) denotes the size of the system and the wavgor wide barriers, since in this case the superposition proce-
vector « is real. Whenx is purely imaginary one gets dyre should be a better approximation.

N(w)=0, in agreement with our definition of a gap. One  To check the validity of these ideas we now proceed to
also sees that the density of states scales with the size of thge exact calculation of,, for our model systems, using
system. For modela) one hask=q and N(w) for the  caysal electrodynamics. First, we write the phagef the
boundless system becomedN(w)=L(n'+wdn’/dw)/c.  transmission amplitude asp,(d,w)=— wd/c+ a(d, o).

Also, for the infinite superlattice, one combines E@3.and  Then the phase time,=d¢,/dew can be written as
(2) to determine the density of states, which also scales as the

size L of the system. One can check thd{w) vanishes d da(d,w)

within the gaps and it has a divergent monotonic increase as 7y(d,0) =~ T T de ©

both edges of the gap are approached from outside. This

divergent behavior is associated with the vanishing of theDne can see that this expression is similar to E4jsand(5);

group velocitydw/d«. thus the superposition procedure described above amounts to
For one-dimensional systems with barriers of finite widthtaking

the calculation of the density of states is not as immediate.

Nevertheless, Avishai and Baf#4], using theS-matrix for- da(d,w) |do -t @

malism developed by Dashen, Ma, and Bernsf2], found dw dx

a relationship between the phase timg, defined as _ _

74(w)=de(w)/dw, and the density of stated(w). They  for frequencies outside the gaps, and

found dar(d,w) . o
T(@) = 7[N(w)—No(w)], () do

where ¢, is the phase of the transmission amplitude of thefor frequencies within the gaps. This last equation simply
barrier, N(w) is the density of states of the system in themeans that for wide barriere(d,w) should be a slowly
presence of the barrier, amfth(w) is the density of states of varying function ofew.

the system in the absence of the barrier. In other warglés Simple closed-form expressions faf(d,w) can be ob-
proportional to thechangein the density of states due to the tained for modela) in the dissipationless limit. In this limit,
presence of the barrier. If the barrier is of finite width andthe complex index of refraction(w)=n’(w)+in"(w) be-
located in vacuum, then according to E®) 7Ny(w) comes purely real outside the gap and purely imaginary
=L/c. Therefore, the sign of,, will be determined by the within the gap. Thus in the regions outside the gap one can
difference betweemM(w) and L/c. It will be negative in  write n(w)=n’(w) and a(d,w) will be given by
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FIG. 1. Transmission phase timg=d¢;/dw as a function of

frequency, for modela), using w,/wy=2 and y/w,=0.01, for
barriers of width(a) d=0.1c/wq and(b) d=10.0c/wy. The dotted
lines correspond to the superposition approximation, E4jsand
(5), and the solid lines correspond to the exact calculation of thdrequency, for modelb), for barriers of width(a) d=d, and (b)

transmission amplitude.

1+n'(w)?
2n’(w)

a(d,w)=tanl{(

tar[wn’(w)d/c]], (9

while in the region within the gap one writea(w)
=in"(w), anda(d,w) will be correspondingly given by

1-n"(w)?
2n"(w)

a(d,w)—tanl[(

tant[wn”(w)d/c]].

(10
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FIG. 2. Transmission phase timg=d¢;/dw as a function of

d=10d,. The values of the indices of refraction ang=1.5 and
n,=2.8. The dotted lines correspond to the superposition approxi-
mation, Eqs(4) and(5), and the solid lines correspond to the exact
calculation of the transmission amplitude.

ment with Eq.(8). All these results support the general con-
clusion derived from the superposition procedure mentioned
above.

