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Calculation of electron-energy-loss spectra of composites and self-similar structures

Iván O. Sosa, Carlos I. Mendoza, and Rube´n G. Barrera
Instituto de Fı´sica, Universidad Nacional Auto´noma de Me´xico, Apartado Postal 20-364, 01000 Me´xico, Distrito Federal, Mexico
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We calculate electron-energy-loss spectra for self-similar systems of polarizable spheres using a previously
developed theory for the electron-energy loss of a system of identical spheres. We do this by means of a
recursive procedure and an effective ‘‘local’’ dielectric function, which contains, implicitly, the effects of
spatial nonlocality due to correlations and multipolar interactions among the spheres, as well as some charac-
teristics of the experimental setup. We also apply the procedure to systems of spheres with a continuum
distribution of sizes. Finally, we propose a simple nonlocal generalization of Bruggeman’s differential effective
medium theory.
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I. INTRODUCTION

Electron-energy-loss spectroscopy~EELS! has been a
useful tool to study the dielectric response of materials in
energy region inaccessible to optical spectroscopies.1 For ex-
ample, the energy loss of electrons provided by a scann
transmission electron microscope has been used to deter
the dielectric function of materials for energies up to arou
60 eV.2 In these experiments the valence electrons of
material are polarized by the impinging electrons, and t
process provides energy-loss channels through the excita
of the collective electromagnetic modes of the system. Fr
the theoretical point of view this process can be descri
using a dielectric approach. A formula that relates
electron-energy loss in a homogeneous system with
imaginary part of the inverse local dielectric function w
first given by Bethe.3 There has been also an increasing
terest in the use of EELS to study and characterize inho
geneous systems, like interfaces, isolated and suppo
nanoparticles, and more recently, composites.4–9 Since the
distinctive energy-loss peaks are associated with the ex
tion of electromagnetic modes, and the characteristic ene
of these modes depends, among other things, on the ge
etry of the system, the energy-loss spectra provide infor
tion about its mesoscopic structure. For example, in
EELS experiments of Howie and Walsh~HW! on a compos-
ite consisting of an insulating matrix with metalli
inclusions,8–10 the presence and identity of the metal w
determined by the location, in the spectra, of the energy-
peak corresponding to the bulk plasmon, while the locat
and structure of the energy-loss band at lower energies
associated with the excitation of interfacial or surface pl
mons. Since effective-medium theories, which were succ
ful to describe the optical properties of composites, prove
be inappropriate to interpret EELS spectra, HW propose
phenomenological approach for the calculation of
energy-loss function. In this approach they introduce an
fective local dielectric response whose parameters were
termined with the help of an average over all possible e
tron trajectories.10 Later on, Barrera and Fuchs11 ~BF! were
able to construct a more fundamental theory for the calc
tion of the energy loss for a granular composite through
introduction of an effective nonlocal~wave-vector depen
0163-1829/2001/63~14!/144201~7!/$20.00 63 1442
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dent! longitudinal dielectric response of the granular syste
Alternative computational procedures have been also p
posed, and the inclusion of retardation has been explore
well.15 Nevertheless, one of the distinctive features of t
approach of BF is that through a wave-vector integrati
they were also able12 to derive an effectivelocal dielectric
response that could be used in Bethe’s formula to calcu
the energy-loss function, as if the system were homo
neous. When the formula for this effective local dielect
response was compared with the phenomenological one
posed by Walsh and Howie, it unraveled all the approxim
tions and considerations behind the HW phenomenolog
approach. One of the virtues of the formula for the effect
local dielectric response derived from BF’s theory is that
contains, implicitly, the induced interaction among t
spheres to all multipolar orders~in the mean-field approxi-
mation!. This is the main difference between this express
and the ones derived by the effective-medium theories in
optical case, in which the induced interaction among
spheres is taken only to dipolar order. But having now
effective local dielectric function that takes into account th
induced interaction to all multipolar orders, it is very temp
ing to try to apply some of the ideas behind the effectiv
medium theories, in the optical case, to the case of EEL

In this paper we explore some of these ideas, in particu
the ones developed by Fuchs and Ghosh on their study o
optical response of self-similar structures,13 and the ones of
Bruggeman on his differential-effective-medium theory14

