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Calculation of electron-energy-loss spectra of composites and self-similar structures
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We calculate electron-energy-loss spectra for self-similar systems of polarizable spheres using a previously
developed theory for the electron-energy loss of a system of identical spheres. We do this by means of a
recursive procedure and an effective “local” dielectric function, which contains, implicitly, the effects of
spatial nonlocality due to correlations and multipolar interactions among the spheres, as well as some charac-
teristics of the experimental setup. We also apply the procedure to systems of spheres with a continuum
distribution of sizes. Finally, we propose a simple nonlocal generalization of Bruggeman'’s differential effective
medium theory.
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[. INTRODUCTION dend longitudinal dielectric response of the granular system.
Alternative computational procedures have been also pro-
Electron-energy-loss spectroscogifELS) has been a posed, and the inclusion of retardation has been explored as
useful tool to study the dielectric response of materials in amwell.’®> Nevertheless, one of the distinctive features of the
energy region inaccessible to optical spectroscopkes. ex-  approach of BF is that through a wave-vector integration,
ample, the energy loss of electrons provided by a scanninthey were also ablé to derive an effectivdocal dielectric
transmission electron microscope has been used to determinesponse that could be used in Bethe’'s formula to calculate
the dielectric function of materials for energies up to aroundhe energy-loss function, as if the system were homoge-
60 eV? In these experiments the valence electrons of theeous. When the formula for this effective local dielectric
material are polarized by the impinging electrons, and thigesponse was compared with the phenomenological one pro-
process provides energy-loss channels through the excitatiggosed by Walsh and Howie, it unraveled all the approxima-
of the collective electromagnetic modes of the system. Frontions and considerations behind the HW phenomenological
the theoretical point of view this process can be describedpproach. One of the virtues of the formula for the effective
using a dielectric approach. A formula that relates thelocal dielectric response derived from BF’s theory is that it
electron-energy loss in a homogeneous system with theontains, implicitly, the induced interaction among the
imaginary part of the inverse local dielectric function wasspheres to all multipolar ordefgn the mean-field approxi-
first given by Bethé. There has been also an increasing in-mation. This is the main difference between this expression
terest in the use of EELS to study and characterize inhomaoand the ones derived by the effective-medium theories in the
geneous systems, like interfaces, isolated and supportegptical case, in which the induced interaction among the
nanoparticles, and more recently, composit@sSince the spheres is taken only to dipolar order. But having now an
distinctive energy-loss peaks are associated with the excitaffectivelocal dielectric function that takes into account the
tion of electromagnetic modes, and the characteristic energyduced interaction to all multipolar orders, it is very tempt-
of these modes depends, among other things, on the geonmg to try to apply some of the ideas behind the effective-
etry of the system, the energy-loss spectra provide informamedium theories, in the optical case, to the case of EELS.
tion about its mesoscopic structure. For example, in the In this paper we explore some of these ideas, in particular
EELS experiments of Howie and WalsHW) on a compos- the ones developed by Fuchs and Ghosh on their study of the
ite consisting of an insulating matrix with metallic optical response of self-similar structurésand the ones of
inclusions®~1° the presence and identity of the metal wasBruggeman on his differential-effective-medium thedty.
determined by the location, in the spectra, of the energy-losslore explicitly, we consider a system with a self-similar
peak corresponding to the bulk plasmon, while the locatiorstructure in which the size of the inclusions covers very dif-
and structure of the energy-loss band at lower energies wdsrent scales, each scale being much larger than the previous
associated with the excitation of interfacial or surface plasone. We also consider a polydispersed composite, that is, a
mons. Since effective-medium theories, which were successomposite with a given distribution of sizes. Then we apply
ful to describe the optical properties of composites, proved t@ recursive procedure to calculate the effectoeal dielec-
be inappropriate to interpret EELS spectra, HW proposed #&ic response of self-similar and polydispersed systems and
phenomenological approach for the calculation of thecompare the results for the energy-loss function for different
energy-loss function. In this approach they introduce an efselections of geometrical parameters. We also construct the
fective local dielectric response whose parameters were deomposite by adding, at each step, infinitesimal amounts of
termined with the help of an average over all possible electhe inclusions thus yielding a differential equation for the
tron trajectoriesl.0 Later on, Barrera and FucHs(BF) were effective dielectric response, also known as differential ef-
able to construct a more fundamental theory for the calculafective medium theorie©EMT). The solutions of this dif-
tion of the energy loss for a granular composite through thderential equation are used to calculate the energy-loss func-
introduction of an effective nonlocdwave-vector depen- tion and the results are compared with the ones obtained
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through the recursive method. The paper is organized as fothe poles ati=1 andu=n4 have strength€, andCs, and
lows: In Sec. Il we review very briefly the theory of BF and correspond to the excitation of bulk and interfacial modes,
we discuss how the energy-loss probability function can beespectively.

