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‘‘Superluminal’’ transmission of light pulses through optically opaque barriers

V. Romero-Rochı´n, R. P. Duarte-Zamorano, S. Nilsen-Hofseth, and R. G. Barrera
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, 01000 Me´xico, D.F., Mexico

~Received 25 August 2000; published 23 January 2001!

Using simple considerations of causal electrodynamics we analyze the occurrence of superluminal transmis-
sion of light pulses through optically opaque barriers. We find that the phenomenon appears whenever the main
frequency components of the pulse are confined to frequency regions where the presence of the barrier
decreases the density of states of the electromagnetic modes of the system. We also show that these frequency
regions correspond to the transmission gaps of sufficiently wide barriers. We discuss a simple theory for the
density of states of the barrier system and compare the results of such a theory with exact numerical calcula-
tions.
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Despite the lack of consensus as to the proper defini
and physical interpretation of ‘‘superluminal’’ propagatio
@1–4# and tunneling times@5,6#, there is already a host o
experiments and proposals@2,7–14# that address those issue
and whose understanding deserves full attention. In the c
text of the present report we recall, in particular, the exp
ments with light pulses traveling across a dielectric bar
@7# or across media with anomalous dispersion near an
sorption or gain line@2# or between two gain lines@13,14#. In
all these experiments it is shown that the coincidental arr
of a pair of pulses, one that crossed the medium and
traveling unimpeded, occurred as if the transmitted pulse
crossed the medium at speeds greater than the speed of
in vacuum; and this is what we will address as superlum
transmission. But this apparently paradoxical result may
explained by arguing that the detection of the coinciden
arrival refers to the coincidence in arrival of thepeaksof the
pulses, and therefore there is no causal connection betw
them@3#. Here we reexamine this argument by first pointi
out that what is common to all these experiments is the t
neling of a light pulse through an optically opaque barri
and then we analyze this phenomenon within the framew
of causalclassical electrodynamics. By an optically opaq
barrier we mean any arrangement of optical components
produces, in the frequency domain, gaps in the transmis
amplitudes. In these arrangements, a gap can be define
the frequency region in which the normal modes of the c
responding boundless barrier become evanescent in the
sipationless limit, or, more precisely, the frequency region
which the density of states of the electromagnetic mode
the corresponding boundless system vanishes. Accordin
this definition, a gap can be found only in lossless materi
since for dissipative materials the propagation is never tr
evanescent and the density of states cannot be properly
fined. However, in real materials one could still identify fr
quency regions that will become gaps through a pro
analysis of the dissipationless limit. We illustrate our ana
sis by considering plane-wave pulses traveling perpendic
to the interface of barriers consisting of slabs of a sin
material or dielectric barriers made of an alternating array
layered materials.

There are several articles that study this same trans
sion or tunneling phenomenon along similar@15–18# and
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other@19–21# lines, and it has already been established th
within the stationary-phase approximation, the time de
between the peak of the tunneling pulse and the unimpe
one is given by the phase time. The phase time is define
the frequency derivative of the phase of the transmiss
amplitude and the stationary-phase approximation dema
only a slight distortion in the shape of the pulse due to
tunneling process. Superluminal transmission occurs wh
ever the phase times becomenegativeand the main fre-
quency components of the incident pulse lie within the g
@2,7,15,18#. Our objective here is to establish the conditio
under which these phase times turn out to be negative.
analysis is performed within the framework of classic
causal electrodynamics and we find that superluminal tra
mission will be possible whenever the presence of a bar
causes a decrease in the density of states of the electro
netic modes of the system in comparison with the density
states in the absence of the barrier. Furthermore, we s
that this decrease in the density of states always occurs
thick enough lossless barriers and that the correspon
phase times, besides being negative, are proportional to
width, whenever this width is not too large. This last sta
ment is, essentially, the electromagnetic version of the w
known Hartman effect@5#.

We start by defining the two models that will be used
our work and locate the frequency regions corresponding
the gaps.~a! The first is a slab of lengthd made of a medium
with an index of refractionn(v) having a single Lorentzian
resonance@22#, that is, n(v)5A11vp

2/(v0
22v22 igv),

wherevp is a model parameter with units of frequency,v0 is
the resonance frequency, andg is the damping paramete
related to energy dissipation.~b! The second is a multilaye
of alternating media with~real! high and low indices of re-
fraction n1 and n2 and with equal widthsd/2. This is the
system experimentally analyzed by Spielmannet al. @7#.

According to our definition, the gaps are frequency
gions in which the normal modes of the correspond
boundless system become evanescent in the disipation
limit. In model ~a! this happens in the frequency windo
v0<v<Avp

21v0
2, which defines the gap. This model ha

been extensively analyzed in the literature@15,17,16,21#, and
its similarity with nonrelativistic quantum tunneling throug
©2001 The American Physical Society01-1
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BRIEF REPORTS PHYSICAL REVIEW E 63 027601
a barrier@6# has also been thoroughly discussed. In the c
of model ~b! the corresponding boundless system is a p
odic superlattice with the period given by the total lengthd
of the two layers with indices of refractionn1 and n2 . For
simplicity we will assumen1 andn2 to be real. In this case
the dispersion relation of the normal modes of the syst
that is, the relation between their Bloch wave vectork and
the frequencyv, is given by@18,23#

coskd5cos~k1d/2!cos~k2d/2!

