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Abstract

Based on a recent effective medium theory, applicable to the case of spherical particles of radius comparable or larger

than the wavelength, we compare the behavior of the effective optical coefficients of random systems of transparent-

dielectric and metallic particles as a function of the particles radius. We show numerical calculations and discuss the

appearance of negative imaginary parts in either the effective electric or magnetic susceptibility in a system of Mie

particles.
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1. Introduction

The description of the interaction of light with
systems composed by a collection of randomly
located inclusions embedded in an otherwise
homogeneous matrix is commonly done using
effective-medium theories. In these theories, the
system is replaced by an equivalent, or effective,
homogeneous medium, with effective optical
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coefficients, that is, an effective electric permittiv-
ity and an effective magnetic permeability. Up to
now, effective medium theories have been limited
to particles small compared to the wavelength of
the incident radiation. The best-known example of
such a theory is the one of Maxwell Garnett [1]
(MG). Some years ago, extended MG theories in
which the wavelength inside the particle can be
small, as compared to the dimensions of the
particles, have been proposed [2–6]. Basically, in
these theories, the static polarizability of the
inclusions that appears in the MG theory is
replaced by a dynamic one. However, they are
still limited to particles that are small with respect
to the wavelength of light within the matrix. We
recall that when the size of the particles is
comparable or larger that the wavelength of light
d.
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within the matrix (large particles), light gets
scattered by the randomly located inclusions, and
the electromagnetic field within the system can
then be split in two components: an average
component, sometimes called the coherent com-
ponent, and a diffuse component coming from the
random scattering. When the particles are small
with respect to the incident radiation, the power
carried by the diffuse component is so much
smaller that the one carried by the coherent
component, that its contribution is usually ne-
glected in the traditional treatment of continuum
electrodynamics. However, in the case of large
particles, the power carried by the diffuse compo-
nent can be comparable or even larger than the
one carried by the coherent component, and in this
case the concept of an effective medium is related
only to the behavior of the coherent component.
In recent works [7,8], we have derived expressions
for effective optical coefficients for a slab com-
posed of a dilute, random system of spherical
particles, which are valid when the radius of the
particles is comparable or larger than the wave-
length of the incident radiation. These expressions
are given in terms of the scattering properties of an
isolated sphere, limiting their validity to dilute
systems. An interesting effect that appears is that
an effective magnetic permeability different from
one appears even if the constituents of the system
are non-magnetic. Here we investigate how do the
relative effective electric and magnetic susceptibil-
ity of systems composed by collections of metallic
and dielectric particles compare to each other, as
the particle radius increases.
2. Effective optical coefficients

We consider a dilute random distribution of
spherical particles in vacuum (no matrix) con-
tained in a slab region parallel to the XY plane,
boundless in this plane, and constrained to 0o
zod: The system is in the presence of an incident
plane wave with an electric field given by Eiðr; tÞ ¼
E0 exp iðki � r� otÞ #ei; where r and t are the
position vector and time, respectively, o is the
radial frequency, #ei is a unit vector in the direction
of polarization, ki ¼ ki

y #ay þ ki
z #az is the incident
wave vector assumed to lie on the YZ plane, and
#ax; #ay; and #az are unit vectors along the axes of
Cartesian coordinates. The electric field satisfies
#ei � ki ¼ 0; and jkij ¼ k; where k ¼ o=c ¼ 2p=l is
the wave number in vacuum, l is the correspond-
ing wavelength and c is the speed of light. We will
be using the SI system of units.
It has been shown that the behavior of the

coherent component of the electromagnetic field
can be described by an effective medium with a
relative effective electrical permittivity *eeff � eeff=e0
and a relative effective magnetic permeability

*meff � meff=m0 that are polarization dependent,
and are given by [7,8]

*mTEeff ðyiÞ ¼ 1þ ig
Sð1Þ
� ðyiÞ
cos2 yi

; ð1Þ

*eTEeff ðyiÞ ¼ 1þ ig½2S
ð1Þ
þ ðyiÞ � Sð1Þ

� ðyiÞ tan2ðyiÞ
; ð2Þ

*eTMeff ðyiÞ ¼ 1þ ig
Sð2Þ
� ðyiÞ
cos2 yi

; ð3Þ

*mTMeff ðyiÞ ¼ 1þ ig½2S
ð2Þ
þ ðyiÞ � Sð2Þ

� ðyiÞ tan2ðyiÞ
; ð4Þ

where

S
ðmÞ
þ ðyiÞ � 1

2
½Sð0Þ þ Smðp� 2yiÞ
; ð5Þ

SðmÞ
� ðyiÞ � Sð0Þ � Smðp� 2yiÞ ð6Þ

with m ¼ 1 or 2; and

g � 3f =2x3; ð7Þ

where f is the volume filling fraction of the
spheres, and x ¼ ka; is the size parameter where
a is the particles radius. Here Sð0Þ is the forward
scattering amplitude and Smðp� 2yiÞ are the
diagonal components of the scattering matrix.
The effective optical coefficients can also be
written as diagonal tensors as shown in Ref. [8].
It is not difficult to show [7,8] that for small
particles, when the angular distribution of the
scattered field becomes isotropic, the above
effective optical coefficients coincide with the
low-density limit of the extended Maxwell–Garn-
net theories; and for normal incidence they also co-
incide with the expressions proposed by Bohren [9].
Note that the effective optical coefficients *eeff
and *meff depend on the angle of incidence and
on the polarization, and therefore, they are not
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unrestricted. They are restricted to the slab
geometry. These expressions are linear in g and
they are valid only in dilute systems. The effective

index of refraction is given by neff ðyiÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
*eðmÞ
eff ðyiÞ *m

