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We analyze the coherent reflection of a half-space of a composite material consisting of an homogeneous 

matrix with spherical inclusions. We pay attention to the case where the radius of the particles is compa-

rable to the wavelength of the incident radiation. We consider a simple model for the interface of the 

composite and present numerical calculations to illustrate the contribution of the embedded particles to 

the optical reflectance and discuss surface effects. 
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1 Introduction 

Composite and colloidal materials are becoming increasingly important in modern technology. These 

materials are designed and constructed to have physical properties that cannot be found in homogeneous 

materials. When two or more materials are mixed together at a micro- or nano-scale, the resulting com-

posite has physical properties that are different from those of the constituent materials. In particular, their 

optical properties might be substantially different. 

 Here we will consider a simple type of composite which consists of discrete spherical inclusions em-

bedded within an otherwise homogeneous matrix of a different material. When the size of the particles is 

small compared to the wavelength of the incident radiation, λ, one can use well-established approxima-

tions to calculate an effective index of refraction, such as the Maxwell Garnett or Bruggeman effective-

medium theories [1, 2]. When the wavelength of light within the inclusions is no longer very large com-

pared to the size of the particle, extended-effective medium theories are available [3]. Extended-medium 

theories include a dynamical correction to the calculation of the polarization and magnetization of the 

isolated particles providing effective optical coefficients, that is, an effective electrical permittivity and 

an effective magnetic permeability. Whenever these extended-effective-medium theories provide an 

adequate approximation to the effective optical coefficients, one may use them freely in the laws of con-

tinuous electrodynamics. In this case the effective-medium theory is called: unrestricted. For instance, 

one may use the Fresnel reflection coefficients with the resulting effective optical coefficients to calcu-

late the reflection of a plane wave from a flat surface of the composite. However when the size of the 

particles is comparable to the wavelength of incident radiation, extended-effective-medium theories are  
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no longer valid and it might not be possible to use, in the usual way, the effective-optical coefficients 

within the laws of continuous electrodynamics. In the case of large particles, one must solve the wave 

multiple-scattering problem and take configurational averages to calculate the macroscopic fields (also 

called average or coherent fields) and quantities such as their effective propagation wave vector or the 

reflection coefficient of a half space of the composite. 

 In previous works [4, 5] we have derived the reflection coefficient of the coherent field from a half-

space with a plane interface of a sparse, random, uniformly-distributed ensemble of spherical particles in 

vacuum by two different procedures. In Ref. [4] we first calculate the average scattered field from an 

ensemble of particles located at random within a thin slab using the single scattering approximation. 

Then we took account of multiple scattering by modelling the half space as a semi-infinite pile of thin 

slabs to determine the propagation wave vector of the average wave travelling between the thin slabs, as 

well as the reflected average field. We found that in order to describe correctly the reflection of light 

from a half-space with effective optical properties, the effective medium should have besides an effective 

electric permittivity an effective magnetic permeability. Furthermore both of these effective optical coef-

ficients turned out to depend on the polarization of the incident beam and on the angle of incidence. We 

reached the same conclusions and derive the same expressions for the optical effective coefficients in 

Ref. [5], where we start by setting up the multiple-scattering system of equations and solving for the 

average propagating and reflected fields using the effective-field approximation. Some examples were 

investigated numerically for particles in vacuum. One can show that when the radius of particles be-

comes smaller than the incident wavelength, the reflection coefficients found in Refs. [4, 5] reduce to the 

Fresnel reflection coefficients for an effective medium in which the effective magnetic permeability 

reduces to the one of vacuum. This means that in this limit the effective medium corresponding to a 

composite with nonmagnetic components is nonmagnetic, that is, it does not posses a dynamic effective 

magnetic response. Although this is true for small inclusions, what we have shown in Refs. [4, 5] is that 

this assessment is no longer true when the size of the inclusion is comparable to the wavelength of the 

incident radiation. 