described in terms of an effectitecal dielectric response. In the mean-field approximation the information about the
The recursive procedure is introduced in Sec. Il and thegeometry of the system is given by two statistical
generalization of the DEMT is developed in Sec. IV. Finally, parameters? the filling fractionf of spheres and their two-
Sec. V is devoted to the discussion of our results and conparticle distribution functionp®)(r,), wherer, is the dis-

clusions. tance between the centers of two spheres. If one further as-
sumes that the two-particle distribution function takes into
Il EEFECTIVE LOCAL DIELECTRIC FUNCTION account only the excluded-volume correlations, that is,

p®(ri)=1 for r;,=>2a and 0 otherwise, it can be shown

The objective of this section is to briefly review the con- that the strengths of the mod€g andC, and the locatiomg
struction of an effective local dielectric function that is di- of the interfacial modes become functionskaf, and can be
rectly related to the profile structure of the electron-energycalculated from simple closed-form expressiﬂ)hs.
loss spectra. First, let us consider an unbounded system of Finally, the effectivelocal dielectric functione¢(w) is
N>1 polarizable spheres of radius located at random defined? through the expression
within an otherwise continuous matrix. The dielectric re-
sponses of the spheres and the matrix to an electromagnetic 1 ke 1 dk
fi(_ald osci!lating at frequency are descri.bed by I_ocal dielec- ) - LIUISM(TQ,) K
tric functionse(w) ande,(w), respectively. It is assumed
that the system appears to be homogeneous at a length scalbere 1¥W= Inkw,/w. Note that the effectivéocal dielec-
I>a, although it is highly inhomogeneous at a length scaletric function is not a property of the material only but also of
of ordera. This allows us to describe the process of energythe experimental setup through the parametgrandov, .
loss by fast electrons traveling through the system in term&Jsing this definition one is now able to write
of an effective nonlocal dielectric functiony(k,w). By
nonlocal we mean a dielectric function that depends not only .1
on the frequencyw of the electromagnetic field but also on m=(B)=wim| —
its wave vectoik. The wave vector dependence arises from ) ) ] .
correlations and multipolar interactions among the sphere@hich looks formally identical to the formula first given by
induced by their finite size. It can be shotkithat the prob- Beth€ for the electron-energy-loss probability density
ability per unit length, per unit energy, for an electron to through a homogeneous medium with dielectric response

scatter with energy-loss, is given by gerf(w). _ o
When the spectral representation of}(k,), given in

d2P(E) ( moU|2 Eq. (3), is substituted into Eq(4), one can shoW that
)

4

1

getf(w)

, ®)

-1
—idE = T) =Z(E), (1) 1/e¢s1(w) has also a spectral representation given by

wherea, is the Bohr radiusm is the rest mass of the elec- — +
tron, andv, is the speed of the incident electrons. The rela- gerf(@) &1 &
tion between the energy-loss probability densgyE) and
em(k,w) is given by

VY T S

oNe;+(1—n)ey

In this equation X¢1(w) is given as a sum of two discrete
poles ate ;=0 ande,=0, corresponding to the excitation of
1 dk the bulk modes of the spheres and the matrix, respectively,
— _}_ 2 plus an integral associated with the continuous distribution
en(kw)] k of the characteristic energy of the interfacial modes. Al-
thougheq(w) is a local dielectric function, the coefficients
wherek; is an upper cutoff wave vector usually determinedAbl, Ap,, and A(n) contain all the information about the
by the angular aperture of the electron-energy-loss d.eteCtof'rnite-size correlations and interactions among the spheres
: It was als_o showt that 16y (k, ) can always be written coming from 1£y(k,w); explicit expressions for these co-
in the following spectral representation: efficients can be found in Ref. 12.

