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Abstract. A model for calculating the spatial distribution of light flux
scattered from multilayered inhomogeneous media, with index of refraction
mismatches between layers, is described. By separating volume and surface
properties, a compact matrix formulation is constructed for the solution of this
problem, based on the application of the Discrete Ordinate Method to solve the
Radiative Transfer Equation. Results are compared with those obtained with
other techniques in order to evaluate the accuracy and efficiency of the proposed
method. An optimization of the numerical procedure has been achieved,
allowing application of the method to systems with a large number of slabs.

1. Introduction
Knowledge of the optical properties of inhomogeneous media that scatter and

absorb light is often required in the solution of many problems in diverse areas of
science and technology. A quite useful procedure for the calculation of these
properties is based on the solution of the Radiative Transfer Equation (RTE),
which was advanced during the 1960s within the context of astrophysical problems
[1]. Since then, several numerical procedures to solve this equation have been
developed, and currently they are successfully applied in a wide range of systems
of interest in different disciplines [2–7].

The RTE is an integro-differential equation commonly solved using the
Discrete Ordinate Method (DOM). The origin of this method dates back to the
‘Two Flux’ approximation of the early 1900s [8–10], and since then methods based
on this approximation have been developed and widely applied [11–16]. Because of
its conceptual simplicity, the RTE has become one of the most popular techniques
in the heat transfer, atmospheric physics, and coatings communities, for solving
problems of radiative transfer involving multiple scattering. This technique has
been generally applied to the treatment of monolayered scattering media, although
they have also been extended to multilayered slabs with no mismatch in the
index of refraction between layers [17, 18]. This means that the different layers
of scatterers are all embedded in a surrounding medium with the same index
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of refraction. Liou et al. [19] also suggested a semi-analytical method to treat a
two-layered slab in which the embedding matrices of each slab have different
indices of refraction, but this approach is restricted to the case of isotropic angular
distribution of the scattered light in both layers.

In this paper, we examine radiative transfer through stratified films of scatter-
ing media with plane interfaces. The embedding material of each medium has a
different index of refraction, and the reflectance and transmittance at each interface
are described by Fresnel equations. We construct a compact matrix procedure
capable of dealing with the scattering properties of a system of multilayered slabs
composed of different scattering layers with index of refraction mismatch at each
interface. The structure of this matrix treatment is analogous to non-scattering
multilayer calculations [20], in so far as one relates the outgoing flux directly with
the incident one.

The second section of the paper is devoted to the description of the DOM, and
in the third section we introduce the boundary conditions and explain also how one
can deal with the overflow problems often mentioned when solving RTE. In the
fourth section we derive expressions for the transfer matrix Q, which accounts in
the stratified system for the presence of both the scattering media (absorption and
scattering) and the interfaces (reflectance and transmittance). In the fifth section,
we first make a comparison of the predictions of our model with predictions
obtained using a Monte Carlo method [21] and a 4-flux model [22], as applied to
two configurations that illustrate the Rayleigh- and Mie-scattering regimes. We
then give one example of a two-layered slab calculation, and finally, one example of
a calculation on a system composed of five layers. The last section is devoted to
conclusions.

2. N-flux model
The RTE is a macroscopic description of radiation transfer and stems from a

balance of the energy flux on a volume element located within the scattering
system. RTE describes the spatial evolution of the flux intensity I(r,u, t), at a
point r, in a direction u, at time t. The properties of the scattering medium are
then totally specified by three parameters: the absorption and scattering coeffi-
cients, defined per unit volume, and the phase function.