We now perform the exact calculation ef,(d,w) for
model (a) in the dissipationless limit, using E¢) and the
expressions fow(w,d) given by Eqgs.(9) and (10). To dis-
play a quantitative comparison between the exact results and
the results of the superposition procedure, in Fig. 1 we plot

Equation(9) may be used to check that in the frequencyboth results forr,(d,w) as a function of frequency, for dif-

regions outside the gaps, is always positive. Also, one can
use Eq.(10) to examine the behavior af, for frequencies

within the gap, recalling that causality implieg' (w)=0

[22]. From this equation it is immediately clear that, ds

grows, a(w,d) becomes a function independent a&f and

thus for sufficiently wide barriers, becomes negative. Fur-
thermore, asl is increased, Eq9) displays also the fact that

a(w,d) becomes a slowly varying function @f, in agree-

ferent values ofl. One can see that for frequencies outside
the gap7,(w) is always positive in both calculations, al-
though the exact calculation displays a richer structure with
an oscillatory behavior coming from interference effects due
to the finite width of the barrier. For frequencies within the
gap, the exact value afy(d,») is negative for barriers with
d=10.@c/wq, but it is positive for the very thin barrier with
d=0.1c/wy. We further explore the behavior of the exact
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value of 7,(d,w) for barriers of different widths and we find conclusion, we have performed a direct numerical determi-
that 74(d, w) is always negative for thick barriers, but starts nation of the distancd’ between the peaks of the transmit-
to be positive for thin barriers witd<0.3wg/c. Therefore, ted pulse and a freely traveling of26]. We obtained the
for frequencies inside the gap and thin enough barridrs ( result that the agreement between the the exact and the
=0.3wo/c), there is a disagreement between the exact restationary-phase calculations is quite close, within a certain
sults and the ones from the superposition procedure, not onange of values ofl, yielding support to the validity of the
in the numerical values but even in tb@n of Tg- On the expressiord’ = _CTd)(wC) given by the Stationary_phase ap-
other hand, for these same frequencies and as the width gfoximation. A very interesting feature of this comparison is
the barrier is increaseda(d, )/dw~0; thus the results of = that “superluminal” transmission occurs up to a given value
the superposition procedure and the exact ones approagff g and then it becomes subluminal again. The reason for
each other f,~—d/c). , this behavior is that for very wide barriers the main fre-

: In Fig. 2 we show the correspondmg rgsultg for maighp! uency components of the incident pulse inside the gaps are
with a set of parameters chosen to coincide with those of th o strongly suppressed that the contribution to the transmit-

experiment of Spielmaret al. [7]. In this case there is a . .
collection of gaps, but the behavior ef,(d,») within and f[ed pulse of the frequency tails outside the gaps becomes as
.Jmportant as that from inside.

around each gap, as a function of frequency and width, is We close this report by remarking that, although the

very similar to that described above for mode), in the b oned i i hich h
dissipationless limit. Therefore, one arrives exactly at the® ove—mermone tunneling expe_rlments, whic measuret €
peak velocity and the pulse duration of the transmitted pulse,

same general conclusion about the behaviorgfd,») as ) . - )
the one reached in our above discussion of madelFur- ~ May be fully interpreted and explained within causal classi-

thermore, this leads us to propose, as a general conclusiof@! electrodynamics, there are still many others questions,
that independent of the model used to describe the transmi§tch as the group, front, and energy velocifi2g], experi-
sion barrier superluminal tunneling will be allowed under thementally accessible and verifiable, whose full understanding
following conditions:(i) the main frequency contributions of and elucidation deserves further attention.
the incident pulse must lie within the frequency gap of the . .
barrier, and(ii) the barrier must be sufficiently wide. We acknowledge p,art_lal support from the Dlr_ecrc@en-
Nevertheless, this conclusion is based on the validity of'@ del Personal Acadgco of the National University of
the stationary-phase approximation and the assumption thi{€Xico through Grant No. IN104297, and from the Consejo
all the frequency components lie within the gap. ThereforeNacional de Ciencia y Tecnolag(Mexico) through Grant

in order to check the more general validity of the aboveNOS. 27646 E and 32634 E.
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