A simple situation occurs when the resonant energies of

3) the interfacial modes lie close together and the dissipation

broadening contained in the imaginary part f is large

enough so they appear as a single peak in the energy-loss
wheref=%ma®N/V is the filling fraction of the spheres,  spectrum. In this case it is possible to approximate the infi-
=—1/(e;/e,—1) is the spectral variable and is the total nite set of interfacial modes by a single-effective-surface
volume of the system. By spectral representation we meamode. The strength and location of this effective-surface
that 1£,, can be written as a sum of terms with simple poles,mode will be labeledA, and «,,, respectively, and they are
and these poles are related to the excitation of the normalhosen as to satisfy the sum rules given in Ref. 12. In this
modes of the electric field within the system. For exampleapproximationsq¢¢(w) is simply written as

1k
2(E)=— Im
T J wlv)

1 1

en(Kw) &,

S U—ns

Co C.
1+f<m+2 )
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1 Ap,  Ap, A, . 2]
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getf(@) &1 &  aye1t(l—a,)e; @) 20
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Put it in this form, Eq(7) can be directly compared with the ]

phenomenological model proposed by Howie and Wéish, 16
14

1 s 1 N 3 1 .

epw(w) - 8_1 Jint g1+ 2¢e; 8_1 ]

(E)

10 ) i

. ® 3 i

=
[’}

3 1
e1t+2e, &

1
+(1_f)[8_2+gext

whereg;,=1/(1+3walv,) andge,=2f/(1+2f) are phe-
nomenological parameters that were estimated by an averag . !
ing procedure over electron trajectories. The comparison of 27 »n A
Egs. (7) and(8) shows that the expression given by Howie 0 Lgediimpt T SN . r -

and Walsh for the dielectric response of an equivalent effec- 8 10 12 14 16

tive medium has exactly the same structure as the spectre fiw (eV)

representation ofeq.¢i(w) in the single-surface-mode ap- B o

proximation. However, it can be sholfnthat their corre- ~ FIG. 1. Energy-loss probability functiol (E) for a system of

aluminum spheres in vacuum as a function of the energy Boss
=hwo for an overall filling fractionf =0.15, and Drude parameters
for the aluminum#zw,=15.8 eV, andw,7=100. The dotted,
dashed, and solid lines correspond\te- 1,2, and 3 recursive steps,
respectively. The radius of the spheres is increased by a factor of 3

The purpose of this section is to take advantage of th&t €ach stage, starting with =2.5 nm.
apparently local nature of the effective dielectric function
sesf(w), derived above, to construct the corresponding f=fy=1-(1-AH)N. (11)
energy-loss response for systems with self-similar structure .
Here we follow a recursive procedure similar to the oneﬁ‘her_efore, for a recursive proc_:edurel‘d)fstages, the volume
originally proposed by Fuchs and Ghd3within the context fraction added at each stage is
of the optical properties of self-similar composites.

In the first stage of the recursive procedure, a finite-

volume fraction of component Af, is added to a second N d to th lculat f th .
component 2, and the effectivecal dielectric function of oW We proceed 1o Ihe caicuiation of the recursive pro-

the mixture is found. At the second stage, the same finit{edure using the single-surface-mode approximafi.

amount of volume fraction of component 1 is added to a hos, 7)] for the effectivelocal dielectric fqnctlon at each stage.
We present results for a composite made of aluminum

spheres in vacuum. The dielectric response of aluminum is

sponding expressions féy, and«,, in terms ofg;,; andgey:
are valid only in thea—0 andf—0 limits.

