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We consider the coherent reflection and transmission of electromagnetic waves from a slab of a dilute system
of randomly located, polarizable, spherical particles. We focus our attention on the case where the size of the
spheres is comparable to the wavelength of the incident radiation. First, using wave-scattering and Mie theo-
ries, we derive expressions for the coherent fields that are transmitted and reflected by a very thin slab. Then
we find the effective-current distribution that would act as a source of these fields. We conclude that if the
effective currents were induced in an effective medium, this medium must possess, besides an effective electric
permittivity, also an effective magnetic permeability. We find that both of these optical coefficients become
functions of the angle of incidence and the polarization of the incident wave. Then we calculate the reflection
coefficient of a half-space by considering a semi-infinite pile of thin slabs and compare the result with Fresnel
relations. Numerical results are presented for the optical coefficients as well as for the half-space reflectance
as a function of several parameters. The reflectance is compared with that obtained without considering the
magnetic response. Finally, we discuss the relevance and the physics behind our results and indicate as well
the measurements that could be performed to obtain an experimental verification of our theory. © 2003 Op-
tical Society of America
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1. INTRODUCTION
The description and understanding of the propagation of
light through random media has attracted the attention
of many researchers since the beginning of electrodynam-
ics. One of the first studies on the subject was written by
Rayleigh as early as 1899.1 Here we will deal with the
optical properties of granular systems consisting of well-
defined isolated inclusions embedded randomly in an oth-
erwise homogeneous matrix. We will assume that in the
absence of inclusions the propagation of light in the ma-
trix is well described by the laws of continuum electrody-
namics (CE). When an incident beam enters the system,
the scattering of light at each of the randomly located in-
clusions gives rise to a propagating field that can be split
into an average and a fluctuating component. The aver-
age component is usually called the coherent field and the
fluctuating one the diffuse field. In the case where the
inclusions are much smaller than the wavelength of light,
the power carried by the diffuse component is small com-
pared with that carried by the average component, and
sometimes it can be neglected. This is the case, for ex-
ample, in CE where the atoms and molecules of the ma-
terial can be regarded as inclusions in vacuum and the
diffuse component is completely neglected. Thus the full
description of the electromagnetic phenomena is given
only in terms of the average (also called macroscopic)
1084-7529/2003/020296-16$15.00 ©
fields. In CE the behavior of the average fields is deter-
mined through the optical coefficients of the material:
the dielectric response e, the magnetic susceptibility m,
and the index of refraction n 5 (em)1/2, which are con-
tinuous functions of space within the volume of the mate-
rial. This is the meaning of the word ‘‘continuous’’ when
one says that in CE the materials can be regarded as con-
tinuous.

In the case of granular composite materials in which
the inclusions are of macroscopic size but still much
smaller than the wavelength of the incident radiation, the
behavior of the average electromagnetic fields can be de-
scribed using the so called effective optical coefficients,
which are continuous functions of space within the vol-
ume of the composite material. Thus they can be inter-
preted as the corresponding coefficients of an equivalent,
homogeneous, fictitious medium called the effective me-
dium. The theories whose purpose is to determine the
relationship between the effective optical properties of the
granular system, the optical properties of the constitu-
ents, and the geometrical properties of the mixture are
called effective-medium theories (EMTs). Whenever
these effective properties can be safely used in CE as the
corresponding ones of a homogeneous medium, the theo-
ries are called unrestricted.2 The term restricted is re-
served for EMTs, in which this is not the case.
2003 Optical Society of America
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Since the seminal work of J. C. Maxwell Garnett3 in
1904, there has been an intense activity toward the con-
struction of EMTs in granular materials. This activity
has been largely concentrated on the case in which the
linear dimensions of the inclusions are much smaller than
the wavelength of the incident radiation.4–7 Typical ex-
amples of EMTs are those of Maxwell Garnett3 and
Bruggeman.8 It has also been recognized that an EMT
should be constructed differently for materials with dif-
ferent microstructures. For example, while the theory of
Maxwell Garnett is adequate for materials with well-
defined separate inclusions (granular topology), the
theory of Bruggeman turns out to be adequate for mate-
rials with intermixed components (aggregate topology).
Now since the EMTs do not consider the diffuse compo-
nent of the fields, they give only a partial description of
the full electromagnetic phenomena, and even in cases
when the power carried by the diffuse fields might still be
small compared with that carried by the coherent fields,
one may not neglect it, as for example in the calculation of
quantities such as energy dissipation.

An interesting and challenging problem is the exten-
sion of these EMTs to the case in which the size of the in-
clusions is of the same order of magnitude as or even
larger than the wavelength of the incident radiation
(large inclusions). These theories are known as extended
effective-medium theories (EEMTs). In this situation the
power carried by the diffuse field may be as large as and
sometimes even larger than that carried by the coherent
component. The problem now is to determine for these
type of systems (with large inclusions) if it is possible to
define an effective medium which could be used in CE to
describe the propagation of the coherent fields.

There have been several attempts to construct EEMTs.
The simplest derivation of the effective index of refraction
of a dilute system of randomly located spheres is perhaps
that due to van de Hulst.9 He calculated the coherent su-
perposition of the scattered waves by a dilute ensemble of
identical particles located at random within a slab, then
compared the transmitted field with the one transmitted
by a homogeneous slab of the same width. The contribu-
tion of the spheres to the effective index of refraction
turns out to be proportional to the filling fraction of
spheres times the scattering amplitude in the forward di-
rection. A similar derivation of this result can be also
found in the book of Bohren and Huffman.10 This result
is supposed to hold even for systems with large inclusions.
There have also been attempts to extend this result to
systems with a larger concentration of inclusions11–15 fol-
lowing as a guide the conceptual procedure used in the
theories of Maxwell Garnett3 and Bruggeman.8 One of
the main ideas in these EEMTs is to replace the quasi-
static, dipolar electric polarizability that appears in the
case of small spherical inclusions by a dynamical one
taken from Mie theory. It turns out that the magnetic di-
pole resulting from the induced eddy currents within the
spherical inclusions also contributes to the dynamic elec-
tric polarizability, leading to an additional absorption of
energy. The inclusion of a corresponding magnetic dipo-
lar susceptibility has also been considered, and Grimes
and Grimes15 have argued that both the dynamic electric
and magnetic polarizabilities are related in such a way
that even in the case in which both the matrix and the in-
clusions are nonmagnetic, the composite system may ac-
quire an effective magnetic susceptibility slightly differ-
ent from that of vacuum. The main restriction on the
validity of all these EEMTs is still that they hold only
when the size of the inclusions is small with respect to the
wavelength of the incident radiation. There have also
been criticisms regarding the internal consistency of
these EEMTs and Ruppin2 has recently reported a thor-
ough analysis on that subject.

In 1986 Bohren used standard wave-scattering theory
to calculate the normally reflected and transmitted fields
from a composite slab with randomly located inclusions.16

He noted that even in the dilute limit, if one wants to re-
produce these results using an effective medium and CE,
one must assume for the case of large inclusions two dif-
ferent indices of refraction: one for reflection, the other
for transmission. Instead of accepting this uncomfort-
able situation he proposed to use two different indepen-
dent quantities: an effective dielectric response eeff and
an effective magnetic susceptibility meff . In this way he
was able to fulfill the boundary conditions and properly
recover the reflection and transmission amplitudes given
by wave-scattering theory. Nevertheless, the physical
basis of the magnetic behavior of a composite consisting of
a mixture of nonmagnetic components was not completely
clear, and he was hesitant to consider the concept of an
effective medium for the case of a system with large in-
clusions. There were also explicit criticisms17 of the no-
tion of attributing an effective magnetic susceptibility to a
composite with nonmagnetic constituents, the critics ar-
guing that it might simply be a mathematical trick used
to fulfill boundary conditions but void of any physical sig-
nificance.

Looking now at the problem of wave propagation
through a system of randomly located inclusions within a
more formal theoretical framework, and without invoking
the idea of an effective medium, one realizes that there
has also been an intense and prolific activity in searching
for the solution to this problem by the use of analytic
wave theory of multiple scattering. The mathematical
procedures that have mostly been used to solve the elec-
tromagnetic multiple-scattering equations constituting
this problem are the T-matrix formalism and the integral-
equation formulation of Maxwell’s equations involving
N-particle Green’s function. The results obtained so far
have become especially important in applications to re-
mote sensing in the microwave region18 and to astrophys-
ics, concerning radiation transfer in planetary atmo-
spheres. For the case of finite clusters of spheres these
mathematical procedures yield exact results.