Within the framework of this paper, the properties of the medium are
considered in the steady-state regime, that is, the boundary conditions do not
depend upon time. But let us first describe the geometry of the system. The
scattering medium is bounded by parallel planes which extend over a region whose
size is very large compared to its thickness, thus the boundary conditions and the
formulas here derived do not depend upon the position along the planes. These
two restrictions allow the effective removal of two dimensions, leaving only the
linear coordinate perpendicular to the boundary planes (z), as a position para-
meter, and the polar and azimuthal angles (�,�). Furthermore, the medium is
assumed to be passive, although this restriction can be easily removed if emission
or fluorescence are introduced into the equations as linear effects. However, the
most important limitation in the following equations is the neglect of polarization.
It has been shown that this approximation causes the largest errors when the
optical thickness of the scattering medium is small [23]. Schulz et al. [24] propose a
solution to account for polarization in multilayered slabs, in the very restricted case
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where there is no refractive index mismatch in the system. Kim et al. [25] suggest
another treatment based on decomposition of the specific intensity into Chebyshev
polynomials. Our matrix technique can also be extended to account for light
polarization by introducing, as in the references mentioned above, Mueller
matrices to express the emerging flux as Stokes vectors.

Figure 1 shows the coordinate system used to set up the RTE: the space is
divided into N conical solid angles corresponding to N channels (N must be even).
The forward direction corresponds to channel numbers i belonging to [1, N/2],
and the backward direction to i belonging to [N/2þ 1, N]. Light traveling between
�i�1 and �i is defined as belonging to channel i.

The specific intensity I, and the flux F are related by F ¼ Icos�d!, where � is
the angle between the detection direction u and the normal to the boundary planes
and d! is the unit solid angle. However, the flux in a channel with a large solid
angle has to be calculated from the specific intensity by an integration of the form

F ¼

ð
I cos �

d!

2�
,

(see figure 2), and the integration extends over all angles in the channel. Here we
shall only work with flux.

θ1
θ 2

ω0 ω1
ω 2

θ0

z

θ n

Figure 1. Space discretization for N-flux model.
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2.1. Discrete radiative transfer equation and general solution
Taking into account the previous assumptions, we propose a new formulation

for the calculation of the reflected and transmitted flux through a multislab system
composed of non-absorbing materials containing spherical absorbing particles.
This treatment is inspired by Mudgett’s paper [14] in relation to the space
discretization and to the scattered-flux formulation.

The evolution of a light flux F in a scattering medium is governed by the RTE,
which can be expressed for the steady state, as follows:

@Fðz,uÞ

@z|fflfflfflffl{zfflfflfflffl}
flux variation
in element dz

¼ �
kext

cos �
Fðz,uÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

loss by scattering
and absorption
in direction u

þ ksca

ð
4�

Fðz,u0Þ

cos �0
pðu:u0Þ

4�
d!0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gain by scattering
from all directions u0

towards direction u

ð1Þ

where u is the detection direction, and kext and ksca the extinction and the
scattering coefficients, respectively, defined per unit length. F(z,u) denotes the
total flux at the position z in the medium, and scattered in direction u. The phase
function p(u.u0)/4� represents the probability that radiation, incident in direction
u0, is scattered in direction u. If we now assume that the volume fraction of
particles is small, so one can regard the scattering process as a series of indepen-
dent events (independent scattering), the phase function in equation (1) will
correspond to the phase function of an independent scatterer. In the case of

θ i

θ j

φ j

i

ω j

ωi

Fj

ψ

ω i

2π
dφi

φ

Figure 2. Definition of a channel.
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spherical scatterers and if light polarization is neglected, the phase function will
depend only on the scattering angle.

Let us now assume that the system is isotropic and it is illuminated by a
collimated flux F0 incident at an angle �0 with respect to the normal to the
boundary planes. The expression for the collimated flux at z is then
Fcoll(z) ¼ F0exp(�kextz/cos�0). But in the following treatment we will consider,
for simplicity, only normal illumination. If this were not the case, it can be shown
[1] that one can decouple the � and � contributions by expressing the flux as a
Fourier series over the azimuthal angle �. One then obtains a set of decoupled
equations with the same form as equation (1).