Ill. RECURSIVE PROCEDURE

Af=1—(1—-f)"N, (12

consisting of the effectiviocal dielectric function of the first
stage, and the effectiiecal dielectric function of the mix- : . )
ture is found. This process is continued until the final overal™deled by ~a  Drude dielectric functiore;(w)=1
volume fractionf of component 1 is reached. Since the ef- ~ @p/l@(@+i/7)], wherew, is the plasma frequency and
fective local dielectric function, given by Eq(4), contains the relaxation time. In thg results presented below, the
information about the spatial nonlocality of the system, thisPlasma frequency of alum_lnum ha§ been takenfias,
procedure can be regarded as a nonlocal generalization of thel>-8 €V, and the relaxation time is used as a control
method proposed by Fuchs and GhdsHhis method as- Parameter. Also,_we _haye fleri,zl_OO keV, which corre-
sumes that the inclusions at each stage are large enough %onds to 'Fhe typical !nc_ldent energles_for electrons produced
the composite at the previous stage can be regarded as H§-& scanning transmission electron microscope, and the cut-

mogeneous. off wave vector was taken ag=1.7 A%, In Fig. 1 we plot
The volume fractiorf; of spheres accumulated up to the =(E) for systems withN=1,2, and 3 recursive steps,
ith stage, is =0.15, andw,7=100. The same amount of spheres were
added at each stage using HG2) and the radius of the
fi=f,_1(1—Af)+Af, (9) spheres at stadea; , is increased by a factor of three at each

stage, starting witla, =2.5 nm. We see that for stage 1 the

wheref;_ is the volume fraction of spheres accumulated UP.rve for Z(E) consists of two peaks, one close fav

to thei —1 stage. Continuing this process, afi¢iterations ~10 eV and the other atw=15.8 eV. The first one arises
we obtain from the interfacial modes and the second one corresponds to
fu=fo(l—AHN+1—(1—AFN, (10) the bulk plasmon of Al. At stage 2, there are two new inter-

facial modes, and the original first-stage mode also appears
Since the original host contains no spherigss 0, then the  but it is slightly shifted to lower energy and it has a reduced
overall filling fraction of spheres is weight. At each subsequent stage, each of the newest modes
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more, we can see that even if the recursive procedure is not
o strictly valid wheneverm;=a;_4, the use of fixed radii at all
3 v the stages together with the smédixperimental value of

P w,7, does not change the results significantly. This suggests,
that in this case, the role of the multipolar fluctuations is
more relevant than having spheres with different sizes.

With these remarks in mind, we now apply the theory to a
system of spheres with a continuum distribution of sizes. Let
us denote byp (a) the normalized distribution of radii of the
spheres, for example, a log-normal distribution of sizes, that
is,

o}

1 2

1
J2maino F( 2

wherea is the radius of the spheres, is the mean radius,

In(a/ap)

D(a)= Ino

. (13

fio (eV) ando is a measure of the width of the distribution, which is
normalized to unitysee Fig. 4. In order to apply the recur-
FIG. 2. The same as in Fig. 1 but with,7=15. sive procedure, we divide the interval of sizes in a large

numberN of small intervals. Then we add the spheres recur-
of the previous stage yields two new modes, and all modesively, as before, starting with the smaller spheres, with ra-
of the previous stages are still present, but with slightly dif-diusa,, up to the larger ones, with radiag . The spheres of
ferent energies and with reduced weights. The peak corrahe ith interval contribute to the overall filling fraction of
sponding to the bulk plasmon remains but with differentspheres with the quantity
weight. In Fig. 2, we use the experimental value for Al,
wp7=15. Note that the behavior is the same as in Fig. 1 but f(a;))=D(a;)fAa, (14)

the larger broadening of the peaks partially hides the peaks

with small weights. The net result is a broad interface bandVnereAa is the width of the interval. The amount of spheres
with a rich profile. added at each stag&f;, can be determined in the following

We have stated that the size of the inclusions should inWay: For the larger spheres

crease at each successive stage in order for the composite of flay) =Af (15)
the previous stage could be regarded as a homogeneous ef- N N>

fective medium. However, it is not clear to us how large thisthen, for the immediately smaller ones

ratio of sizes,a;/a;_4, must be, or just how the theory

breaks down when the size ratio is either close to 1 or even fl(ay_1)=Afy_1(1—Afy), (16
when itis less than 1. In Fig. 3 we explore the dependence of