Analytical wave theory of multiple scattering provides
a formal procedure to calculate the coherent component of
the electromagnetic field propagating in a medium of ran-
dom scatterers through the solution of a hierarchy of
multiple-scattering equations. These equations can be
solved with various degrees of approximation.19–22 Trun-
cation at the first stage in the hierarchy of equations,
known as the effective-field approximation, was used by
Foldy23 and Lax24,25 to derive the effective wave vector
and the corresponding effective index of refraction for
waves propagating in the bulk of the random system of
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discrete scatterers. To linear order in the filling fraction
of spheres, their result turned out to be the same as the
one of van de Hulst.9 At this stage one could perform a
conceptual leap and interpret this effective index of re-
fraction as a property of an effective medium and then
ask whether its use is unrestricted, that is, whether one
could use it together with CE to calculate other optical
properties such as the reflection and transmission ampli-
tudes of the coherent field at the interface of a half-space
of randomly located scatterers, succinctly called coherent-
reflection and transmission amplitudes. Obviously this
problem is not well posed, because the use of CE would
rely on Fresnel relations, and Fresnel relations would re-
quire, besides the effective index of refraction neff , an ef-
fective dielectric response eeff and an effective magnetic
susceptibility meff independently. What has usually been
assumed in a system with nonmagnetic components is to
take the effective magnetic susceptibility meff equal to the
one in vacuum m0 and then use neff as unrestricted. But
this assumption has never been proved and it would re-
quire the independent calculation of the effective dielec-
tric and magnetic responses regarded as the relation be-
tween the induced effective currents and the average
fields. Furthermore even if this calculation could be ac-
complished and the determination of the reflection and
transmission amplitudes could finally be made using
Fresnel relations, it would be still necessary to check that
the results so obtained are consistent with an indepen-
dent calculation of the same reflection and transmission
amplitudes using for example standard wave-scattering
theory. Our objective here is precisely to give an answer
to these questions using a rather intuitive approach.

First we use standard wave-scattering theory to calcu-
late the coherent component of the fields radiated by a
thin slab of randomly located identical, polarizable, non-
magnetic spheres when driven by a plane wave incident
at an arbitrary angle and in the dilute limit. Then we
find the currents that would act as the sources of these
radiated fields and identify them as the induced effective
currents, that is, the currents induced in an effective me-
dium. We find that these effective currents have to have
a component coming from closed currents, which we iden-
tify as closed currents induced in the spheres by the time
variations of the incident magnetic field, thus giving rise
to a true magnetic response. Then we take account, in
an average way, of multiple-scattering effects by con-
structing a half-space as a pile of slabs and solving the
transfer equations for the coherent fields. By this proce-
dure we calculate the coherent-reflection and transmis-
sion amplitudes of the half-space. Although these re-
sults are valuable by themselves, independently of any
relation to the concept of an effective medium, we also use
them to corroborate that the results so obtained are con-
sistent with CE and the concept of an effective medium
only if the effective medium possesses, besides an effec-
tive dielectric response eeff , also an effective magnetic
susceptibility meff . The expressions derived for the di-
electric and magnetic responses eeff and meff depend on the
angle of incidence and the polarization of the incident
beam, but the effective index of refraction neff
5 (eeffmeff)

1/2 turns out to be equal to the one derived by
van de Hulst. Therefore the resulting EEMT becomes of
the restricted type.

Finally we provide numerical calculations which could
be used to test experimentally the validity of our results
concerning the coherent reflectance of a half-space com-
pared with the corresponding results coming from the un-
restricted use in CE of the effective refractive index de-
rived by van de Hulst. In comparing against
experiments, the interpretation of our results as coming
from an effective medium with an anisotropic magnetic
response is absolutely optional because, as pointed out
above, our results do not depend on such an interpreta-
tion. Furthermore our work fulfills another objective by
helping to understand physically the magnetic properties
at optical frequencies of an effective medium within a re-
stricted EEMT for large inclusions and nonnormal inci-
dence.

The paper is structured as follows. In Section 2 we
calculate the coherent transmission and reflection from a
thin slab of a random system of spheres. In Section 3 we
derive the effective optical coefficients of an equivalent
homogeneous medium by identifying the sources of the
radiated fields as open and closed currents induced in the
effective medium, and give some numerical examples. In
Section 4 we derive the coherent-reflection amplitude for
a half-space built up as a pile of slabs and compare our
results with Fresnel relations to identify the electromag-
netic properties of an equivalent effective medium. We
give some numerical examples and discuss the corre-
sponding formulas for a system of particles embedded in a
homogeneous matrix. In Section 5 we provide a discus-
sion of the results and our conclusions.

2. COHERENT TRANSMISSION AND
REFLECTION FROM A THIN SLAB
We consider a dilute, random distribution of spherical
particles in vacuum (no matrix) contained in a boundless
slab region parallel to the x –y plane with 2d/2 , z
, d/2. The system is in the presence of an incident
plane wave with an electric field given by

Ei~r, t ! 5 E0 exp@i~ki
• r 2 vt !#êi , (1)

where r and t are the position vector and time, respec-
tively, v is the radial frequency, êi is a unit vector in the
direction of polarization, ki 5 ky

i ây 1 kz
i âz is the incident

wave vector assumed to lie in the y –z plane, and âx , ây ,
and âz are unit vectors along the Cartesian axes of coor-
dinates (see Fig. 1). The electric field satisfies êi • ki

5 0 and ukiu 5 k, where k 5 v/c 5 2p/l is the wave
number in vacuum, l is the corresponding wavelength,
and c is the speed of light. The time dependence
exp(2ivt) will be assumed throughout the paper and will
not be shown hereafter. We will be using SI units.

The incident field is scattered by the particles, and we
assume their number density is low enough that the
single-scattering approximation is valid. This means
that the field exiting each particle is the incident field; we
neglect the contribution coming from the field scattered
by all other particles. The scattered field ES due to a col-
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lection of N spherical particles with their centers located
at $r1 , r2,..., rp,..., rN% can be written as26

ES~r! 5 (
p51

N E d3r8E d3r9G% 0~r, r8!

• T% ~r8 2 rp , r9 2 rp! • Ei~r9!, (2)

where G% 0(r, r8) is the dyadic Green’s function in free
space, T% (r8, r9) is the transition operator for a sphere,
and Ei denotes the incident field. To deal with a slab ge-
ometry it is convenient to work in a plane-wave represen-
tation, so we substitute the plane-wave expansion of the
dyadic Green’s function

G% 0~r, r8! 5
i

8p2 EE dkx
sdky

s
1

kz
s ~1% 2 k̂6

s k̂6
s !exp@ik6

s

• ~r 2 r8!# (3)

valid in the region outside the particle (r . r8), the mo-
mentum representation of the transition operator

T% ~r8 2 rp , r9 2 rp! 5
1

~2p!6 E d3p8E d3p9 exp@ip8

• ~r8 2 rp!#T% ~p8, p9!

3 exp@2ip9 • ~r9 2 rp!#, (4)

and the plane-wave expression of the incident field into
Eq. (2) to get

ES~r! 5
i

8p2 E0(
p51

N EE dkx
sdky

s
~1% 2 k̂6

s k̂6
s !

kz
s

• T% ~k6
s , ki! • êi exp@2i~k6

s 2 ki! • rp#

3 exp~ik6
s
• r!. (5)

Here k6
s 5 kx

s âx 1 ky
s ây 6 kz

sâz , kz
s 5 @k2 2 (kx

s)2

2 (ky
s)2#1/2, and T% (p8, p9) is the momentum representa-

tion of the transition operator T% (r8, r9) of an isolated
sphere. This is the plane-wave expansion of the scat-
tered field, meaning that the scattered field is expressed
as a sum of plane waves propagating along the k6

s direc-
tions; the signs 6 refer to the field propagating to the

Fig. 1. Slab of a dilute random system of spheres. The centers
of the particles are within the planes z 5 2d/2 and z 5 d/2.
right (1) and to the left (2) of each particle. The factor
exp@2i(k6

s 2 ki) • rp# keeps track of the phase difference
of the field scattered by different particles.

Notice that the arguments of T% run over all possible
values of kx

s and ky
s . But here we are interested only in

the coherent component of this radiated field, so we per-
form the configurational average of ES over a slab of
width d comprised between the planes z 5 2d/2 and z
5 1d/2. In the averaging procedure we will further as-
sume that the positions of the particles are independent
of each other (i.e., we ignore the exclusion volume) and
that the probability of finding a particle with its center in-
side the volume d3r is uniform and given by d3r/V, where
V is the volume of the slab. Therefore the configura-
tional average of ES is calculated by integrating, in the
expression given by Eq. (5), the location of each particle
d3rp over the volume of the slab, keeping N/V [ r con-
stant. The integrals over dxp and dyp yield delta func-
tions d (kx

s 2 kx
i ) and d (ky

s 2 ky
i ) and the integral over

dzp is performed from 2d/2 to 1d/2. We obtain

^ES~r!&slab 5 H E1
S exp~iki

• r! for z . d/2

E2
S exp~ikr

• r! for z , 2 d/2
, (6)

where

E1
S 5 i

E0

2
r

~1% 2 k̂ik̂i!

kz
i • T% ~ki, ki! • êid, (7)

E2
S 5 i

E0

2
r

~1% 2 k̂rk̂r!

kz
i • T% ~kr, ki! • êi

sin kz
i d

kz
i .