2
1

2 S n1

n2
1

n2

n1
D sin~k1d/2!sin~k2d/2!, ~1!

wherek15n1v/c, k25n2v/c, andd/2 is the width of each
layer. Bloch evanescent modes will appear whenever the
quency is such thatk becomes purely imaginary. In thes
frequency regions, also known as photonic band gaps, t
is no energy transport, and there is, in general, an infi
number of gaps.

According to our definition, the gaps are also defined
the frequency regions where the density of states vanishe
the case of a boundless system the density of statesN(v) of
the electromagnetic modes is given by

pN~v!5LUdv

dkU
21

, ~2!

whereL(→`) denotes the size of the system and the wa
vector k is real. Whenk is purely imaginary one get
N(v)50, in agreement with our definition of a gap. On
also sees that the density of states scales with the size o
system. For model~a! one hask5q and N(v) for the
boundless system becomespN(v)5L(n81v dn8/dv)/c.
Also, for the infinite superlattice, one combines Eqs.~1! and
~2! to determine the density of states, which also scales as
size L of the system. One can check thatN(v) vanishes
within the gaps and it has a divergent monotonic increas
both edges of the gap are approached from outside.
divergent behavior is associated with the vanishing of
group velocitydv/dk.

For one-dimensional systems with barriers of finite wid
the calculation of the density of states is not as immedi
Nevertheless, Avishai and Band@24#, using theS-matrix for-
malism developed by Dashen, Ma, and Bernstein@25#, found
a relationship between the phase timetf , defined as
tf(v)[df t(v)/dv, and the density of statesN(v). They
found

tf~v!5p@N~v!2N0~v!#, ~3!

wheref t is the phase of the transmission amplitude of
barrier, N(v) is the density of states of the system in t
presence of the barrier, andN0(v) is the density of states o
the system in the absence of the barrier. In other words,tf is
proportional to thechangein the density of states due to th
presence of the barrier. If the barrier is of finite width a
located in vacuum, then according to Eq.~2! pN0(v)
5L/c. Therefore, the sign oftf will be determined by the
difference betweenN(v) and L/c. It will be negative in
02760
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frequency regions whereN(v),L/c, and it will vanish
when N(v)5L/c. Now, one expectsN(v) to scale also
with L in such a way that the differenceN(v)2L/c will
depend only on the widthd of the barrier, and will remain
finite in the limit L→`. For example, in the crudest possib
approximation, one might assume that the density of state
a finite system of widthd is also given by Eq.~2!, whereL
should be now replaced byd. In this case one can write
N(v) as a simple superposition of the densities of states
the different regions of space, that is,pN(v)5(L2d)/c
1d/(dv/dk) for frequencies outside the gaps, andpN(v)
5(L2d)/c for frequencies within the gaps. Combining no
Eq. ~2! andpN0(v)5L/c, one gets that the phase timetf
can be written, for frequenciesoutsidethe gaps, as

tf~d,v!52
d

c
1dUdv

dkU
21

, ~4!

and, for frequencieswithin the gaps, as

tf~d,v!52
d

c
. ~5!

In general, in the regions of normal dispersion outside
gaps, one hasdv/dk,c, and thus this crude approximatio
leads one to the interesting conclusion thattf should always
be positive outside the gaps and always negative with
Nevertheless, one might expect this conclusion to hold o
for wide barriers, since in this case the superposition pro
dure should be a better approximation.

To check the validity of these ideas we now proceed
the exact calculation oftf , for our model systems, usin
causal electrodynamics. First, we write the phasef t of the
transmission amplitude asf t(d,v)52vd/c1a(d,v).
Then the phase timetf5df t /dv can be written as

tf~d,v!52
d

c
1

da~d,v!

dv
. ~6!

One can see that this expression is similar to Eqs.~4! and~5!;
thus the superposition procedure described above amoun
taking

da~d,v!

dv
'dUdv

dkU
21

~7!

for frequencies outside the gaps, and

da~d,v!

dv
'0 ~8!

for frequencies within the gaps. This last equation sim
means that for wide barriersa(d,v) should be a slowly
varying function ofv.

Simple closed-form expressions fora(d,v) can be ob-
tained for model~a! in the dissipationless limit. In this limit,
the complex index of refractionn(v)5n8(v)1 in9(v) be-
comes purely real outside the gap and purely imagin
within the gap. Thus in the regions outside the gap one
write n(v)5n8(v) anda(d,v) will be given by
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 63 027601
a~d,v!5tan21H S 11n8~v!2

2n8~v! D tan@vn8~v!d/c#J , ~9!

while in the region within the gap one writesn(v)
5 in9(v), anda(d,v) will be correspondingly given by

a~d,v!5tan21H S 12n9~v!2

2n9~v! D tanh@vn9~v!d/c#J .