2 (E) for different values ofa;/a;_;. In panel(a) we plot ~and so on, so that

EZ(E) for systems withN= 3 recursive steps. The solid line

corresponds t@;/a;_1=2, with a;=2.5 nm. The dashed Af = f(ai) 17)
line corresponds to a fixed value for the radii of the spheres ' : ’
a;=a,=az=5 nm(which is the value of the radius for the 1—f+§l f(ay)

spheres at the intermediate stage in the calculation of the
solid curve. Panel(b) is the same as ifg) but for the solid  wherea; is the radius of the spheres added in stage

line one takesa;/a;_,;=3, with a;=2.5 nm, and for the In Fig. 5 we show the spectra & (E) for systems with
dashed ona;=a,=a3="7.5 nm. Pane(c) is the same a&) N=30 recursive steps,f=0.15 a;=2.5 nm, and o
but with N=5 and the dashed line with;=a,=az=a, =1.1,1.5, and 2.5. We see a broad peak corresponding to the

=as=10 nm. From these results one can see that the appednterfacial modes and the peak due to the bulk plasmon. Note
ance of new interfacial modes at each iteration step shoulthat the shape of the curves is essentially independent of the
not be attributed to the increase of geometrical complexity of/alue of o. Furthermore, the procedure converges rapidly
the system but rather to the recursive nature of the procedusgith increasingN.

itself. However, the exact energy and strength of the peaks

does d_epend on thg geometrlcal_ parameters of the_syst«_am. IV. GENERALIZATION OF THE DIFFERENTIAL

Now, since th_e mgltlpolar quctuafuons in a system of |dent|-_ EFFECTIVE MEDIUM THEORY

cal spheres give rise to a collection of modes not present in

the mean-field approximation, one concludes that the recur- The DEMT is a differential recursive procedure in which,
sive procedure goes beyond the mean-field approximatiorgt each stage, the Maxwell Garnett the@WGT) is used and

by taking into account, somehow, the multipolar fluctuationsan infinitesimal volume fraction of inclusions is added. The
of the system. Similar conclusions have been already disend result of this procedure is a differential equation for the
cussed, in the optical case, by Fuchs and GHd$turther-  effective dielectric functiore,,, whose solution is
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(@)
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i

fiw (V)

FIG. 3. (a) Energy-loss probability functio® (E) for a system of aluminum spheres in vacuum as a function of the energyloss
=hw for an overall filling fractionf=0.15, and Drude parameters for the alumintim,=15.8 eV, andw,7=15, andN=3 recursive
steps. The solid line corresponds to a system wjtta; _,=2, anda,;=2.5 nm(that is,a=2.5, 5, 10). The dashed line corresponds to a
system of spheres with constant radiass; 5 nm. (b) The same as irfa) but the solid line here corresponds to a system \ithg; _;
=3, anda;=2.5 nm(that is,a=2.5, 7.5, 22.5). The dashed line corresponds to a system of spheres with constanaradisnm.(c)
The same as irfa) but with N=5 recursive steps. The solid line corresponds to a systemayith;_;=2 anda;=2.5 nm(that is,a
=2.5, 5, 10, 20, 40). The dashed line corresponds to a system of spheres with constard +ausm.

(18 inclusions. Thus, at théth stage the filling fraction of

(8M€1)3_(1f)38M Let us add at each stage the same small amaunof
spheres increases by

€27 €1 €2

It has been shown by Fuchs and Ghdsthat the DEMT

(Ref. 14 is a good approximation to the recursive MGT if Sfi=f—f,_,=Af(1—1)), (19)

the starting value of the filling fraction, in the recursive pro-

cedure, is small. Here we are going to generalize the DEMT

to a system of spheres described by a nonlocal effective diwhere we have used E@9). Then the effective dielectric

electric function. In order to keep the analysis as simple agunction at stage can be written as

possible we use a simplified version of the effectigeal

dielectric response, due to Howie and Wal8kand given in

Eq. (8). equw(fit of)=cenquler,eqn(fi),Af]. (20)
In order to obtain an analytic solution of the problem, we

are going to keep constant through all the processes, which

is valid as seen in the last section. Using Eq.(8) we find
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FIG. 4. D(a)=a,D(a) as a function ofk=a/a, for three dif-
ferent values obr=1.1 (solid), 1.5 (dashed, and 2.5(dotted.

epw(fit+of)=Afe; Y 1+ 2gin

enqw(fi)+2e1 "

smfi)—s;ll

L, AT
EEETTY

( e1t—enm(f) )
>< S —

2e; el fi)

+(1-Af)enu(f)

: (21)

where we used the definition a@f.,; given below Eq.(8).
Now, by expanding the above equation to first ordeAif