(8)

Here kr 5 kx
i âx 1 ky

i ây 2 kz
i âz is the wave vector in the

specular direction and kz
i 5 @k2 2 (kx

i )2 2 (ky
i )2#1/2. One

can see that for z . d/2 the coherent component of the
scattered field propagates to the right as a plane wave
with its wave vector along the same direction as the inci-
dent wave, while for z , 2 d/2 it propagates to the left,
also as a plane wave, but with its wave vector along the
specular direction. This means that the scattered field
interferes constructively along two directions ki and kr

independent of the location of the scatterers. For this
reason these are the only components of the field that sur-
vive after a configurational average. Also the amplitudes
of these plane waves depend solely on the scattering prop-
erties of an isolated particle (through T% ) and are directly
proportional to the number of particles (through r). This
is a manifestation of the single-scattering approximation.
Furthermore since both of the arguments of T% in Eqs. (7)
and (8) are wave vectors with the same magnitude ki, one
can write T% in terms of the far-field scattering dyad F% , de-
fined as

Efar
S ~r! 5 E0

exp~ikr !

r
F% ~k̂s, k̂i! • êi , (9)

where Efar
S (r) is the field scattered in the region far away

from a particle centered at the origin; k̂i and k̂s are the
directions of travel of the incident plane wave and the
scattered field, respectively; and êi is the polarization of
the incident wave and E0 its amplitude. It can be shown
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that the relationship between the transition operator in
Eqs. (7) and (8) and the far-field scattering dyad can be
written as

~1% 2 k̂ik̂i! • T% ~ki,ki! 5 4pF% ~k̂i,k̂i!, (10)

~1% 2 k̂rk̂r! • T% ~kr,ki! 5 4p~k̂r, k̂i!. (11)

But the incident field and the plane-wave components of
the scattered far field are both transverse: Efar

S and Ei

are perpendicular to k̂s and k̂i, respectively, and F% (k̂s, k̂i)
should relate the two transverse components of the inci-
dent field with the two transverse components of the scat-
tered far field. Therefore in an appropriate reference
frame F% (k̂s, k̂i) should have only 2 3 2 5 4 different
components. These four different components are the
components of the so-called scattering matrix. Following
Bohren and Huffman10 we write the relationship between
the scattered far field and the incident field as

S E fari
S

E far'
S D 5

exp~ikr !

2ikr
FS2~u! S4~u!

S3~u! S1~u!
G S E i

i

E'
i D , (12)

where Sj with j 5 1 to 4 are the components of the (2
3 2) scattering matrix and the subindexes i and ' de-
note components parallel and perpendicular, respectively,
to the scattering plane, which is the plane generated by
the incident and scattering wave vectors. For a sphere
S3(u) 5 S4(u) 5 0, and one can easily show that E1

S and
E2

S in Eqs. (7) and (8) can also be written as

E1
S 5 2E0g

kd

cos u i
S~0 !êi , (13)

E2
S 5 2E0g

k

cos u i

sin kz
i d

kz
i

3 @2~cos u iây 1 sin u iâz!~cos u iây 2 sin u iâz!

3 S2~p 2 2u i! 1 âxâxS1~p 2 2u i!] • êi ,
(14)

where S(0) [ S1(u 5 0) 5 S2(u 5 0) is called the
forward-scattering amplitude, g [ 3f/2x3, x [ ka is the
size parameter, f 5 N4pa3/3V is the filling fraction of
spheres, p 2 2u i is the specular direction, and we recall
that kz

i 5 k cos ui . Notice that while E1
S is directly pro-

portional to d, E2
S is proportional to sin kz

id/kz
i . Here d is

the thickness of the averaging region where the centers of
the spheres are randomly located. Since we are consid-
ering that the slab is thin enough for the single-scattering
approximation to be valid, one can take d small enough
and approximate sin kz

id/kz
i ' d, as will be discussed be-

low. Notice also that in general uE1
S u Þ uE2

S u; this is a di-
rect consequence of the forward–backward anisotropy of
Mie scattering—that is, S(0) Þ Sm(p 2 2u i) for m
5 1,2. We also recall that this anisotropy is more acute

the larger the sphere. For spheres whose radii are very
small with respect to the incident wavelength, this anisot-
ropy almost disappears and one has uE1

S u ' uE2
S u.

We now pose the following problem: The incident field
induces currents in the spheres within the slab. The
sources of the coherent (average) fields radiated by the
thin slab and given by Eqs. (6)–(8) and (13)–(14) are the
averages of these induced currents. Keeping this in
mind, we ask the following:

1. Is it possible to construct a simple model for the av-
erage of these induced currents?

2. Is it possible to associate with the thin slab an ef-
fective electric or magnetic susceptibility that relates the
incoming field to the average of these induced currents?

3. If so, is it then possible to describe the propagation,
reflection, and transmission of the average electromag-
netic field in a thick slab or a half-space in terms of these
effective susceptibilities?

4. Finally, is it possible to identify the actual induc-
tion process of the currents in the spheres and the physi-
cal nature of the effective susceptibilities?

To answer all these questions and to keep the calcula-
tion procedure as clear as possible, we will treat the two
polarizations of the incoming beam separately: the TE
polarization when êi 5 âx , and the TM polarization when
êi 5 cos ui ây 2 sin ui âz .

3. EFFECTIVE ELECTRIC PERMITTIVITY
AND MAGNETIC PERMEABILITY
In TE polarization (êi 5 âx) the amplitudes of the radi-
ated fields E1

S and E2
S are given by

E1
S 5 2E0g

kd

cos u i
S~0 !âx , (15)

E2
S 5 2E0g

k

cos u i

sin kz
i d

kz
i S1~p 2 2u i!âx .

(16)

We seek now to find the effective-current distribution that
acts as a source of these fields and identify these effective
currents with the average current distribution induced in
an effective medium. To model the effective currents
within the thin slab, we postulate the simplest possible
geometry: a two-dimensional (2D) homogeneous and iso-
tropic sheet with no internal structure. We locate the
sheet at the z 5 0 plane in the presence of an incident
plane wave with TE polarization, that is,

Ei~r, t ! 5 E0 exp@i~ky
i y 1 kz

i z !#âx , (17)

where Ei is the incident electric field. Since the incident
electric field lies along the x-direction and the sheet is iso-
tropic in the x –y plane, we assume that the effective in-
duced current density also lies along the x-direction and
can be written as

J 5 j0xd ~z !exp~iky
i y !âx , (18)

where j0x is actually a surface current density and the
spatial dependence is the one corresponding to the excita-
tion by the incident plane wave (at z 5 0). One can eas-
ily show that the fields radiated by this current distribu-
tion are two plane waves, one traveling to the right (z
. 0) with wave vector ki and one traveling to the left
(z , 0) with wave vector kr; that is,

EJ 5 H E1
J exp~iki

• r! for z . 0

E 2
J exp~ikr

• r! for z , 0
, (19)
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where ki and kr have the same meaning as in Eq. (6),

E6x
J 5 2

1

2
m0j0x

v

kz
i , (20)

and m0 is the magnetic permeability of vacuum. These
radiated fields are similar to the ones radiated by the slab
with spherical inclusions. Nevertheless while here E1x

J

5 E2x
J , in the case of the slab one has a right–left anisot-

ropy; that is E1x
S Þ E2x

S , which comes from the anisot-
ropy of Mie scattering and is explicitly displayed in Eqs.
(15) and (16). Furthermore, the result E1x

J 5 E2x
J is a di-

rect consequence of Faraday’s law ¹ 3 E 5 2ivB, which
demands the continuity of Ex

J whenever By
J is finite.