More explicitly, we consider a system with a self-simil
structure in which the size of the inclusions covers very d
ferent scales, each scale being much larger than the prev
one. We also consider a polydispersed composite, that
composite with a given distribution of sizes. Then we app
a recursive procedure to calculate the effectivelocal dielec-
tric response of self-similar and polydispersed systems
compare the results for the energy-loss function for differ
selections of geometrical parameters. We also construct
composite by adding, at each step, infinitesimal amounts
the inclusions thus yielding a differential equation for t
effective dielectric response, also known as differential
fective medium theories~DEMT!. The solutions of this dif-
ferential equation are used to calculate the energy-loss fu
tion and the results are compared with the ones obtai
©2001 The American Physical Society01-1
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SOSA, MENDOZA, AND BARRERA PHYSICAL REVIEW B63 144201
through the recursive method. The paper is organized as
lows: In Sec. II we review very briefly the theory of BF an
we discuss how the energy-loss probability function can
described in terms of an effectivelocal dielectric response
The recursive procedure is introduced in Sec. III and
generalization of the DEMT is developed in Sec. IV. Final
Sec. V is devoted to the discussion of our results and c
clusions.

II. EFFECTIVE LOCAL DIELECTRIC FUNCTION

The objective of this section is to briefly review the co
struction of an effective local dielectric function that is d
rectly related to the profile structure of the electron-ener
loss spectra. First, let us consider an unbounded syste
N@1 polarizable spheres of radiusa located at random
within an otherwise continuous matrix. The dielectric r
sponses of the spheres and the matrix to an electromag
field oscillating at frequencyv are described by local dielec
tric functions«1(v) and«2(v), respectively. It is assume
that the system appears to be homogeneous at a length
l @a, although it is highly inhomogeneous at a length sc
of ordera. This allows us to describe the process of ene
loss by fast electrons traveling through the system in te
of an effective nonlocal dielectric function«M(k,v). By
nonlocal we mean a dielectric function that depends not o
on the frequencyv of the electromagnetic field but also o
its wave vectork. The wave vector dependence arises fro
correlations and multipolar interactions among the sphe
induced by their finite size. It can be shown11 that the prob-
ability per unit length, per unit energy, for an electron
scatter with energy-lossE, is given by

d2P~E!

dldE
5S a0

m0v I
2

2 D 21

J~E!, ~1!

wherea0 is the Bohr radius,m0 is the rest mass of the elec
tron, andv I is the speed of the incident electrons. The re
tion between the energy-loss probability densityJ(E) and
«M(k,v) is given by

J~E!5
1

pEv/v I

kc
ImF2

1

«M~k,v!Gdk

k
, ~2!

wherekc is an upper cutoff wave vector usually determin
by the angular aperture of the electron-energy-loss detec

It was also shown11 that 1/«M(k,v) can always be written
in the following spectral representation:

1

«M~k,v!
5

1

«2
F11 f S Cb

u21
1(

s

Cs

u2ns
D G , ~3!

where f 5 4
3 pa3N/V is the filling fraction of the spheres,u

521/(«1 /«221) is the spectral variable andV is the total
volume of the system. By spectral representation we m
that 1/«M can be written as a sum of terms with simple pol
and these poles are related to the excitation of the nor
modes of the electric field within the system. For examp
14420
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the poles atu51 andu5ns have strengthsCb andCs , and
correspond to the excitation of bulk and interfacial mod
respectively.

In the mean-field approximation the information about t
geometry of the system is given by two statistic
parameters:11 the filling fraction f of spheres and their two
particle distribution functionr (2)(r 12), wherer 12 is the dis-
tance between the centers of two spheres. If one further
sumes that the two-particle distribution function takes in
account only the excluded-volume correlations, that
r (2)(r 12)51 for r 12>2a and 0 otherwise, it can be show
that the strengths of the modesCb andCs and the locationns
of the interfacial modes become functions ofka, and can be
calculated from simple closed-form expressions.11

Finally, the effectivelocal dielectric function«e f f(v) is
defined12 through the expression

1

«e f f~v!
5WE

v/v I

kc 1

«M~k,v!

dk

k
, ~4!

where 1/W5 ln kcvI /v. Note that the effectivelocal dielec-
tric function is not a property of the material only but also
the experimental setup through the parameterskc and v I .
Using this definition one is now able to write

pJ~E!5
1

W
ImF2

1

«e f f~v!G , ~5!

which looks formally identical to the formula first given b
Bethe3 for the electron-energy-loss probability densi
through a homogeneous medium with dielectric respo
«e f f(v).