~10!

Equation ~9! may be used to check that in the frequen
regions outside the gapstf is always positive. Also, one ca
use Eq.~10! to examine the behavior oftf for frequencies
within the gap, recalling that causality impliesn9(v)>0
@22#. From this equation it is immediately clear that, asd
grows, a(v,d) becomes a function independent ofd, and
thus for sufficiently wide barrierstf becomes negative. Fur
thermore, asd is increased, Eq.~9! displays also the fact tha
a(v,d) becomes a slowly varying function ofv, in agree-

FIG. 1. Transmission phase timetf5df t /dv as a function of
frequency, for model~a!, using vp /v052 and g/v050.01, for
barriers of width~a! d50.1c/v0 and~b! d510.0c/v0 . The dotted
lines correspond to the superposition approximation, Eqs.~4! and
~5!, and the solid lines correspond to the exact calculation of
transmission amplitude.
02760
ment with Eq.~8!. All these results support the general co
clusion derived from the superposition procedure mentio
above.

We now perform the exact calculation oftf(d,v) for
model ~a! in the dissipationless limit, using Eq.~6! and the
expressions fora(v,d) given by Eqs.~9! and ~10!. To dis-
play a quantitative comparison between the exact results
the results of the superposition procedure, in Fig. 1 we p
both results fortf(d,v) as a function of frequency, for dif-
ferent values ofd. One can see that for frequencies outsi
the gaptf(v) is always positive in both calculations, a
though the exact calculation displays a richer structure w
an oscillatory behavior coming from interference effects d
to the finite width of the barrier. For frequencies within th
gap, the exact value oftf(d,v) is negative for barriers with
d510.0c/v0 , but it is positive for the very thin barrier with
d50.1c/v0 . We further explore the behavior of the exa

e
FIG. 2. Transmission phase timetf5df t /dv as a function of

frequency, for model~b!, for barriers of width~a! d5d0 and ~b!
d510d0 . The values of the indices of refraction aren151.5 and
n252.8. The dotted lines correspond to the superposition appr
mation, Eqs.~4! and~5!, and the solid lines correspond to the exa
calculation of the transmission amplitude.
1-3



d
ts

(
r

on

h
f
oa

th

,

th

si
m
he
f
he

o
th
re
ve

mi-
it-

the
tain

-
is

ue
for

e-
are

mit-
s as

he
the

lse,
si-
ns,

ing

jo

BRIEF REPORTS PHYSICAL REVIEW E 63 027601
value oftf(d,v) for barriers of different widths and we fin
that tf(d,v) is always negative for thick barriers, but star
to be positive for thin barriers withd&0.3v0 /c. Therefore,
for frequencies inside the gap and thin enough barriersd
&0.3v0 /c), there is a disagreement between the exact
sults and the ones from the superposition procedure, not
in the numerical values but even in thesign of tf . On the
other hand, for these same frequencies and as the widt
the barrier is increased,da(d,v)/dv'0; thus the results o
the superposition procedure and the exact ones appr
each other (tf'2d/c).

In Fig. 2 we show the corresponding results for model~b!
with a set of parameters chosen to coincide with those of
experiment of Spielmanet al. @7#. In this case there is a
collection of gaps, but the behavior oftf(d,v) within and
around each gap, as a function of frequency and width
very similar to that described above for model~a!, in the
dissipationless limit. Therefore, one arrives exactly at
same general conclusion about the behavior oftf(d,v) as
the one reached in our above discussion of model~a!. Fur-
thermore, this leads us to propose, as a general conclu
that independent of the model used to describe the trans
sion barrier superluminal tunneling will be allowed under t
following conditions:~i! the main frequency contributions o
the incident pulse must lie within the frequency gap of t
barrier, and~ii ! the barrier must be sufficiently wide.

Nevertheless, this conclusion is based on the validity
the stationary-phase approximation and the assumption
all the frequency components lie within the gap. Therefo
in order to check the more general validity of the abo
v.

od

.
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conclusion, we have performed a direct numerical deter
nation of the distanced8 between the peaks of the transm
ted pulse and a freely traveling one@26#. We obtained the
result that the agreement between the the exact and
stationary-phase calculations is quite close, within a cer
range of values ofd, yielding support to the validity of the
expressiond852ctf(vc) given by the stationary-phase ap
proximation. A very interesting feature of this comparison
that ‘‘superluminal’’ transmission occurs up to a given val
of d and then it becomes subluminal again. The reason
this behavior is that for very wide barriers the main fr
quency components of the incident pulse inside the gaps
so strongly suppressed that the contribution to the trans
ted pulse of the frequency tails outside the gaps become
important as that from inside.

We close this report by remarking that, although t
above-mentioned tunneling experiments, which measure
peak velocity and the pulse duration of the transmitted pu
may be fully interpreted and explained within causal clas
cal electrodynamics, there are still many others questio
such as the group, front, and energy velocities@27#, experi-
mentally accessible and verifiable, whose full understand
and elucidation deserves further attention.
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