Here B is the magnetic field. Therefore if one wants to
find a distribution of induced currents that properly simu-
lates the sources of the fields radiated by the slab of
spherical particles, one is forced to conclude that this is
not possible with the current distribution proposed in Eq.
(18). The fulfillment of Faraday’s law requires a singular
value of By at z 5 0 as the only way to obtain a right–left
anisotropy in the wave amplitudes of the radiated electric
field. But the only way to get a singular value of By at
z 5 0 would be to have a distribution of closed currents
that generate a magnetization M in the sheet along the
y-direction. Only in this manner can By /m0 5 Hy 1 My
have a singular contribution. An average of closed cur-
rents running along the x-direction can be written as two
surface current densities jC running in opposite direc-
tions, that is,

JC 5 lim
«→0

jC@d ~z 1 «/2! 2 d ~z 2 «/2!#exp~ikyy !âx

5 JCd8~z !exp~iky
i y !âx , (21)

where the prime indicates spatial derivative and JC cor-
responds to a surface magnetization, as will be shown be-
low. These closed currents should be induced by an elec-
tric field generated by the time variations of the magnetic
field along the y direction. In a boundless, homogeneous,
nonmagnetic sheet, the electric field generated by the
time variations of a magnetic field cannot induce any
closed currents, but in a slab with spherical inclusions the
closed currents can be induced at the inclusions. There-
fore one can regard JC as the average of the closed cur-
rents induced in the spheres. Let us now define the mag-
netization field M as

J 5 ¹ 3 M, (22)

where J is, in general, the average of the closed currents
induced in the material. In our case JC yields a magne-
tization in the y-direction, which can be written as

M 5 m0yd ~z !exp~iky
i y !êy , (23)

where m0y 5 JC is the surface magnetization. Now one
can show that the electric field radiated by this induced
magnetization is also in the form of plane waves, as were
the ones in Eq. (19), but with amplitudes

E6x
J 5 6

i

2
vm0m0y , (24)
which are discontinuous at z 5 0. This discontinuity ob-
viously arises from the discontinuity of the closed-current
distribution in Eq. (21). If we now add the fields radiated
by the current distributions in Eqs. (18) and (21) we
would have, as before, two plane waves propagating along
ki for z . 0 and kr for z , 0 but with a total electric field
given now by

E6x
J 5

1
2 m0vS 2

j0x

kz
i 6 im0yD , (25)

which has a right–left anisotropy. From this we conclude
that to simulate the radiation of a thin slab with spherical
inclusions one requires as sources, open- and closed-
current distributions. Since the closed currents should
be induced by the time variations of the magnetic field,
the response of the system should be interpreted as an ac-
tual and true magnetic response. One can now regard
the open and closed current distributions as the response
of an effective material to the incoming field. But before
going further in trying to identify the electric and mag-
netic responses of this effective material, we should con-
sider that if Hy can induce closed currents in the sheet,
the same should happen with the time variations of Hz .
In this case closed currents should be induced in the x –y
plane with a corresponding magnetization in the
z-direction. Therefore in order to be consistent we should
also consider the field radiated by a source such as

M 5 2m0zd ~z !exp~iky
i y !êz . (26)

The minus sign comes from the difference in phase be-
tween Hy and Hz in TE polarization. It is straightfor-
ward to show that the fields radiated by this source are
also two plane waves, as in Eq. (19), propagating along ki

for z . 0 and kr for z , 0, with an amplitude

E6x
J 5

i

2
m0vm0z

ky
i

kz
i . (27)

Note that in this case Hz 5 Bz /m0 2 m0zd (z)exp(iky
iy) is

singular at z 5 0. Adding up the contributions to the
amplitude of the radiated field of the three sources given
by Eqs. (18), (23), and (26), we get

E6x
J 5

1

2
m0vS 2

j0x

kz
i 6 im0y 1 im0z

ky
i

kz
i D . (28)

We will now assume that the averages of the induced cur-
rents are proportional to the incident field through some
effective response functions, and then try to find the val-
ues for which one recovers the fields radiated by the thin
slab with spherical inclusions. First we define the polar-
ization field P as

J 5
]P

]t
→ 2ivP, (29)

where J is the average of the induced current in the ma-
terial. Then we define the electric susceptibility tensor
x% E as P 5 e0x% E

• E, where E is the average electric field.
In the same manner the magnetic susceptibility tensor x% H

is defined as M 5 x% H
• H, where H is the average H field.

For an object such as the 2D sheet we are dealing with,
the description of the response should be given in terms of
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the corresponding surface susceptibilities—denoted by x% S
E

and x% S
H—that relate the E and the H field to the surface

polarization and surface magnetization, respectively. We
also assume that in our coordinate system x% S

E and x% S
H are

diagonal, and can be written as x% S
E 5 (xSi

E , xSi
E , xS'

E ) and
x% S

H 5 (xSi
H , xSi

H , xS'
H ), where the subindexes i and ' de-

note parallel and perpendicular to the sheet, respectively.
The response of the 2D sheet is clearly anisotropic in the
i and ' directions, but we are regarding the x –y plane as
isotropic. Now we assume that the system is so dilute
that the average induced current and magnetization dis-
tributions in Eqs. (18), (23), and (26) are proportional to
the incident field; thus

j0x 5 2ive0xSi
E E0 , (30)

m0y 5 xSi
H H0 cos u i 5 xSi

H
k

vm0
E0 cos u i ,

(31)

m0z 5 xS'
B B0 sin u i 5 xS'

B
k

v
E0 sin u i , (32)

where we have used the relations between E, H and B
given by Maxwell’s equations and we have introduced, in
Eq. (32), the surface response xS'

B to the B field instead of
the response xS'

H to the H field. We do this because in the
case where the magnetization is along the z-direction and
given by Eq. (26), the field Hz 5 Bz /m0
2 m0zd (z)exp(iky

iy) is singular at z 5 0, and it is not ad-
equate to define a response to a singular field. On the
contrary, the field Bz is continuous and can be regarded as
the driving field of the induced magnetization.

Now to get the amplitude of the radiated plane waves
E6x

J in terms of the surface response functions, we substi-
tute Eqs. (30)–(32) into Eq. (28) to yield

E6x
J 5

i

2
kS xSi

E

cos u i
6 xSi

H cos u i 1 m0xS'
B

sin2 u i

cos u i
D E0 .

(33)

We now compare the amplitudes of the waves radiated by
this sheet, characterized by three effective surface re-
sponse functions, with the amplitudes of the waves radi-
ated by the slab with spherical inclusions. To do this we
first imagine that the effective response of the sheet is ac-
tually describing the response of a slab of a finite width d.
One can regard the sheet as the shape at the end of a lim-
iting process which starts with a slab of a finite width.
For example one can define the surface susceptibility xSi

E

as xSi
E 5 limd→0 xEd, where xE is the bulk susceptibility

of a homogeneous and isotropic slab. Therefore before
we compare the amplitudes of the waves radiated by the
sheet and given by Eq. (33) with the corresponding ones of
a slab of width d with randomly located spheres and given
by Eqs. (15) and (16), we have to perform in Eq. (33) the
following replacements:

xSi
E → xEd, (34)

xSi
H → xHd, (35)

where xH is the bulk magnetic susceptibility of a homoge-
neous and isotropic slab and
xS'
B →

xHd

m
'

xHd

m0
. (36)

In this last replacement we are taking into account that
in the ' direction there is a surface magnetization at the
two parallel faces of the slab that produces a difference
between the average B and H fields. This does not hap-
pen along the i direction because along this direction the
system is boundless. Nevertheless since we are consid-
ering here only the dilute limit in which the driving field
for the induced currents comes solely from the incident
beam, we can take B ' m0H and replace xS'

B

→ xHd/m0 . We now substitute the replacements in re-
lations (34)–(36) into Eq. (33) and compare it with Eqs.
(15) and (16) to yield

xE 1 xH cos2 u i 1 xH sin2 u i 5 2igS~0 !, (37)

xE 2 xH cos2 u i 1 xH sin2 u i 5 2igS1~p 2 2u i!
sin kz

i d

kz
i d

,

(38)

where we have assumed that the slab thickness d, where
the centers of the randomly located spheres lie, is such
that kz

i d ! 1; thus we can approximate in Eq. (16)
sin kz

id/kz
id ' 1. We now solve Eqs. (37) and (38) for xE

and xH and use the definitions of the electrical permittiv-
ity ẽ [ e/e0 5 1 1 xE and the magnetic permeability m̃
[ m/m0 5 1 1 xH to get

m̃eff
TE~u i! 5 1 1 ig

S2
~1 !~u i!

cos2 u i
, (39)

ẽeff
TE~u i! 5 1 1 ig@2S1

~1 !~u i! 2 S2
~1 !~u i!tan2 ~u i!#,

(40)

where

S1
~m !~u i! [ 1

2 @S~0 ! 1 Sm~p 2 2u i!#, (41)

S2
~m !~u i! [ S~0 ! 2 Sm~p 2 2u i!, (42)

and we have added to ẽ and m̃ the superindex TE to de-
note the polarization and the subindex eff to emphasize
the fact that they describe an effective response.

In the case of TM polarization one performs a proce-
dure analogous to the one developed for TE polarization,
and one can show that the corresponding optical coeffi-
cients are given by

ẽeff
TM~u i! 5 1 1 ig

S2
~2 !~u i!

cos2 u i
, (43)

m̃eff
TM~u i! 5 1 1 ig@2S1

~2 !~u i!