 More accurate approximations to the effective propagation constant and half-space reflection coeffi-

cients from a random distribution of particles, based on multiple scattering theory and the so called 

quasi-crystalline approximation, have been put forth [6]. The quasi-crystalline approximation can be 

used to model dense ensembles of particles. However calculations with the quasi-crystalline approxima-

tion are quite more complicated. Our formulas are substantially simpler and allow us to investigate the 

main effects related to the coherent reflectance of a composite with spherical particles in a more trans-

parent way, although we are limited to a low concentration of particles. 

 In this paper we use the previously derived formulas to analyze and discuss the reflectance from a 

half-space of a composite material consisting of a homogeneous matrix with a sparse, randomly-

distributed ensemble of large spherical-particles, embedded within the matrix. First we review briefly the 

main results regarding the coherent reflectance of a half-space of a random ensemble of particles. Then 

we discuss the surface model for a composite material and then we present some numerical calculations 

of a system of particles with a high refractive index embedded within a polymeric-type matrix. Finally 

we present our conclusions. 

2 Reflectance from a half-space of spherical particles 

2.1 In vacuum 

In previous works, we have derived the coherent reflection coefficients for a plane wave incident at 

oblique angles on a half space of a sparse concentration of identical spherical particles with refractive 

index np, embedded in vacuum. The reflection coefficient of the coherent wave can be written as 
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where θi is the angle of incidence, Sm(θ) are the elements of the 2 × 2 amplitude scattering matrix of an 

isolated particle [7], m = 1 for TE polarization, and m = 2 for TM polarization. S(0) = S1(0) = S2(0) is the 

forward scattering amplitude, and 

 
3

3
,

2

f

x
≡γ  (2) 

where f = ρ4πa3/3 is the volume filling fraction of the spheres, ρ is the number density of spheres, a is 

the radius of the particles and x = ka is the size parameter. This reflection coefficient is a good approxi-

mation for all angles of incidence but for a low density of particles (in the range of a few percent of vol-

ume fraction, depending on radius of the particles). The region of validity of this approximation in the 

space of variables (θi, f, np) is not well known to date, but a simple test to estimate the confidence of the 

approximation has been described in Ref. [4]. The effective index of refraction of the coherent wave 

travelling within the ensemble of particles was found to be, to lowest order in γ, 

 eff 1 (0),n i S≈ + γ  (3) 

which is the same expression as the one derived by van de Hulst, long time ago [8]. As mentioned above, 

we have also found that if one wants to interpret the ensemble of particles as a half-space of an effective 

(homogeneous) medium, then one is forced to accept an effective magnetic permeability in addition to an 

effective electric permittivity in order to reproduce Eq. (1) from the Fresnel reflection coefficients. These 

effective optical coefficients depend on both, the state of polarization, and the angle of incidence. Never-

theless, it is not necessary to interpret the ensemble of particles as an effective medium. One can always 

work directly with the expression for the reflection coefficient given by Eq. (1) and with the expression 

for the effective index of refraction given by Eq. (3). 

2.2 In a matrix 

The results obtained for the reflection coefficient of a half space of particles in vacuum can be easily 

extended to a half space of particles embedded in a boundless homogeneous matrix with optical coeffi-

cients εm and µm. We assume that both coefficients εm and µm are real, so that there is no absorption 

within the matrix. Then one can evaluate the scattering amplitudes for a particle considering that it is 

surrounded by a homogeneous medium. To recall this fact we will denote the scattering amplitude ele-

ments for particles embedded in a medium other than vacuum by ( )mS′ θ . We should also replace k for 

nmk, with m m mn = ε µ  in the expression for γ. Again we will use a prime to remind us about this fact. 