ðmÞ
eff ðyiÞ

q
E1þ igSð0Þ; which is isotropic

and independent of polarization. The effective
electric susceptibility and effective magnetic sus-
ceptibility for either polarization, are given by

wEeff ¼ *eeff � 1; ð8Þ

wHeff ¼ *meff � 1: ð9Þ

Substituting the above effective optical coefficients
in Fresnel relations yield the coherent reflection
amplitude of a half-space [7,8]. With these expres-
sions, one can calculate the reflection and trans-
mission amplitudes of slabs of different thickness
composed by the inhomogeneous material.
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Fig. 1. Plot of the contribution of the particles to the (a) real

and (b) imaginary parts of the effective refractive index

normalized to the filling fraction of the spheres. The full curves

are for copper particles and dashed curve for TiO2 (rutile)

particles. The indexes of refraction used are nTiO2
C2:8 and

nCuC0:21þ i4:05; which correspond to red light.
3. Transparent dielectric versus metallic particles

We will consider random systems of spherical
particles made of TiO2 (rutile) and copper (Cu) in
vacuum. We will take a value of the index of
refraction corresponding to the red part of the
spectrum in both types of particles, this is
nTiO2

C2:8 and nCuC0:21þ i4:05; and we will take
these values as characterizing a typical transparent
dielectric and a metal. In Fig. 1 we show the
contribution from the particles to the real and
imaginary parts of the effective index of refraction
divided by the filling fraction of the spheres, as a
function of the relative size of the particle, that is,
as a function of a=l; where a is the radius of the
particle and l is the wavelength of radiation in
vacuum. We must recall that these results are valid
only for f51: As it was already pointed out in the
previous section, the effective optical coefficients
are functions of the angle of incidence and of
polarization. Here we show the dependence of the
effective electric and magnetic susceptibility, wEeff=f

and wHeff=f ; as a function of a=l for two angles of
incidence, yi ¼ 45� and yi ¼ 89�: Let us recall that
we have chosen the index of refraction of the
constituent materials at a fixed l in the red side of
the spectrum, thus our plots should be read as
functions of the radius. Plots of wEeff=f and wHeff=f as
a function of the angle of incidence are shown in
Ref. [7,10]. In Fig. 2 we plot the real and imaginary
parts of wEeff=f and wHeff=f in TE polarization as
a function of the relative size of the particles. In
Fig. 3 we present the same plots but for TM
polarization.
We make now some definite observations

related to the difference in behavior between the
systems of metallic and dielectric particles chosen
here.
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Fig. 2. Plots of the real and imaginary parts of the normalized electric and magnetic susceptibility for two different angles of incidence.

Full lines are for ReðweÞ=f for the case of TiO2 particles, dashed lines are for ReðwhÞ=f for the case of TiO2 particles, dotted lines are for

ReðweÞ=f for the case of Cu particles, and dash-dot lines are for ReðwhÞ=f for the case of Cu particles. Plots (a) and (b) are for yi ¼ 45�;
and (c) and (d) are for yi ¼ 89�: All plots are for TE polarization.
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1. The ripple, or resonance structure of the plots
shown in the figures above, is smoothed out in the
curves corresponding to metallic particles because
the mode resonances are much wider than those of
the transparent dielectric particles due to the large
imaginary part of the refractive index.
2. As it is well known, even if the real part of the

refractive index of a metal is less than one, the real
part of the effective refractive index of this system
of metallic particles is larger than one. This is due
to the appearance of new resonances in the
constrained spherical geometry.
3. The curves for the imaginary part behave

similarly for both types of particles, except for
the strong resonance structure in the curves
for rutile. Because of the resonance peaks, the
maxima in the curves for rutile particles are
larger than for the metallic particles. In the curves
for Cu, we can see that, except for the lack of
ripple structure, the scattering of light plays a
more important role than the absorption in
relation to the attenuation of the coherent wave.
Of course, for the diffuse light the scenario is very
different.
4. We see that in the limit a-0; the imaginary

part of the effective index of refraction remains
finite for the metallic particles system, and this is
due only to absorption.
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Fig. 3. Plots of the real and imaginary parts of the normalized electric and magnetic susceptibility for two different angles of incidence.