2 S2
~2 !~u i!tan2~u i!#. (44)

These results can also be readily obtained from the sym-
metry in Maxwell’s equations (the field-equivalence prin-
ciple) and the results for TE polarization. That is, one
replaces E → 2H and e → m. However, in doing so we
must also replace the scattering matrix element S1(p
2 2u i) → S2(p 2 2u i).
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Note that the effective optical coefficients ẽeff and m̃eff
depend on the angle of incidence and on the polarization,
and therefore they are not unrestricted. They are re-
stricted to the slab geometry. Also the expressions for
the effective optical coefficients in Eqs. (39)–(44) are lin-
ear in g [ 3f/2x3 and they are valid only to linear order
in g. This is consistent with the dilute-limit approxima-
tion adopted above, and therefore the validity of all of our
results will be limited by this restriction.

According to CE the effective index of refraction neff
should be given by

neff
~m !~u i! 5 @ ẽeff

~m !~u i!m̃eff
~m !~u i!#

1/2 (45)

5 H 1 1 2igS~0 ! 2
g2

cos2 u i
@S~0 !2

2 Sm~p 2 2u i!
2#J 1/2

, (46)

and to lowest order in g, one gets

neff ' 1 1 igS~0 !, (47)

which is isotropic and independent of polarization, and is
actually the same result as that proposed by van de
Hulst9 and derived by Foldy23 decades ago. So we can
see that although the optical coefficients ẽeff and m̃eff are
highly anisotropic and polarization-dependent, their de-
pendence on the angle of incidence is such that the square
root of their product is not.

Let us now look at some limiting cases. First we note
that for small particles (x ! 1) the Mie forward–
backward anisotropy in the angular distribution of scat-
tered radiation becomes

S1~u i! ' 2ix3b , (48)

S2~u i! ' 2ix3b cos u i , (49)

where b 5 ( ẽS 2 1)/( ẽS 1 2) and ẽS 5 eS /e0 is the elec-
trical permittivity of the spheres. Then S1

(1) ' 2ix3b,
S2

(1) ' 0, S1
(2) ' 2ix3b sin2 ui , and S2

(2)

' 22ix3b cos2 ui . Substituting these values into Eqs.
(39)–(44) we get

m̃eff
TE~u i! 5 m̃eff

TM~u i! [ m̃eff 5 1, (50)

ẽeff
TE~u i! 5 ẽeff

TM~u i! [ ẽeff 5 1 1 3bf. (51)

These are the well-known results for the case of small
particles, or for the case of an ordinary material when one
regards the material as a composite made of molecular in-
clusions in vacuum. Eq. (50) tells us that the system is
nonmagnetic and Eq. (51) is the low-density limit of the
effective dielectric response in the Maxwell Garnett
theory or in the Clausius–Mossotti relation, when one in-
terprets b as proportional to the molecular polarizability.
One can also see that the magnetic character of the sys-
tem appears only when the spheres are large enough and
is related to the large forward–backward anisotropy in
the Mie scattering of large particles (x ; 1).

For normal incidence (u i 5 0) one gets
m̃eff
TE~0 ! 5 m̃eff

TM~0 ! [ m̃eff~0 ! 5 1 1 ig@S~0 ! 2 S1~p!#,

(52)

ẽeff
TE~0 ! 5 ẽeff

TM~0 ! [ ẽeff~0 ! 5 1 1 ig@S~0 ! 1 S1~p!#,

(53)

where we have used S1(p) 5 2S2(p). These are the ex-
pressions proposed by Bohren16 when he introduced the
idea of a magnetic response in the optical properties of
granular materials made of nonmagnetic components.

At grazing incidence u i → p/2 we have that Sm(p
2 2u i) → S(0), thus S1

(m)(u i) → S(0) and S2
(m)(u i) → 0

but S2
(m)(u i)/cos2 ui remains finite. We can see this by ex-

panding S2
(m)(u i) around u i 5 p/2 and showing that

limui→p/2S2
(m)(u i)/cos2 ui 5 2Sm9 (0) where the primes indi-

cate the derivative with respect to the argument.
Now we illustrate the behavior of the effective optical

coefficients of a random ensemble of spherical particles by
performing some numerical calculations using the formu-
las derived above. The scattering matrix elements S1
and S2 are calculated following the recipe given in the
book by Bohren and Huffman.10 We choose an ensemble
of nonabsorbing, nonmagnetic glass spheres with a real
index of refraction np 5 1.50. However, the formulas de-
rived above and the evaluation of the elements of the scat-
tering matrix are also valid when the spheres are mag-
netic or have a complex index of refraction. In the
following figures we plot the change in the optical coeffi-
cients resulting from the presence of the spheres divided
by the filling fraction of the spheres f. We may refer to
these quantities as the normalized changes of the optical
coefficients. We must remember that the present results
are valid only for dilute systems, i.e., for f ! 1.

In Fig. 2 we plot the normalized change in the real (a)
and imaginary part (b) of the effective index of refraction
given by Eq. (47) as a function of the ratio of the particle
radius to the wavelength of the incident radiation. As
can be appreciated in Fig. 2(a) the change in the real part
starts increasing, reaches a maximum near 0.3 l, and
then drops rapidly and oscillates about Re(neff) 5 1.
Note that the contribution of the spheres to the real part
of the refractive index can be negative, meaning that neff
can be less than one. It is clear that for spheres larger
than about 2l their contribution to the effective index of
refraction is rather small. In Fig. 2(b) we can see that
the imaginary part has a strong peak at a ; 0.5l.
Above a 5 1.0l, Im(neff)/f decreases slowly with some os-
cillations. Let us recall that since there is no absorption
in the spheres, the imaginary part here means that the
coherent field is lost due to diffuse scattering. Also, a
small imaginary part of neff can have a significant effect.
For example for Im(neff) . 0.01 and for a wavelength of
l 5 0.55 mm the extinction coefficient becomes 2.3
3 103 cm21. The ripples (rapid oscillations) observed in
both plots are the result of sphere resonances. However,
when the spheres are not monodisperse the ripples tend
to disappear. Note that Im(neff) remains positive for all
particle radii, as it should. In Figs. 3(a)–3(d) we plot the
normalized change in the effective electric permittivity
and effective magnetic permeability given by Eqs. (39)–
(44) as a function of the particle radius divided by the in-
cident wavelength. As noted above, these effective opti-
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Fig. 2. Plots of the normalized change in the real and imaginary
part of the effective index of refraction [Eq. (47)] as a function of
a/l for a system of nonmagnetic glass spheres (np 5 1.50) in
vacuum (n 5 1.00).
cal coefficients depend on the angle of incidence. Thus
we show plots for two different angles of incidence, u i
5 30° and u i 5 70°. We may note that the behavior of
the optical coefficients as a function of a/l changes
strongly from u i 5 30° to u i 5 70°. In particular note
that the maxima and minima in the plots for u i 5 70° are
larger than for u i 5 30°, and that the imaginary parts of
eeff

TE and meff
TM are negative above a . 0.4l for u i 5 70°.

This at first may seem troublesome, but for each polariza-
tion the sum of the imaginary parts of the effective optical
coefficients eeff and meff remains positive for all cases. In
Figs. 4(a) and 4(b) we plot the normalized change in the
real and imaginary parts of eeff and meff for both polariza-
tions as a function of the angle of incidence for a particle
radius of a 5 0.5l. One can see the strong change in the
optical coefficients towards grazing incidence. Here
again even though Im eeff

TE/f and Im meff
TM/f each negative

values, we see that Im eeff
TE/f 1 Im meff

TE/f . 1 and
Im eeff

TM/f 1 Im meff
TM/f . 1.

4. COHERENT REFLECTION AND
TRANSMISSION FROM A HALF-SPACE
The coherent reflection from a half-space can be obtained
by calculating the reflection amplitude from a semi-
infinite pile of thin slabs of width d. If the slabs are thin
enough (kz

i d ! 1) each slab may be modeled as an
equivalent 2D sheet. Then the half-space becomes an in-
Fig. 3. Plots of the normalized change in the real (a), (c), and imaginary (b), (d) part of the optical coefficients [Eqs. (39)–(44)] as a
function of the particle radius a divided by the wavelength l, for two different angles of incidence, 30° (a), (b) and 70° (c), (d). The
subindex eff in the optical coefficients was removed here for clarity. The plots are for a system of nonmagnetic glass spheres (np
5 1.50) in vacuum (n 5 1.00); dotted curves are for eTE, dashed-dotted curves for eTM, solid curves for mTE, and dashed curves for mTM.
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finite stack of sheets separated by a distance d and ex-
tending to the right of z 5 0. This is illustrated in Fig. 5.
A wave incoming to the half-space gets multiply scattered
within the pile of sheets; the reflected wave is the sum of

Fig. 4. Plots of the normalized change in the real (a) and imagi-
nary (b) part of the optical coefficients [Eqs. (39)–(44)] as a func-
tion of the angle of incidence for particles of radius a 5 0.5l.
The plots are for a system of nonmagnetic glass spheres (np
5 1.50) in vacuum (n 5 1.00). The subindex eff in the optical
coefficients was removed here for clarity. Dotted curves are for
eTE, dashed-dotted curves for eTM, solid curves for mTE, and
dashed curves for mTM.