Then we have, 
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 Thus, the half space reflection coefficient for a plane wave traveling within the matrix and incident at 

an angle θm to a half space of particles embedded in the same matrix, is written as 
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 The effective index of refraction to first order in γ  is, 

 eff [1 (0)]mn n i S′ ′≈ + γ . (6) 

3 Surface model for a half space of a composite material 

If we consider the coherent reflection of a plane wave travelling in a homogeneous medium of refractive 

index n0 that is incident at an angle θi on a half space of a composite material consisting of a homogene-

ous material with spherical inclusions, we must take care of modelling the surface carefully. We may 



phys. stat. sol. (b) 240, No. 3 (2003) / www.physica-status-solidi.com 483 

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

θ i

 θm
 g

z

x

Reflection plane of

the random ensem-

ble of particles

 n0

 neff = nm[1+iγ ́S´(0)]

 nm

 
 

have different situations. For instance, the particles may reach the surface of the homogeneous matrix 

and be partially outside the matrix, or the particles may be repelled from the surface leaving a slab of 

homogeneous matrix between the vacuum and the half space of the composite. Also, the surface of the 

matrix may have some roughness which will also affect the coherent reflection coefficient. All these 

effects may have a strong influence on the coherent reflectance from a composite that might be compara-

ble or might be even larger than the contribution from the embedded particles. Therefore, in general, one 

must specify the surface conditions in order to have a reliable model for the coherent reflectance from a 

composite material. 

 Here we will assume that all the particles are completely embedded within the matrix. Thus, the mini-

mum possible distance from the centre of the particles to the surface of the matrix is one particle radius. 

We will then model the system as a three-layered system as shown in Fig. 1. That is, we consider the 

composite material as a slab of homogeneous matrix of width g in contact with a half-space of homoge-

neous matrix with particles embedded in it. We must recall that the reflection coefficient of a half space 

of particles in Eq. (5) assumes that the centre of the particles are uniformly distributed on one side of a 

mathematical plane. This mathematical plane may be regarded as the reflection plane of the half space of 

particles, that is, as the surface of an effective homogeneous medium. 

 The relation between the angle of incidence to the composite, θi, and the angle of incidence to the half 

space of particles embedded in the matrix, θm, is given by Snell’s law at the interface outside-medium/ 

matrix, that is, n0 sin θi = nm sin θm. The coherent reflection coefficient from a half-space of the compos-

ite matrix material, r, is obtained by calculating the reflection from the system: outside-medium/ 

homogeneous-matrix/composite-matrix. This corresponds to a thin slab of homogeneous matrix on a 

composite-matrix substrate. The reflection coefficient is 
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where rm is the reflection coefficient of the outside-medium / homogeneous-matrix interface, and g is the 

width of the homogeneous-matrix slab (i.e., the distance to the reflection plane from the half space of 

particles). The latter equation may be modified without much difficulty to include, when important, the 

effect of roughness on the matrix interface by using a suitable model (see for example Ref. [9]), and g 

may be adjusted to accommodate on the boundary conditions some of the specific features of the density 

of particles. If the matrix interface is considered flat, then rm is calculated with the Fresnel reflection 

coefficients. As already said, we will consider that the matrix has a real index of refraction and use 

Eq. (5) in Eq. (7). In general, when the particle radius is not small compared to the wavelength, the oscil-

lating phase term: ( )2 2 2
0exp 2 sinm m iikn n n gθ− , will have a noticeable effect and will be mixed with 

the behaviour of hsr′  which is mostly dependent on the particles properties. 

 In this paper we will consider only the case of external reflection, that is when n0 < nm. An example 

could be n0 = 1 (air) and nm = 1.33–1.6 (water, glass, or some kind of polymer). In this case, the refrac-

Fig. 1 Geometry of the problem. 
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tion angle θm never approaches grazing, and hsr′  is always very small for a sparse concentration of parti-

cles. We will also restrict our analysis to the case of a non-magnetic matrix, that is, µm/µ0 = 1. In this 

case, there is a Brewster’s angle only for TM polarization. At an angle of incidence equal to Brewster’s 

angle of the outside-medium/matrix interface we have that TM 0mr =  and 

 TM TM exp (2 cos )hs m mr r ikn gθ′= . 