Full lines are for ReðweÞ=f for the case of TiO2 particles, dashed lines are for ReðwhÞ=f for the case of TiO2 particles, dotted lines are for

ReðweÞ=f for the case of Cu particles, and dash-dot lines are for ReðwhÞ=f for the case of Cu particles. Plots (a) and (b) are for yi ¼ 45�;
and (c) and (d) are for yi ¼ 89�: All plots are for TM polarization.
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5. In the case of small particles (for a=lt0:1),
we can see that the real part of the effective
magnetic susceptibility changes in opposite direc-
tion in one type of particles with respect to the
other type as a=l increases.
4. Energy balance

Perhaps, what is more striking in the previous
plots, is that the imaginary part of either effective
susceptibility takes negative values. In common
materials it is argued that the imaginary part of
both, the electric and magnetic susceptibility, must
be positive [11]. The reason is that the energy lost
is transformed into heat, and the second law of
thermodynamics require both imaginary parts to
be positive at all frequencies. However, this
argument does not apply in the present case,
because, part, or even all, of the energy lost from
the coherent wave is due to scattering, and thus, it
is transformed into diffuse radiation. Now, this
process does not involve heat generation, and
therefore, there is no inconsistency in having
negative imaginary parts of either wEeff or wHeff :
However, what now must be satisfied, is that the
sum of the imaginary parts of wEeff and wHeff must be
positive at all frequencies. This assures the
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attenuation of the coherent wave as it travels
through the random medium.
From Eqs. (1)–(4), we can see that,

Im½*eTEeff ðyiÞ þ *mTEeff ðyiÞ


¼ Im½*eTMeff ðyiÞ þ *mTMeff ðyiÞ
 ¼ 2gRe½Sð0Þ
: ð10Þ

Other way to understand this equation, is by
showing that in the dilute limit, neff ¼ 1þ 1

2
ðwEeff þ

wHeff Þ: Thus, Imð*eeff þ *meff Þ ¼ 2 Imðneff Þ: Then, if we
were to plot Im½wEeff þ wHeff 
 versus a=l from the
data in Figs. 2 and 3, we would obtain the curves
in Fig. 1a but multiplied by a factor of 2. Now, the
extinction cross section of a single particle is given
by Cext ¼ ð4p=k2ÞRe½Sð0Þ
 [12], and, as it is well
known, Cext determines the losses due to scattering
and absorption. Therefore, Re½Sð0Þ
; and thus
Im½wEeff þ wHeff 
; is always positive.
5. Discussion and conclusion

The observations made above with respect to
the behavior of the real part of wEeff and wHeff for
small particles (for a=lt0:1), can be understood
on physical grounds as follows. The physical
origin of the effective electric and magnetic
response can be explained as due to effective open
and closed currents in the effective medium [7].
Now, these effective open and closed currents must
arise as an average over the currents within the
particles. If the particles are non-magnetic, the
current lines inside the particles consists of induced
polarization or displacement currents, which are
proportional to the electric field lines through the
electric susceptibility of the particles, Jw ¼
�ioe0ðw0e þ iw00e ÞE: For transparent materials we
have that w00e ¼ 0: In metallic particles, we can
have, in addition, large conduction current lines
which are proportional to the electric field lines
through the complex conductivity of the particles,
Js ¼ ðs0 þ is00ÞE: Now, in the Drude model of the
conductivity [12] we have s00 > 0: Then, comparing
Jw and Js; we observe the following equivalences,
oe0w00e"s0; and oe0w0e"� s00: Thus, if the med-
ium is conducting, the real part of the conductivity
causes currents equivalent to those due to the
imaginary part of the electric susceptibility in a
lossy dielectric, whereas the imaginary part of the
conductivity causes currents opposite to those due
to the real part of the electric susceptibility of a
dielectric. In the case of particles not too large
ða=lt0:1Þ; we can see from Figs. 2 and 3 that the
real part of the effective electric susceptibility in
both systems of TiO2 and Cu particles is positive.
Therefore we must have that the microscopic
electric field lines (the electric field lines inside the
particles) leading to the effective open currents, are
on the average in opposite directions in metallic
and dielectric particles (they are out of phase by p).
This is because of the strong screening of the
external field by the surface charges on the
particle. However, the real parts of the magnetic
susceptibility for both types of particles are of
opposite sign in the case of small particles. This
means that the microscopic electric fields, leading
to the effective closed currents, are on the average,
in phase in both types of particles. These fields are
not strongly affected by the screening charges.
In summary, we have found that in general

terms the effective magnetic and electric suscept-
ibilities of dielectric and metallic Mie particles
show similar qualitative features with numerical
values in the same order of magnitude. The main
difference is the smoothing of the resonance, or
ripple structure in the curves for the metallic
particles. This means that in relation to the
behavior of the coherent wave, there is not a
strong difference between a system of metallic or
dielectric spherical particles. This does not mean,
however, that the ‘‘appearance’’ of the metallic
and dielectric systems of spheres are similar. The
appearance is more directly linked with the diffuse
light rather than to the coherent light. For diffuse
light, one would find strong qualitative difference
due to absorption. For non-spherical particles and
special ‘designs’ of particles, the behavior of the
effective optical coefficients may be very different
(see for example Ref. [13]). In addition, we argued
that the effective optical coefficients, remain
consistent with effective-medium theories, even if
the electric or magnetic susceptibilities take
negative values in some range of parameters. We
showed, that the sum of the imaginary parts is
always positive, leading to the attenuation of the
coherent field.
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