When the spectral representation of 1/«M(k,v), given in
Eq. ~3!, is substituted into Eq.~4!, one can show12 that
1/«e f f(v) has also a spectral representation given by

1

«e f f~v!
5

Ab1

«1
1

Ab2

«2
1E

0

1 A~n!

n«11~12n!«2
dn. ~6!

In this equation 1/«e f f(v) is given as a sum of two discret
poles at«150 and«250, corresponding to the excitation o
the bulk modes of the spheres and the matrix, respectiv
plus an integral associated with the continuous distribut
of the characteristic energy of the interfacial modes. A
though«e f f(v) is a local dielectric function, the coefficient
Ab1

, Ab2
, and A(n) contain all the information about th

finite-size correlations and interactions among the sphe
coming from 1/«M(k,v); explicit expressions for these co
efficients can be found in Ref. 12.

A simple situation occurs when the resonant energies
the interfacial modes lie close together and the dissipa
broadening contained in the imaginary part of«1 is large
enough so they appear as a single peak in the energy
spectrum. In this case it is possible to approximate the i
nite set of interfacial modes by a single-effective-surfa
mode. The strength and location of this effective-surfa
mode will be labeledAs andas , respectively, and they ar
chosen as to satisfy the sum rules given in Ref. 12. In
approximation«e f f(v) is simply written as
1-2
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1

«e f f~v!
'

Ab1

«1
1

Ab2

«2
1

As

as«11~12as!«2
. ~7!

Put it in this form, Eq.~7! can be directly compared with th
phenomenological model proposed by Howie and Walsh10

1

«HW~v!
5 f F 1

«1
1gintS 3

«112«2
2

1

«1
D G

1~12 f !F 1

«2
1gextS 3

«112«2
2

1

«2
D G , ~8!

wheregint51/(113va/v I) andgext52 f /(112 f ) are phe-
nomenological parameters that were estimated by an ave
ing procedure over electron trajectories. The comparison
Eqs. ~7! and ~8! shows that the expression given by How
and Walsh for the dielectric response of an equivalent ef
tive medium has exactly the same structure as the spe
representation of«e f f(v) in the single-surface-mode ap
proximation. However, it can be shown12 that their corre-
sponding expressions forAs andas in terms ofgint andgext
are valid only in thea→0 and f→0 limits.

III. RECURSIVE PROCEDURE

The purpose of this section is to take advantage of
apparently local nature of the effective dielectric functi
«e f f(v), derived above, to construct the correspond
energy-loss response for systems with self-similar structu
Here we follow a recursive procedure similar to the o
originally proposed by Fuchs and Ghosh13 within the context
of the optical properties of self-similar composites.

In the first stage of the recursive procedure, a fini
volume fraction of component 1,D f , is added to a secon
component 2, and the effectivelocal dielectric function of
the mixture is found. At the second stage, the same fi
amount of volume fraction of component 1 is added to a h
consisting of the effectivelocal dielectric function of the first
stage, and the effectivelocal dielectric function of the mix-
ture is found. This process is continued until the final ove
volume fractionf of component 1 is reached. Since the e
fective local dielectric function, given by Eq.~4!, contains
information about the spatial nonlocality of the system, t
procedure can be regarded as a nonlocal generalization o
method proposed by Fuchs and Ghosh13. This method as-
sumes that the inclusions at each stage are large enoug
the composite at the previous stage can be regarded a
mogeneous.

The volume fractionf i of spheres accumulated up to th
i th stage, is

f i5 f i 21~12D f !1D f , ~9!

wheref i 21 is the volume fraction of spheres accumulated
to the i 21 stage. Continuing this process, afterN iterations
we obtain

f N5 f 0~12D f !N112~12D f !N. ~10!

Since the original host contains no spheres,f 050, then the
overall filling fraction of spheres is
14420
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f 5 f N512~12D f !N. ~11!

Therefore, for a recursive procedure ofN stages, the volume
fraction added at each stage is

D f 512~12 f !1/N. ~12!