2.0

o

0.54

o7 T T T T 1

fio> (V)

FIG. 5. Energy-loss probability functioi (E) for a polydis-
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o}

fio (eV)

FIG. 6. Energy-loss probability functio&(E) for a polydis-
perse system of aluminum spheres with0.15, Drude parameters
for the aluminum% w,=15.8 eV, andw,7=15, anda=2.5 nm.
The solid curve corresponds to the nonlocal generalization of the
DEMT and the dashed curve corresponds to the recursive procedure
with N=15 recursive steps and constant racigs2.5 nm.

using Eq.(19), and taking the limitéf;—0, one can show
that Eq.(21) can be written as the following integral equa-
tion:

[eqw(f)+2e; Hdepy

-1
EHW
Lgl [eqw(f)—e1 " [2Gine 1 "~ 3epqu(f) —2e1 ']

([t df
“Jr 2

which can be solved analytically, to get

o, - 17 2(gint+2
3o u(F) = 2(Ging— 1)y 1] 202

e, t—e;t 3e,1—2(gini—1)e, *

1 \3@int—5)
=

equlf)—e1

(23

This equation can be regarded as a nonlocal generalization of
the DEMT. We have also checked that the results given by
Eq. (23) are equivalent to the ones obtained through the re-
cursive procedure described in the last section, if we use the
HW effective dielectric response, keep constant the radii of
the spheres, and iterate till convergence is reached. In the
case of a more accurate effectilacal dielectric response,
like the one given in Eq(4), the equivalence between the
recursive procedure and the corresponding differential equa-
tion should also hold. Nevertheless, in this more general case
an analytical solution of the differential equation might not
be either possible or useful. In Fig. 6 we plB{(E) for a

perse system of aluminum spheres in vacuum as a function of theystem of spheres with=0.15, a=2.5 nm, using the non-

energy lossE=%w for systems withN=50 recursive stepsf
=0.15, ag=2.5 nm, Drude parameters for the aluminubw,
=15.8 eV, andw,7=15, ande=1.1,1.5, and 2.5.

local generalization of the DEMT given by E®3), and we
compare it with the results obtained using the recursive pro-
cedure, as described above, but with the effeckbaal di-
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electric response given by the single-mode approximatiotthermore, the recursive procedure was also applied to sys-
[Eq. (7)]. As expected, the overall shape of both curves isems of spheres with a continuum distribution of radii. We
similar, although the quantitative difference between thenfound that the results for a log-normal distribution, with the
obviously comes from the use of different effectilecal = same mean radius, were quite independent of the width of

dielectric responses. the distribution. All these results show that the appearance of
new peaks at each iteration step in the recursive procedure is
V. CONCLUSIONS due to the generation of new modes whose physical origin is

_ not the increasing complexity of the geometrical structure of

We have constructed recursive procedures to calculalhe system but rather the account of multipolar fluctuations

electron-energy-loss spectra of self-similar structures of popeyond the mean-field approximation. However, the exact
larizable spheres including the effects of spatial nonlocalityenergy and strength of the peaks do depend on the geometri-

arising from the correlations and multipolar interactionscg| parameters of the system. Finally, we derived a simple

among the inclusions. These structures were constructed Byyn|ocal generalization of the DEMT and showed its equiva-

adding larger and larger spheres at each stage. We found thghce to the recursive procedure with an “infinitesimal”
at each iteration new peaks appear in the band of mterfac@tamng value of the filling fraction of inclusions.

modes yielding spectra with a very rich structure. We also
found that at each stage of iteration the peak corresponding
to the excitation of the bulk mode changes its strength with-
out shifting its energy; this is because the bulk mode is in- We acknowledge very illuminating discussions with R.
dependent of the geometry of the system. We have alsBuchs and the partial financial support of Direcci@eneral
shown that the results obtained for self-similar systems ofle Asuntos del Personal Acadio of Universidad Nacional
spheres can be well approximated by setting, in the recursivAutonoma de Mgico, through Grant No. IN-104297, and
procedure, a constant radius around the mean of the ones from Consejo Nacional de Ciencia y TecnolagMeéxico)
the self-similar structure and a wide enough broadening. Furthrough Grant No. 27646-E.
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