The numerical procedure to solve equation (1) starts by the numerical evalu-
ation of the integral using the DOM [1], which assumes a space discretization in
cos � (Gauss discretization). The number of channels that have to be taken into
account to evaluate this integral with good accuracy depends on the anisotropy of
the phase function. This will be discussed in more detail in section 5. For a system
discretized into N channels, the differential equations describing the radiative
transfer problem can be written as:

dFi

dz
¼

XN
j¼1

sijFj, i � N=2

�
dFi

dz
¼

XN
j¼1

sijFj, i > N=2

8>>>><
>>>>:

ð2Þ

where Fi is the monochromatic flux in channel i, sij the coefficient describing
scattering from channel j into channel i, and z the perpendicular distance to the
boundary planes. For j ¼ i the coefficient sjj corresponds to the total scattering
from channel j into all other channels plus the attenuation due to absorption
in channel j, namely the total extinction. The coefficients sij form a matrix
with dimension N � N, and equation (2) can then be written in a more compact
form as,

dF

dz
¼ SF; Sij ¼ sij if i � N=2; Sij ¼ �sij if i > N=2, ð3Þ

where S is the matrix notation for Sij in which the terms on the diagonal represent
loss by scattering and absorption while terms outside the diagonal represent gain
by scattering. Here F is a vector [F1,F2, . . .,FN]

t, where each component repre-
sents the magnitude of the flux in a given channel and the superscript t means
transpose. By using the unit matrix I, equation (3) can be rewritten as

dF

dz
¼ SF , S� I

d

dz

� �
F ¼ 0: ð4Þ

The general solution of this equation is

Fi ¼
XN
�¼1

Ai�C� expð��zÞ , i 2 ½1,N� ð5Þ

where �� are the eigenvalues of the scattering matrix S. Ai� is the matrix
constructed with the eigenvectors corresponding to the eigenvalues ��. For a
given S matrix, its eigenvalues appear in pairs (�a,�b), with �b ¼ � �a. The
spectrum of �� is related to different scattering lengths ��

�1 of the eigenmodes
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describing the scattering fluctuations in the medium [26]. Each eigenmode is
described by the corresponding eigenvector associated with the eigenvalue ��, thus
�� can be physically interpreted as the inverse of a penetration length of the
associated eigenmode. The coefficients C� are weighting coefficients that are
determined using the boundary conditions at the interfaces.

2.2. The scattering matrix
Since we assume the medium to be isotropic, the intensity of scattered

light depends only on the cosine of the scattering angle C (figure 2),
ui.uj ¼ cosC ¼ cos�i cos�jþ sin�i sin�j cos(�i��j). The amount of flux scattered
into an element solid angle d!i is then given by

d2Fi ¼ �
kscaFjdz

cos�i

pðui:ujÞd!i

4�
ð6Þ

We now need to calculate the flux scattered from a beam travelling in a
direction ~uui into channel i (defined by its angle �i, width d�i, and solid angle !i)
in a solid angle delimited by �i and �iþd�i and equal to d!i ¼ !id�i/2� (figure 2).
The total flux scattered into the ith channel is obtained by integrating over all
azimuthal angles �i:

dFi ¼ �
kscaFj!idz

8�2 cos �i

ð2�
0

pðui:ujÞd�i ð7Þ

where

ð2�
0

pðui:ujÞd�i ¼ 2�
X�max

‘¼0

a‘P‘ðcos �iÞP‘ðcos �jÞ � ~ppð�i, �jÞ ð8Þ

�max is the number of terms that have to be taken into account in the polynomial
expansion whose evaluation will be discussed later in this section. Here a‘ are the
projections of the phase function into the basis of orthogonal Legendre poly-
nomials P‘, that is,

a‘ ¼ ‘þ
1

2

� � ð1
�1

pðuÞP‘ðuÞdu ð9Þ

Once the integration over �i is done, one can express elements sij as follows:

sij ¼
ksca
cos �i
�� �� ~ppð�i, �jÞ!i, i 6¼ j

sjj ¼ �
kabs
cos �j
�� ��� PN

m¼1
m6¼j

smj ¼ �
kext

cos �j
�� ��

8>>><
>>>:

ð10Þ

The first term of sjj accounts for the contribution of absorption, while the second
accounts for the decrease in channel j due to scattering into all other channels.
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Off-axis illumination. When the illumination is off-axis, the symmetry around the
z-axis is broken. In this case to solve equation (1) one must, as mentioned above,
decouple the variables � and � by decomposing the flux F and the phase function p
into Fourier series as,

Fð�j,�jÞ ¼
X�max

m¼0

Fmð�jÞ cosðm�jÞ

and

pðui:ujÞ ¼
X�max

m¼0

ð2� �0mÞp
mð�i, �jÞ cos½mð�i � �jÞ�,

where pm(�i, �j) is expanded into Legendre functions, that is,

pmð�i, �jÞ ¼
X�max

‘¼m

a‘
ð‘�mÞ!

ð‘þmÞ!
Pm
‘ ðcos �iÞP

m
‘ ðcos �jÞ:

Equation (1) becomes then a set of �maxþ 1 equations in which the unknowns are
now the vectors Fmð�jÞ, j 2 ½1,N�:

Scattering and absorption coefficients and the phase function: Mie theory. The
phase function p(ui.uj)/4� represents the probability that radiation incident in the
direction defined by (�j,�j), is scattered into the direction (�i,�i). If we now assume
that the volume fraction of particles is small, so the independent-scattering
approximation holds, the phase function will simply be the ratio between the
differential scattering cross-section and the total scattering cross-section [27] of an
isolated scatterer, that is

pðui:ujÞ

4�
¼

1

Csca

@Csca

@!
ðui:ujÞ: ð11Þ

In the case of spherical particles, the differential and total scattering cross-
sections of an isolated sphere can be obtained from Mie theory [27]. Furthermore,
since in the independent-scattering approximation the absorption, scattering and
extinction coefficients kabs, ksca and kext, can be expressed in terms of the corre-
sponding cross-sections Cabs, Csca and Cext, as kabs ¼ npCabs, ksca ¼ npCsca,
kext ¼ npCext, one can also use Mie theory to determine them. Here np is the
number of scatterers by unit volume. For the case of concentrated samples in
which dependent scattering might play a role, one can calculate differential and
total cross sections by using more sophisticated theories (see, for instance, [28,
29]). More generally, as the formulation of equation (1) depends only on the
scattering parameters (ksca, kext, p(u.u

0)), one can easily introduce adequate theories
for the calculation of these terms with no harm to the generality of the method.

To compute the infinite polynomial expansion that appears in equation (8), one
has to choose a finite number of terms (�max) to evaluate, which defines the
accuracy of the evaluation of the phase function. The number of terms to be taken
into account for an accurate numerical evaluation of the phase function is related to
nmax, the highest order chosen in the computation of the series expansion for the
scattered field Esca, as given by Mie theory, pðui:ujÞ / Escaðui:ujÞ

�� ��2. Wiscombe’s
criterion [30] provides an accuracy lower than 10�14 for the calculation of Esca, so
taking �max ¼ 2 � nmax is generally sufficient.
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3. Matrix formulation for the scattering medium
3.1. The integration constants C�

The weighting coefficients C� in equation (5) depend on the boundary con-
ditions at the interfaces, and are usually determined at this step of the procedure
[17–19], by introducing the reflectance and the transmittance factors of the
interfaces. In order to totally decouple the behaviour of the scattering medium
from its interfaces, we prefer to express this coefficients in terms of ‘incident flux’,
that is the angular distribution of the scattering flux at z ¼ 0þ and at z ¼ Z�. Let
Finc denote the incident flux vector:

Finc
i ¼ Fið0

þÞ i � N=2, Finc
i ¼ FiðZ

�Þ i > N=2 ð12Þ

and A the matrix defined as follows:

Ai� ¼ Ai� i � N=2, Ai� ¼ Ai� expð��ZÞ i > N=2 ð13Þ

The coefficients C� can then be expressed as

� 2 1,N½ � C� ¼
XN
i¼1

ai�F
inc
i , ð14Þ

where ai� are the elements of the inverse of matrix A. In this way, the interfaces
and the scattering media will be treated separately (see section 4).