Fig. 5. Model of a half-space as a semi-infinite stack of 2D
sheets. The sheets are located at z 5 zn 5 nd with n
5 0, 1, 2, 3, ... . The fields are calculated at the intermediate
planes z 5 zn 5 (n 1 1/2)d.
the waves scattered to the left by all the sheets. To solve
this multiple-scattering problem we consider only the
field at planes lying halfway between the sheets, i.e., at
the planes z 5 zn 5 (n 1 1/2)d with n 5 0, 1, 2, 3,... (see
Fig. 5). We then establish two coupled, multiple-
scattering equations that relate the field between a pair of
sheets to the field between all the other sheets. The so-
lution for z . 0 is a right-propagating field with an enve-
lope function E0exp(ikz

effzn) and a left-propagating wave
with an envelope function rhsE0exp(ikz

effzn). The coeffi-
cient rhs is the half-space reflection coefficient and kz

eff is
the z component of the effective propagation vector keff.
The details of this procedure are given in Appendix A. In
common materials the system of stacking sheets has been
ordinarily used to illustrate the main ingredients present
in a microscopic derivation of Fresnel’s reflection formu-
las, as well as the physics behind the Ewald–Oseen ex-
tinction theorem. The effective propagation wave vector
keff found through this procedure is the same as the one
obtained above with the effective-medium approach [Eq.
(47)]; the half-space TE reflection coefficient found with
this procedure is

rhs
TE 5

gS1~p 2 2u i!/cos u i

i$cos u i 1 @cos2 u i 1 2igS~0 !#1/2% 2 gS~0 !/cos u i
.

(54)

For TM polarization one finds the same expression but
with S2(p 2 2u i) instead of S1(p 2 2u i). We must note
that while for the scattering from each individual 2D
sheet we use the single-scattering approximation, in ob-
taining the reflected field we take into account the mul-
tiple scattering between the sheets.

If we now accept the description of the optical proper-
ties of a granular material in terms of the effective optical
coefficients given by Eqs. (39)–(44), the reflection ampli-
tudes of a half-space rhs must be given by the Fresnel re-
lations of CE, that is,

rhs
TE 5

m̃eff
TE~u i!kz

i 2 kz
eff

m̃eff
TE~u i!kz

i 1 kz
eff , (55)

rhs
TE 5

ẽeff
TM~u i!kz

i 2 kz
eff

ẽeff
TM~u i!kz

i 1 kz
eff , (56)

where kz
eff 5 k@(neff)2 2 sin2 ui#

1/2 and neff 5 1 1 igS(0). It
is not difficult to show that these Fresnel reflection coef-
ficients obtained with the effective-medium theory coin-
cide with Eq. (54) to first order in the density of particles.
Consider for example TE polarization. The proof re-
quires substituting Eqs. (39) and (40) into Eq. (55) and
then multiplying the numerator and denominator by
ik22@cos ui 1 ig S2

(1)(ui)/cos ui#
21 times the denominator.

After dropping terms of second order in g one arrives at
Eq. (54). Here we must recall that S2

(1)(u i)/cos ui → 0 at
grazing incidence. The proof for TM polarization follows
the same steps but S2

(1)(u i) is replaced by S2
(2)(u i).

Now one can see that the reflection coefficients of Eqs.
(55) and (56) look very different from the ones we would
have used by assuming that a nonmagnetic effective me-
dium with ẽeff 5 neff

2 5 @1 1 ig S(0)#2 and m̃eff 5 1 is unre-
stricted, that is,



306 J. Opt. Soc. Am. A/Vol. 20, No. 2 /February 2003 R. G. Barrera and A. Garcı́a-Valenzuela
rnm
TE 5

kz
i 2 kz

eff

kz
i 1 kz

eff , rnm
TM 5

neff
2kz

i 2 kz
eff

neff
2kz

i 1 kz
eff , (57)

where the subscript nm stands for nonmagnetic.
For the case of a slab with an arbitrary thickness h, the

reflection rh and transmission th amplitudes are given in
terms of rhs by the well-known expressions of CE, that is,

rh 5
rhs@1 2 exp~2ikz

effh !#

1 2 rhs
2 exp~2ikz

effh !
, (58)

th 5
1 2 rhs

2

1 2 rhs
2 exp~2ikz

effh !

3 exp@2i~kz
i 2 kz

eff!h#. (59)

These formulas are generally valid for both polarizations
(TE and TM) yielding rh and th in terms of the reflection
amplitude of a half-space rhs with the polarization corre-
sponding to the ones given by Eqs. (55) and (56).

Up to now we have assumed that the spherical par-
ticles in the system are in vacuum. Extension of the
above results to a lossless, homogeneous matrix with
spherical inclusions is not difficult. We could start by
considering an infinite medium with optical coefficients
em and mm (the subindex stands for matrix). Then we
should use eme0 and mmm0 instead of e0 and m0 through-
out. In this case we should replace k by nmk with nm
5 (emmm)1/2, where nm is real since we are assuming a
lossless medium. For example we should now use x
5 nmka instead of x 5 ka. Then we consider the reflec-
tion and transmission from a thin slab of spherical inclu-
sions within the matrix as light coming from the matrix
alone. The components of the scattering matrix should
be evaluated with the sphere embedded in a medium with
optical coefficients em and mm . The angle of travel inside
the matrix is different from the angle outside the matrix
because of refraction at the air–matrix interface. We will
denote by um the angle of travel inside the matrix assum-
ing that before entering (or leaving) the matrix the angle
is u i , and u i and um are related by Snell’s law. Now we
denote with rhs8 the reflection amplitude at the interface
between the homogeneous matrix and the composite ma-
trix with spherical inclusions, and it will be given by Eqs.
(55) and (56) with the replacements mentioned above,
that is, k → nmk, u i → um , and the components of the
scattering matrix calculated with the sphere embedded in
the matrix. For example, kz

eff will now be given by kz
eff

5 k@(neff)
2 2 nm

2 sin2 um#1/2. With these considerations,
formulas (39)–(44) will yield eeff /em and meff /mm for the
corresponding polarization.

The coherent-reflection amplitude from a half-space of
the composite-matrix material rcm is obtained by calculat-
ing the reflection from the system vacuum–homogeneous
matrix–composite matrix. This corresponds to a thin
slab of homogeneous matrix on a composite-matrix sub-
strate. The reflection coefficient is

rcm 5
rm 1 rhs8 exp~2iknm cos umg !

1 1 rmrhs8 exp~2iknm cos umg !
, (60)

where rm is the reflection coefficient of the vacuum–
homogeneous-matrix interface and g is the width of the
homogeneous-matrix slab. If we assume that all the par-
ticles are entirely embedded in the matrix, we cannot let
g → 0; we must at least take g equal to the radius a of
the particles. Here rm may include the effects of rough-
ness at the matrix interface whenever this might be im-
portant, and g could be adjusted to accommodate for some
other boundary condition related to the density of par-
ticles. In an experimental situation the particles will be
immersed in a matrix. For dilute systems of particles,
the contribution of the particles to the coherent reflec-
tance will generally be small compared to that of the
matrix–vacuum interface except near grazing incidence.
If one intended to detect the contribution of the particles
to the coherent reflectance, one might need to use differ-
ential measurements, such as the difference between the
reflectance for two orthogonally polarized incident beams,
or an ellipsometric technique. Other possibilities are to
suppress the reflection from the matrix–vacuum interface
by taking advantage of the Brewster-angle effect, or by
using the critical-angle effect, which is in a way equiva-
lent to measuring the reflectance associated with the par-
ticles near grazing incidence.