The reflectance is given by R = |r|2. Thus at the Brewster’s angle of the matrix interface we have that 
TM TM

hsR R′=  is due to the presence of the particles alone. On the other hand, with the exception of angles 

near Brewster’s angle, corresponding to the n0/nm interface in TM polarization, we can expand r as 

 ( ) ( )2 2 2 2 2 2
0 0exp 2 sin 1 exp 2 sinm hs m i m hs m ir r r ik n n g r r ik n n gθ θ   ′ ′+ − − −

      
�   

   ( )2 2 2 2
0(1 ) exp 2 sinm m hs m ir r r ik n n gθ′+ − −� . (8) 

The reflectance is given by 

 ( )2 2 2 2 2 2
0(1 ) 2 (1 ) Re exp 2 sin .m m hs m m hs m iR R r R r r r ik n n gθ ′ ′= + − + − −

  
 (9) 

For a composite with a sparse distribution of particles, | | 1hsr′ � , we may neglect the second term on the 

right hand side, which is proportional to 
2| |hs hsR r′ ′=  and keep only the third term on the right hand side 

which is proportional to hsr′ . Thus, having the particles embedded in a matrix may yield a larger contribu-

tion to the coherent reflection from the particles than when the particles are in vacuum, because in the 

reflectance there is now a linear term in hsr′ , which for a dilute system is much larger than 
2| |hsr′ . Now, for 

grazing incidence rm → 1, thus the factor, 
2(1 )mr− , that appears in the second and third terms on the right 

hand side of Eq. (9) goes to zero. Therefore, the relative importance of the contribution to the reflection 

from the particles decreases as the angle of incidence increases towards grazing incidence. 

4 Numerical results 

We will restrict our calculations to a specific system in which the particles are non-magnetic, with a real 

refractive index np = 2.8 and embedded in a homogeneous, non-magnetic (µm = 1) matrix with a real refrac-

tive index nm = 1.45. These values of refractive index are close to those in a typical white paint. We will 

also consider a volume filling fraction of spheres of f = 0.1. It is always interesting to compare our results 

with an heuristic model obtained by substituting the effective refractive index given by Eq. (6) in the Fres-

nel reflection coefficient and ignoring any possible magnetic effect. That is, by considering that the half 

space of particles behaves as an effective medium equivalent to an ordinary, homogeneous, non-magnetic, 

material where ε
eff

 = 
2
effn . We will refer to this heuristic approximation as the isotropic approximation. For a 

meaningful comparison, the isotropic model should also consider the surface model discussed above. Thus, 

the isotropic approximation consists of using Eq. (7) with hsr′  calculated with the Fresnel coefficients upon 

assuming ε
eff

 = 
2
effn . One can show that as the particle radius decreases, the isotropic approximation coin-

cides with our reflection formula. Thus, the difference between our results and those of the isotropic ap-

proximation will give us an idea of the magnetic effects inherent to our approach. 

4.1 Shift of Brewster’s angle 

First, let us consider the effect of the embedded particles on the value of the Brewster’s angle of the 

composite material. In Fig. 2 we plot the reflectance for TM polarization versus the angle of incidence in 

the vicinity of Brewster’s angle of the matrix interface for different particle radii. We assume that the 

particles can barely touch the matrix interface, that is we used g = a. We show the reflectance curves for 

the matrix alone and for the composite using our formulas and the isotropic approximation. We can ap- 
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Fig. 2 TM reflectance versus angle of incidence about Brewster’s angle of the matrix interface for dif-

ferent particle’s radius, a) a/λ = 0.1, b) a/λ = 0.2, c) a/λ = 0.4, and d) a/λ = 0.8. The full curve is the re-

flectance for a homogeneous matrix, the dashed curve is the reflectance of the composite system for g = a, 

and the dotted line is for the isotropic model also with g = a. 

 

preciate that the contribution of the particles shift the Brewster’s angle from it’s value for the matrix 

alone. The isotropic approximation predicts a different shift and overestimates the contribution of the 

particles to the reflectance. These plots also show that the contribution of the particles to the reflectance 

decreases as the particle radius increases, while keeping the filling fraction constant. 

 Surface roughness of the matrix interface would also result in a shift of the Brewster’s angle [9]. Thus, 

if surface roughness is important, the shift of the Brewster’s angle will have a contribution from both, the 

interface roughness and the embedded particles in the composite. Detailed modelling of the surface 

would be required in order to discern one effect from the other. 