Now we proceed to the calculation of the recursive p
cedure using the single-surface-mode approximation@Eq.
~7!# for the effectivelocal dielectric function at each stage
We present results for a composite made of alumin
spheres in vacuum. The dielectric response of aluminum
modeled by a Drude dielectric function«1(v)51
2vp

2/@v(v1 i /t)#, wherevp is the plasma frequency andt
the relaxation time. In the results presented below,
plasma frequency of aluminum has been taken as\vp
515.8 eV, and the relaxation timet is used as a contro
parameter. Also, we have fixedEI5100 keV, which corre-
sponds to the typical incident energies for electrons produ
in a scanning transmission electron microscope, and the
off wave vector was taken askc51.7 Å21. In Fig. 1 we plot
J(E) for systems withN51,2, and 3 recursive steps,f
50.15, andvpt5100. The same amount of spheres we
added at each stage using Eq.~12! and the radius of the
spheres at stagei, ai , is increased by a factor of three at ea
stage, starting witha152.5 nm. We see that for stage 1 th
curve for J(E) consists of two peaks, one close to\v
.10 eV and the other at\v515.8 eV. The first one arise
from the interfacial modes and the second one correspond
the bulk plasmon of Al. At stage 2, there are two new int
facial modes, and the original first-stage mode also app
but it is slightly shifted to lower energy and it has a reduc
weight. At each subsequent stage, each of the newest m

FIG. 1. Energy-loss probability functionJ(E) for a system of
aluminum spheres in vacuum as a function of the energy losE
5\v for an overall filling fractionf 50.15, and Drude parameter
for the aluminum \vp515.8 eV, andvpt5100. The dotted,
dashed, and solid lines correspond toN51,2, and 3 recursive steps
respectively. The radius of the spheres is increased by a factor
at each stage, starting witha152.5 nm.
1-3
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SOSA, MENDOZA, AND BARRERA PHYSICAL REVIEW B63 144201
of the previous stage yields two new modes, and all mo
of the previous stages are still present, but with slightly d
ferent energies and with reduced weights. The peak co
sponding to the bulk plasmon remains but with differe
weight. In Fig. 2, we use the experimental value for A
vpt515. Note that the behavior is the same as in Fig. 1
the larger broadening of the peaks partially hides the pe
with small weights. The net result is a broad interface ba
with a rich profile.

We have stated that the size of the inclusions should
crease at each successive stage in order for the compos
the previous stage could be regarded as a homogeneou
fective medium. However, it is not clear to us how large t
ratio of sizes,ai /ai 21, must be, or just how the theor
breaks down when the size ratio is either close to 1 or e
when it is less than 1. In Fig. 3 we explore the dependenc
J(E) for different values ofai /ai 21. In panel~a! we plot
J(E) for systems withN53 recursive steps. The solid lin
corresponds toai /ai 2152, with a152.5 nm. The dashed
line corresponds to a fixed value for the radii of the sphe
a15a25a355 nm ~which is the value of the radius for th
spheres at the intermediate stage in the calculation of
solid curve!. Panel~b! is the same as in~a! but for the solid
line one takesai /ai 2153, with a152.5 nm, and for the
dashed onea15a25a357.5 nm. Panel~c! is the same as~a!
but with N55 and the dashed line witha15a25a35a4
5a5510 nm. From these results one can see that the app
ance of new interfacial modes at each iteration step sho
not be attributed to the increase of geometrical complexity
the system but rather to the recursive nature of the proce
itself. However, the exact energy and strength of the pe
does depend on the geometrical parameters of the sys
Now, since the multipolar fluctuations in a system of iden
cal spheres give rise to a collection of modes not presen
the mean-field approximation, one concludes that the re
sive procedure goes beyond the mean-field approximat
by taking into account, somehow, the multipolar fluctuatio
of the system. Similar conclusions have been already
cussed, in the optical case, by Fuchs and Ghosh.13 Further-

FIG. 2. The same as in Fig. 1 but withvpt515.
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more, we can see that even if the recursive procedure is
strictly valid wheneverai.ai 21, the use of fixed radii at all
the stages together with the small~experimental! value of
vpt, does not change the results significantly. This sugge
that in this case, the role of the multipolar fluctuations
more relevant than having spheres with different sizes.