Fig. 6. Plot of the coherent reflectance R of unpolarized light
[average of Eqs. (55), (56)] for a system of nonmagnetic glass
spheres (np 5 1.50) in vacuum (n 5 1.00) with a filling fraction
of f 5 0.1; (a) as a function of the angle of incidence and for sev-
eral values of the radius a of the particles, (b) as a function of the
particle radius a divided by the wavelength l for an angle of in-
cidence u i 5 85°. For comparison we also plot the reflectance
ignoring the effective magnetic susceptibility @Rnm from Eq.
(57)].
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Now we show some numerical results and some com-
parisons between the results of Eqs. (55) and (56) and
those corresponding to the nonmagnetic effective medium
given by Eq. (57). We choose the same parameters as in
the illustrative example presented above of nonmagnetic,
transparent, glass particles. In Fig. 6(a) we plot the
coherent-wave reflectance from Eqs. (55) and (56) for un-
polarized light, i.e., 1

2 urhs
TEu2 1

1
2 urhs

TMu2 as a function of the
angle of incidence for several values of the particle radius
and a filling fraction of f 5 0.1. The reflectance calcu-
lated by using the Fresnel relations corresponding to a
nonmagnetic effective medium [Eq. (57)] is also shown.
In Fig. 6(b) we plot the coherent reflectance for unpolar-
ized light as a function of the particle radius divided by l
for an angle of incidence of 85°. At this angle of incidence
the coherent reflectance is large enough to be measured
easily. Also for comparison we show the nonmagnetic re-
flectance. Both Figs. 6(a) and 6(b) clearly show that if
one ignores the effective magnetic susceptibility in
Fresnel relations, one overestimates considerably the co-
herent reflectance. For angles of incidence away from
grazing incidence there are some interesting features of
the reflectance that it is worthwhile to point out. In Fig.
7(a) we show the TM-polarized reflectance near the Brew-
ster angle for particles with radius of a 5 0.2l. It can be
seen that the Brewster angle predicted by the nonmag-
netic reflectance differs from our result by a few degrees.
In Fig. 7(b) we show the reflectance for TE polarization in
an amplified scale for intermediate angles of incidence.
It can be appreciated that the reflectance has two zeros,
and these are the zeros of the scattering matrix element
S1 . These zeros could be interpreted as Brewster angles
showing the need for having a magnetic permeability in
the effective medium, since only magnetic materials
manifest a Brewster angle in TE polarization.

Considering the validity of our results, one can assert
that the formulas derived here are strictly valid only for
point-Mie scatterers and become exact only in the dilute
limit. However, it is possible to use our formulas for a
small but finite concentration of Mie scatterers with finite
radius. The limits of validity should be determined in
terms of a/l, u i , and f. Although these limits should be
set through the comparison of our results with those ob-
tained with more elaborate approximations, at the mo-
ment we may use the second-order terms which were
dropped in our formulas as an indication of the confidence
in the calculated parameters. For example if we had not
dropped second-order terms in our procedure, we would
have obtained the half-space reflection coefficient as

where m 5 1, 2 for TE and TM polarization, respectively.
Then a measure of the possible error would be E [ uR
2 Rsou/R, where R and Rso are the modulus squared of
Eqs. (54) and (61), respectively.

Numerical calculations considering glass particles

rhs 5
gSm~p 2 2u i!/cos u

i(cos u i 1 $cos2 u i 1 2igS~0 ! 2 ~g2/cos2 u i!@S~0 !2 2
show that E is largest within a window of angles of inci-
dence from about 80° to 89°. For particles of radius up to
a 5 4l, we find that for a filling fraction of f 5 0.1, E is
always less than 0.17. For a filling fraction of f 5 0.05, E
is always less than 0.10 and for a filling fraction of f
5 0.01, E is always less than 0.016. Outside the 80°–
89° window, E is always smaller than the numbers just
quoted. For example, at 70° the largest value of E for f
5 0.1 is found to be 0.037 for particles of radius near a
5 0.7l; at 89.9° and also for f 5 0.1, E is found to in-
crease monotonically (with some ripple structure) with in-
creasing particle radius, reaching 0.037 at a 5 4l. This
might mean that the coherent reflectance given by Eqs.
(55) and (56) or by Eq. (54) is more strongly limited in

terms of the filling fraction for angles of incidence within
some range near grazing incidence than near normal in-
cidence; and that apparently—very close to grazing (a few
tenths of a degree)—the accuracy improves again as long
as the particles are not too large.

~p 2 2u i!
2#%1/2) 2 gS~0 !/cos u i

, (61)

Fig. 7. Interesting features of the coherent reflectance R as a
function of the angle of incidence for a system of nonmagnetic
glass spheres (np 5 1.50) in vacuum (n 5 1.00) with a filling
fraction of f 5 0.1. (a) Brewster’s angle for TM polarization [Eq.
(56)] for particles of radius a 5 0.2l, (b) Brewster’s angle for TE
polarization for particles of radius a 5 1.5l. For comparison
we also plot the reflectance ignoring the effective magnetic sus-
ceptibility @Rn-m from Eq. (57)].
i

Sm
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Further comments about the reflection coefficient near
grazing incidence are worth making at this point. The
formulas for the coherent reflection coefficient rhs given
above approach the value of 21 as u i → p/2 (grazing),
which is the correct result. Although our approximations
to the optical coefficients are to first order in the filling
fraction, the z-component of the propagation vector ap-
pears in the expression for rhs . This component can be
written as kz

eff 5 k@cos2 ui 1 2igS(0)#1/2. Now we cannot
expand this expression in powers of g and drop the
second- and higher-order terms because at grazing inci-
dence cos ui → 0 and we are left with a term of order (g)1/2

which is larger than g for g , 1. Also the reflection co-
efficient is given as the ratio of two expressions. We may
neglect second- and higher-order powers of g in the nu-
merator and denominator, but we cannot expand the quo-
tient in powers of g, truncate the series, and take the
limit of grazing incidence, again because cos ui approaches
zero as u i → p/2. Thus the reflection coefficient near
grazing incidence contains terms with all powers of g.
The second- and higher-order terms are incomplete, but
we believe that the most important parts of these terms
are included in the approximation for dilute systems.

5. DISCUSSION AND CONCLUSIONS
Using wave-scattering theory, we calculated the coherent
reflectance of electromagnetic radiation from a half-space
filled with randomly located, polarizable spheres at an ar-
bitrary angle of incidence. Our results are valid in the
dilute limit since the effects of multiple scattering have
been included only in an average sense. As a matter of
fact, it can be shown27 that our approximation is formally
equivalent to the well-known effective-field approxima-
tion used in electromagnetic wave theory of multiple
scattering.23–25 As another objective of our work we
looked at the relation of our results to those of an
effective-medium approach. The concept of an effective
medium in a granular system when the size of the inclu-
sions is comparable to the wavelength of the incident ra-
diation has been rather elusive. Here we give a precise
definition of its meaning in relation to the propagation,
reflection, and transmission of the average (coherent)
electromagnetic field. We have found that the effective
index of refraction derived within this approximation or
equivalently derived in a more intuitive way by van de
Hulst9 cannot be regarded as unrestricted. That is it
cannot be safely used in CE as if it were the refractive in-
dex of a homogeneous material. This does not mean that
the concept of an effective refractive index is not mean-
ingful in this case. On the contrary, if one wants to look
at the system as an effective medium, we show that a
proper and accurate description of the coherent reflec-
tance from the half-space system requires an independent
determination of the effective electric permittivity and
the effective magnetic permeability of the system. We
provide explicit expressions for these optical coefficients
in terms of the elements of the scattering matrix of the
isolated sphere as well as for the reflection amplitude of a
half-space for both polarizations of the incident beam. It
turns out that the effective optical coefficients depend not
only on the polarization of the incident beam but also on
the angle of incidence. Thus they cannot be regarded as
unrestricted but rather as restricted to the slab geometry.
The possibility of constructing unrestricted optical coeffi-
cients for this system is still an open question.

Nonetheless we believe that the expressions derived
here, although limited to dilute systems, are not purely
and simply a curiosity, but on the contrary they may be
useful in several applications. For example, there is now
interest in following in real time various processes that
take place in turbid media through the changes in their
effective index of refraction. Nevertheless although mea-
surements of the attenuation of light through turbid sys-
tems are done routinely in many laboratories, there are
few transmission experiments which measure both the
real and imaginary part of their effective index of
refraction.21,28 However, a simple and potentially very
useful way of measuring the effective index of refraction
in turbid media is by critical-angle refractometers.29–31

In this method the real and imaginary parts of the effec-
tive index of refraction are obtained by inverting the re-
lationship between the reflection amplitude and the effec-
tive index of refraction. The naive use of Fresnel
expressions to perform this inversion would lead to errors
in both accuracy and interpretation. However, the ex-
pressions for the reflection amplitude derived here could
be used, together with data of critical-angle refractome-
ters, to obtain not only more accurate results of the opti-
cal constants of turbid media, but to undertake reliable
modeling of the correlation between their changes and
some of the specific processes which take place within the
system.

In radiative-transfer studies in granular matter the
calculation of the internal and external reflectance of the
energy fluxes at the boundaries requires knowledge of the
index of refraction of the matrix; in its absence these re-
flectances are usually set equal to zero. Since radiative-
transfer theories are based on the balance of fluxes, they
cannot account for interference phenomena such as coher-
ent reflectance. However, one could take it into account
by regarding the system as an effective medium and us-
ing the formulas derived here for the calculation of the in-
ternal and external reflectance. In this way we provide a
solid justification for earlier suggestions32 along these
lines.