4.2 Contribution of the particles to the reflectance 

In Fig. 3 we plot the fraction of the reflectance that is due to the presence of the particles as a function of 

the angle of incidence for two different values of the radius of the particles, a/λ = 0.2 and a/λ = 0.4, and 

for the case g = a. Fig. 3a is for TE polarization and Fig. 3b is for TM polarization. We can appreciate 

that the fraction of the reflectance due to the presence of the particles is larger for smaller angles of inci-

dence. As already said, this fact can be understood from inspection of Eq. (9). In the graphs of Fig. 3 we 

also plot the curves predicted by the isotropic approximation and we can see that they are different in 

magnitude and even in sign for some angles of incidence. Thus, the isotropic approximation predicts 

already qualitatively erroneous results for particles as small as a/λ = 0.2. The plots in Fig. 3b reach a 

value of one at Brewster’s angle of the matrix/air interface. This does not mean, however, that the contri- 
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Fig. 3 Fraction of the reflectance due to the random ensemble of particles for two different particle  

radius, a/λ = 0.2 and a/λ = 0.4, a) for TE polarization and b) for TM polarization. All curves are for g = a. 
 
bution to the reflectance coming from the particles is large, in fact, in the present example it is very 

small, as it can be seen in Fig. 2. 

4.3 The surface parameter g 

Now, we may inquire how strong is the effect of the surface features on the contribution of the particles 

to the reflectance. In Fig. 4 we plot the contribution of the particles to the total reflectance for three dif- 
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Fig. 4 Fraction of the reflectance due to the particles for different values of the g parameter, g = a, 

2a, and 3a and for two values of the particle’s radius. a) a/λ = 0.2 and b) a/λ = 0.4 for TE polarization; 

c) a/λ = 0.2 and d) a/λ = 0.4 for TM polarization. 
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Fig. 5 Differential polarized reflectance [(R
TE

 – R
TM

)/( R
TE

 + R
TM

)] for particles of radius a/λ = 0.3 and 

for different contrast between the outside medium and the matrix. a) n0 = 1.00, b) n0 = 1.35, c) n0 = 1.40 

and d) n0 = 1.44. Curves were generated with g = a. 

 

ferent values of g. The minimum value of g is a when one assumes that all particles are completely em-

bedded within the matrix. However, due to surface conditions one may expect a transition region with 

lower or higher density of particles. Fig. 4 shows that the contribution of the particles to the reflectance 

changes significantly for most angles of incidence as g increases. This is an example of how the surface 

conditions affect the coherent reflectance in a composite. 

4.4 Differential reflectance 

One may be interested in obtaining information about the particles within the matrix from reflectance 

measurements. We have already shown in Ref. [5], that differential measurements of polarized reflec-

tance, specifically TE TM TE TM( ) /( )R R R R− + , of a half space of particles as a function of the angle of 

incidence can be qualitatively very different from measurements of half space of an ordinary homogene-

ous material. However, when the particles are embedded in a matrix, the contribution of the matrix inter-

face to the differential measurements may be so large as to mask completely the effect of the particles on 

the differential measurements. This, of course, will be a function of the contrast between the external 

medium and the matrix. In Fig. 5 we plot the differential reflectance, TE TM TE TM( ) /( )R R R R− + , versus 

the angle of incidence for different values of the refractive index of the external medium and for particles 

of radius a/λ = 0.3, and g = a. We also plot the curves for the isotropic approximation and for the matrix/ 

air interface. For air as the external medium, n0 = 1, the contribution of the particles is strongly masked 
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by the matrix interface response. As the contrast of the external medium and the matrix is reduced, the 

differential curve for the composite material starts to differ strongly from that of the matrix alone. In 

Fig. 5c we see that, for a difference in refractive index between the matrix and the external medium of 

0.1, the effect of the particles is already very noticeable and the differential curve of the composite mate-

rial is qualitatively very different than that of the matrix alone. We can also see that the isotropic ap-

proximation differs qualitatively from the curve of the matrix alone. In the isotropic approximation this 

difference is due solely to the geometry of the surface model where we assume a slab of homogenous 

matrix of width g = a between the matrix interface and the reflection plane of the particle ensemble. In 

Fig. 5d the difference between the refractive index of the external medium and that of the matrix is 0.01, 

and the effect of the matrix interface is now negligible on the differential measurement. 