With these remarks in mind, we now apply the theory to
system of spheres with a continuum distribution of sizes.
us denote byD(a) the normalized distribution of radii of the
spheres, for example, a log-normal distribution of sizes, t
is,

D~a!5
1

A2pa ln s
expS 2

1

2 F ln~a/a0!

ln s G2D , ~13!

wherea is the radius of the spheres,a0 is the mean radius
ands is a measure of the width of the distribution, which
normalized to unity~see Fig. 4!. In order to apply the recur-
sive procedure, we divide the interval of sizes in a lar
numberN of small intervals. Then we add the spheres rec
sively, as before, starting with the smaller spheres, with
diusa1, up to the larger ones, with radiusaN . The spheres of
the i th interval contribute to the overall filling fraction o
spheres with the quantity

f ~ai !5D~ai ! f Da, ~14!

whereDa is the width of the interval. The amount of spher
added at each stage,D f i , can be determined in the following
way: For the larger spheres

f ~aN!5D f N , ~15!

then, for the immediately smaller ones

f ~aN21!5D f N21~12D f N!, ~16!

and so on, so that

D f i5
f ~ai !

12 f 1(
s51

i

f ~as!

, ~17!

whereai is the radius of the spheres added in stagei.
In Fig. 5 we show the spectra ofJ(E) for systems with

N530 recursive steps,f 50.15, a052.5 nm, and s
51.1,1.5, and 2.5. We see a broad peak corresponding to
interfacial modes and the peak due to the bulk plasmon. N
that the shape of the curves is essentially independent o
value of s. Furthermore, the procedure converges rapi
with increasingN.

IV. GENERALIZATION OF THE DIFFERENTIAL
EFFECTIVE MEDIUM THEORY

The DEMT is a differential recursive procedure in whic
at each stage, the Maxwell Garnett theory~MGT! is used and
an infinitesimal volume fraction of inclusions is added. T
end result of this procedure is a differential equation for
effective dielectric function«M , whose solution is
1-4
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FIG. 3. ~a! Energy-loss probability functionJ(E) for a system of aluminum spheres in vacuum as a function of the energy loE
5\v for an overall filling fractionf 50.15, and Drude parameters for the aluminum\vp515.8 eV, andvpt515, andN53 recursive
steps. The solid line corresponds to a system withai /ai 2152, anda152.5 nm~that is,a52.5, 5, 10). The dashed line corresponds to
system of spheres with constant radius,a55 nm. ~b! The same as in~a! but the solid line here corresponds to a system withai /ai 21

53, anda152.5 nm~that is,a52.5, 7.5, 22.5). The dashed line corresponds to a system of spheres with constant radius,a57.5 nm.~c!
The same as in~a! but with N55 recursive steps. The solid line corresponds to a system withai /ai 2152 anda152.5 nm ~that is, a
52.5, 5, 10, 20, 40). The dashed line corresponds to a system of spheres with constant radiusa510 nm.
if
o-
M
d
a

e
ch
S «M2«1

«22«1
D 3

5
~12 f !3«M

«2
. ~18!

It has been shown by Fuchs and Ghosh13 that the DEMT
~Ref. 14! is a good approximation to the recursive MGT
the starting value of the filling fraction, in the recursive pr
cedure, is small. Here we are going to generalize the DE
to a system of spheres described by a nonlocal effective
electric function. In order to keep the analysis as simple
possible we use a simplified version of the effectivelocal
dielectric response, due to Howie and Walsh,10 and given in
Eq. ~8!.

In order to obtain an analytic solution of the problem, w
are going to keepa constant through all the processes, whi
is valid as seen in the last section.
14420
T
i-
s

Let us add at each stage the same small amountD f of
inclusions. Thus, at thei th stage the filling fraction of
spheres increases by

d f i[ f i2 f i 215D f ~12 f i !, ~19!

where we have used Eq.~9!. Then the effective dielectric
function at stagei can be written as

«HW
21 ~ f i1d f i !5«HW

21 @«1 ,«HW
21 ~ f i !,D f #. ~20!

Using Eq.~8! we find
1-5
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«HW
21 ~ f i1d f i !5D f «1

21F112gint

«HW
21 ~ f i !2«1

21

«HW
21 ~ f i !12«1

21G
1~12D f !«HW

21 ~ f i !F11
2D f

112D f

3S «1
212«HW

21 ~ f i !