Another consequence of our results is knowledge of the
existence of an effective magnetic permeability (different
from that in vacuum) in a system in which both the ma-
trix and the inclusions are nonmagnetic. Although this
idea has been put forward previously, the physical nature
of this magnetic response was not clear and had even
been regarded by some authors17 as a purely mathemati-
cal construct rather than the actual manifestation of a
physical phenomenon. In some respects our work can be
regarded as an extension of Bohren’s expressions in Ref.
16. One of our aims has also been to provide a clear
physical picture of the nature of this magnetic response.
To pursue that aim we have derived the optical coeffi-
cients by looking at the spatial distribution of the average
currents induced by the applied field, and we have con-
cluded that the magnetic response comes from the exis-
tence of induced closed currents. These average closed
currents should be currents induced in the spheres by the
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time variations of the magnetic field, thus yielding a true
magnetic response in the system. This mechanism of
magnetic response is very similar to that proposed by Am-
père in the early days of electrodynamics in which the
closed currents were supposed to be induced in the mol-
ecules. A modern version of this type of Amperian mag-
netism can be found in the microstructured materials re-
ported by Pendry et al.33 for the microwave region. In
these materials the closed currents are induced in small
metallic rings of millimetric size disposed in a periodic
structure and embedded in an insulating matrix. In this
way the authors build a magnetic-microstructured mate-
rial as a composite with nonmagnetic components. In a
certain manner, the mechanism behind the magnetic re-
sponse in these microstructured materials is analogous to
the one found here for a system of randomly located
spheres.

In conclusion although the approximation used in our
calculations is rather simple, and it can be shown to be
equivalent to the well-known effective-field
approximation,27 and although the structure of more so-
phisticated procedures has already been depicted,22,26 the
merits of our work are the following:

1. to derive expressions for the coherent-reflection co-
efficient of a half-space of a random system of Mie scat-
terers,

2. to derive explicit expressions for the effective opti-
cal coefficients and the reflection amplitude for a slab ge-
ometry and for an arbitrary angle of incidence, and

3. to establish that the magnetic response in a system
with nonmagnetic components is a true magnetic re-
sponse the result of induction of closed currents in the
spherical inclusions.

Extensions of our results to random systems of spheres
with a distribution either in size or in optical coefficients
is straightforward and requires an averaging of the
scattering-matrix elements over the distribution of sizes
and indices of refraction. Extending the present formu-
lation to more-densely-packed random systems by includ-
ing local-field corrections will be explored in the near fu-
ture.

APPENDIX A
In this appendix we derive the half-space reflection coef-
ficient by regarding the system as a semi-infinite stack of
thin slabs of width d separated by infinitesimal vacuum
gaps. Between the slabs (free space) the field is given by
right-propagating and left-propagating waves with wave
vectors ki and kr, respectively. The right-propagating
wave has the same polarization as the incident field (êi)
while the left-propagating wave is polarized as the re-
flected field from the half-space (êr). We now denote the
amplitude of the scattered fields divided by the amplitude
of the incident field times the width of the slab d as the
scattering coefficients a and b. Each thin slab of width d
is modeled as a 2D sheet (see Fig. 5). In the dilute ran-
dom system of spheres when kz

i d ! 1, we have for TE po-
larization [see Eqs. (15) and (16)]
a 5 2g
k

cos u i
S~0 !, (A1)

b 5 2g
k

cos u i
S1~p 2 2u i!. (A2)

For TM polarization, S1(p 2 2u i) in b is replaced by
S2(p 2 2u i). Let us assume that the 2D sheets are lo-
cated at z 5 zn 5 nd where n 5 0, 1, 2, 3 ... as shown in
Fig. 5. Our aim is to calculate the field between the
sheets, that is, at locations z 5 zn 5 (n 1 1/2)d. Let us
denote the field at these planes by En 5 E(z 5 zn) and
write

En 5 ~En
1êi 1 En

2êr!exp~ikx
i x 1 iky

i y !, (A3)

where En
1 and En

2 are scalar functions giving the ampli-
tudes and the z-dependence of the phase of the right- and
left-propagating waves, respectively. Now the field at
any plane is given by the incident field plus the scattered
fields from all the 2D sheets. It is not difficult to show
that the following equations hold:

En
1 5 En

i 1 (
m50

n

~bEm
2 1 aEm21

1 !exp@ikz
i ~zn 2 zm!#d,

(A4)

En
2 5 (

m5n

`

~bEm
1 1 aEm11

2 !exp@2ikz
i ~zn 2 zm11!#d,

(A5)

where En
i is the corresponding scalar function of the inci-

dent field evaluated at z 5 zn . Given that we are al-
ready assuming kz

i d ! 1 we can approximate the above
summations by integrals as

E1~z ! 5 Ei~z ! 1 E
0

z

@bE2~z8! 1 aE1~z8!#

3 exp@ikz
i ~z 2 z8!#dz8, (A6)

E2~z ! 5 E
z

`

@bE1~z8! 1 aE2~z8!#

3 exp@2ikz
i ~z 2 z8!#dz8. (A7)

Now for z . 0 one proposes the solution

E1~z ! 5 E0 exp~ikz
effz !, (A8)

E2~z ! 5 rhsE0 exp~ikz
effz !, (A9)

where kz
eff is the z-component of an effective propagation

wave vector and E0 is the amplitude of the incident wave.
Note that although microscopically the wave E2 travels to
the left, the phase of the envelope function travels to the
right. Since at z 5 0 the reflected wave must match the
wave traveling to the left (microscopically), the result is
that rhs is the half-space reflection coefficient. We may
substitute Eq. (A8) and Eq. (A9) into the above integral
equations and perform the integration. Assuming now
that kz

eff has a small nonzero imaginary part, we take
exp(ikz

effz) at z 5 ` equal to zero. In Eq. (A8), one must
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require that the incident field be canceled by one of the
terms obtained from the integration (Ewald–Oseen theo-
rem). From this we get

rhs 5
i~kz

eff 2 kz
i ! 2 a

b
, (A10)

and from the second equation, we get

rhs 5 2
b

i~kz
eff 1 kz

i ! 1 a
. (A11)

Equating these two equations and solving for kz
eff yields

kz
eff 5 @~kz

i !2 2 2ikz
i a 1 b2 2 a2#1/2, (A12)

which in turn may be used in either Eq. (A10) or Eq. (A11)
for the half-space reflection coefficient. These are the re-
sults of a wave-scattering approach.

As a check it is not difficult to show that for a homoge-
neous medium, if one uses the appropriate scattering co-
efficients for thin slabs of width d ! 1/kz

i , one recovers
the Fresnel reflection relations from either Eq. (A10) or
Eq. (A11). Now if one uses the scattering coefficients in
TE polarization for the dilute random system of spheres
given in Eqs. (A1) and (A2) and drops terms of second or-
der in g one gets

kz
eff 5 k@cos2 u i 1 2igS~0 !#1/2 (A13)

and

rhs
TE 5

gS1~p 2 2u i!/cos u i

i~cos u i 1 @cos2 u i 1 2igS~0 !#1/2! 2 g S~0 !/cos u i
,

(A14)
where kz

i 5 k cos ui was used. For TM polarization one
gets the same results but with S1(p 2 2u i) replaced by
S2(p 2 2u i). The effective index of refraction can be ob-
tained from Eq. (A13) by using kz

eff 5 k(neff
2 2 sin2 ui)

1/2.
One gets

neff 5 @1 1 2igS~0 !#1/2 ' 1 1 igS~0 !, (A15)

which coincides with the result obtained in Eq. (47) from
the effective-medium approach.
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12. P. Chýlek and V. Srivastava, ‘‘Dielectric constant of a com-
posite inhomogeneous medium,’’ Phys. Rev. B 27, 5098–
5106 (1983).

13. W. T. Doyle, ‘‘Optical properties of a suspension of metal
spheres,’’ Phys. Rev. B 39, 9852–9858 (1989).

14. A. Wachniewski and H. B. McClung, ‘‘New Approach to ef-
fective medium for composite materials: application to
electromagnetic properties,’’ Phys. Rev. B 33, 8053–8059
(1986).

15. C. A. Grimes and D. M. Grimes, ‘‘Permeability and permit-
tivity spectra of granular materials,’’ Phys. Rev. B 43,
10780–10788 (1991).

16. C. F. Bohren, ‘‘Applicability of effective medium theories to
problems of scattering and absorption by nonhomogeneous
atmospheric particles,’’ J. Atmos. Sci. 43, 468–475 (1986).
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