 Figure 5 indicates that it may not be difficult to obtain information from the particles in a composite 

by matching the refractive index of the external medium to that of the matrix. In practice this should be 

possible by immersing the composite in a liquid mixture and adjusting its refractive index to be close to 

that of the matrix. Also, in this case the effect of surface roughness, if there is, will be reduced consid-

erably. 

5 Conclusions and discussion 

We have analyzed the coherent reflectance of a composite material consisting of large spherical particles 

embedded in a homogeneous matrix. By coherent reflectance we mean the reflectance of the coherent or 

average field obtained from a configurational average, and by large particles we mean particles with 

radius comparable to the wavelength of radiation. In an experiment, the coherent reflectance would be 

measured as if one were dealing with an ordinary homogeneous material, that is, regarding the composite 

as an effective medium. In some cases, it may be necessary to subtract the contribution of the diffuse 

fields to the measurements. 

 In this paper we focused our attention on the surface model of a composite material. Physical restric-

tions in the surface region may have a strong influence on the coherent reflectance of a composite mate-

rial. We considered a surface model in which the particles are completely surrounded by the matrix ma-

terial. When the particles are located at random, except close to the surface, we can model the surface as 

slab of homogeneous matrix in-between the external medium and an effective medium consisting of the 

random ensemble of particles embedded in the matrix. The width of the slab should be specified based 

on a physical model of the interaction of the particles with the matrix interface. 

 In the graphs presented above, we assumed a flat matrix interface. In practice, when one deals with 

solid composites, the effect of the surface roughness may often be comparable or larger than the effect of 

the embedded particles. In our model of the surface of the composite, the surface roughness could be 

easily incorporated. 

 We showed that the presence of the embedded particles shifts the Brewster’s angle from its value for 

the matrix/air interface. From this shift one cannot obtain the effective index of refraction in the usual 

way, that is, by assuming the isotropic approximation. Instead, one must compare the experimental data 

with the results of the reflection model presented here and the half-space reflection in Eq. (5). From this 

comparison one may obtain the values of the scattering matrix elements of the particles and the density 

of particles. 

 We showed that the width of the homogeneous layer on the surface model can have a strong influence 

on the contribution of the particles to the total reflectance of the composite. Although here we were lim-

ited to our specific surface model, the latter conclusion tells us that, in general, one must model with 

great care the surface of a composite in order to be able to relate reflectance measurements to the parti-

cles in the composite. Of course, as the contrast between refractive indexes of the external medium and 

the matrix material is lowered, the relative importance of the contribution of the particles to the reflec-

tance increases and the surface model becomes less determinant. We found in our example, that a con-

trast in refractive index of about 0.1 is enough to unmask the contribution of the particles from the reflec-

tance of the matrix interface in differential polarized reflectance measurements. This result indicates the 



phys. stat. sol. (b) 240, No. 3 (2003) / www.physica-status-solidi.com 489 

© 2003 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

possibility of performing experimental measurements of random ensemble of particles embedded in a 

solid matrix by roughly matching the refractive index of the external medium (e.g., with a liquid) with 

that of the matrix. 

 All calculations presented in this paper were for a volume filling fraction of 0.1. According to the 

confidence test suggested in Ref. [4], the plots presented in Sect. 4 may incur in relatively large errors for 

some angles of incidence and particle’s radius. In the worst case, we expect the error to be of about 20% 

and only within limited intervals of the angle of incidence. Thus, the qualitative behaviour of the curves 

presented here is correct and the observations made from them are correct. 

 Finally, in some cases, one may need to consider the possibility of having particles partly embedded in 

the matrix and partly on the outside medium. One way of taking this possibility into account may be to 

consider the protruding particles on the surface as surface roughness. Nevertheless, experimental results 

on actual physical samples are very much needed. 
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