2«1
211«HW

21 ~ f i !
D G , ~21!

where we used the definition ofgext given below Eq.~8!.
Now, by expanding the above equation to first order inD f ,

FIG. 4. D̃(a)5a0D(a) as a function ofx5a/a0 for three dif-
ferent values ofs51.1 ~solid!, 1.5 ~dashed!, and 2.5~dotted!.

FIG. 5. Energy-loss probability functionJ(E) for a polydis-
perse system of aluminum spheres in vacuum as a function o
energy lossE5\v for systems withN550 recursive steps,f
50.15, a052.5 nm, Drude parameters for the aluminum\vp

515.8 eV, andvpt515, ands51.1,1.5, and 2.5.
14420
using Eq.~19!, and taking the limitd f i→0, one can show
that Eq.~21! can be written as the following integral equ
tion:

E
«2

21

«HW
21 @«HW

21 ~ f !12«1
21#d«HW

21

@«HW
21 ~ f !2«1

21#@2gint«1
2123«HW

21 ~ f !22«1
21#

5E
0

f d f

12 f
, ~22!

which can be solved analytically, to get

F «HW
21 ~ f !2«1

21

«2
212«1

21 G 9F3«HW
21 ~ f !22~gint21!«1

21

3«2
2122~gint21!«1

21 G22(gint12)

5S 1

12 f D
3(gint25)

. ~23!

This equation can be regarded as a nonlocal generalizatio
the DEMT. We have also checked that the results given
Eq. ~23! are equivalent to the ones obtained through the
cursive procedure described in the last section, if we use
HW effective dielectric response, keep constant the radi
the spheres, and iterate till convergence is reached. In
case of a more accurate effectivelocal dielectric response
like the one given in Eq.~4!, the equivalence between th
recursive procedure and the corresponding differential eq
tion should also hold. Nevertheless, in this more general c
an analytical solution of the differential equation might n
be either possible or useful. In Fig. 6 we plotJ(E) for a
system of spheres withf 50.15, a52.5 nm, using the non-
local generalization of the DEMT given by Eq.~23!, and we
compare it with the results obtained using the recursive p
cedure, as described above, but with the effectivelocal di-

he

FIG. 6. Energy-loss probability functionJ(E) for a polydis-
perse system of aluminum spheres withf 50.15, Drude parameter
for the aluminum\vp515.8 eV, andvpt515, anda52.5 nm.
The solid curve corresponds to the nonlocal generalization of
DEMT and the dashed curve corresponds to the recursive proce
with N515 recursive steps and constant radiusa52.5 nm.
1-6
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electric response given by the single-mode approxima
@Eq. ~7!#. As expected, the overall shape of both curves
similar, although the quantitative difference between th
obviously comes from the use of different effectivelocal
dielectric responses.

V. CONCLUSIONS

We have constructed recursive procedures to calcu
electron-energy-loss spectra of self-similar structures of
larizable spheres including the effects of spatial nonloca
arising from the correlations and multipolar interactio
among the inclusions. These structures were constructe
adding larger and larger spheres at each stage. We found
at each iteration new peaks appear in the band of interfa
modes yielding spectra with a very rich structure. We a
found that at each stage of iteration the peak correspon
to the excitation of the bulk mode changes its strength w
out shifting its energy; this is because the bulk mode is
dependent of the geometry of the system. We have
shown that the results obtained for self-similar systems
spheres can be well approximated by setting, in the recur
procedure, a constant radius around the mean of the on
the self-similar structure and a wide enough broadening. F
-
,

-
-
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thermore, the recursive procedure was also applied to
tems of spheres with a continuum distribution of radii. W
found that the results for a log-normal distribution, with th
same mean radius, were quite independent of the width
the distribution. All these results show that the appearanc
new peaks at each iteration step in the recursive procedu
due to the generation of new modes whose physical origi
not the increasing complexity of the geometrical structure
the system but rather the account of multipolar fluctuatio
beyond the mean-field approximation. However, the ex
energy and strength of the peaks do depend on the geom
cal parameters of the system. Finally, we derived a sim
nonlocal generalization of the DEMT and showed its equi
lence to the recursive procedure with an ‘‘infinitesima
starting value of the filling fraction of inclusions.
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