3.2. Flux evolution
Expressions (13) and (14) allow us to directly express the flux vector at any

arbitrary depth z as a function of the incident flux represented by a vector Finc :

FðzÞ ¼ GðzÞA�1|fflfflfflfflffl{zfflfflfflfflffl}
MðzÞ

Finc whereGi�ðzÞ ¼ Ai� expð��zÞ

MðzÞ ¼
maðzÞ mbðzÞ

mcðzÞ mdðzÞ

� �
ð15Þ

M(z) is the matrix characterizing the evolution of the angular distribution of the
flux along its propagation direction in the medium. The subindices a, b, c, and d
split the matrix in blocks of size N/2 � N/2 corresponding to the splitting of the
channels in forward and backward directions. The matrix M(z) is the basis of our
matrix representation. In figure 3 we illustrate the spatial evolution of the angular
distribution of a light flux across a scattering medium with total thickness of
200 mm, filled with non-absorbing particles of size parameter 6.3 and a filling
fraction of 0.1%. The host medium is air, the incidence beam is a plane wave
traveling in the forward direction (� ¼ 0) along z>0, and we have taken N ¼ 50
channels. From the bottom to the top, at increasing depth within the medium, one
notices the isotropic distribution of the flux, i.e. an attenuation of the structures in
the flux angular distribution. For example, at z ¼ 1 mm there is a forward flux still
concentrated mainly around � ¼ 0, while the backward flux is more isotropic due
to the backscattered process coming from most of the film ahead. At the middle of
the film (z ¼ 100 mm), the flux is more isotropic in both the forward a backward
directions, while at the upper end, z ¼ 200 mm, there is a rather isotropic distri-
bution in the forward direction, and there is no flux in the backward direction
because there is no material ahead that could provide a backscattering process.
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Figure 3. Example of evolution of the scattering profile for a non-absorbing scattering
medium: size parameter 6.3, filling fraction 0.1%, thickness of medium 200 mm, host
medium is air.
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Overflows. One notices that in the expression for M(Z), A and G(Z) contain
elements proportional to exp(��Z). These terms cause overflows when ��Z� 1.
Bearing in mind the pair behaviour of �� mentioned above, we propose the
following solution to this problem. A can be expressed as the matrix product of
� and � defined as follows:

� if �� � 0, �i� ¼ Ai�expð � ��ZÞ and ��� ¼ exp ð��ZÞ

� else, �i� ¼ Ai� and ��� ¼ 1:

� is diagonal and one can thus calculate A�1 as ��1 ��1
¼ ��1 ��1, without any risk

of overflow because ��1 and ��1 only contain negative exponents. We follow the
same process for G(z):

� if �� � 0, �i�ðzÞ ¼ Ai� and ���ðzÞ ¼ expð��zÞ

� else, �i�ðzÞ ¼ Ai� expð��zÞ and ���ðzÞ ¼ 1:

One then can calculate M(z) ¼ �(z)�(z)��1� where none of these matrices present
numerical overflows except possibly �. But there are no problems at z ¼ 0 and
z ¼ Z because M(0) ¼ A��1 and M(Z) ¼ �(z)��1. Therefore, at this step of the
solution, the only matrix to be inverted is �.

4. The interfaces
We start by relating the outgoing flux from the slab of a scattering medium

with total thickness Z, to the incident fluxes F(0þ) and F(Z�). By outgoing flux
we mean the flux that is about to leave the system just before the boundaries. The
outgoing flux vector can be related to the incident fluxes via a matrix M, as

M ¼
maðZÞ mbðZÞ

mcð0Þ mdð0Þ

� �
ð16Þ

where M(z) is the matrix derived in equation (15). Now we will take into account
the role of the interfaces at z ¼ 0 and z ¼ Z, with figure 4 illustrating our synthetic
notation. The reflectance and transmittance from medium i to medium j are
denoted by Rij and Tij, respectively, the forward flux at z ¼ 0þ and z ¼ Z� are
denoted by Fa and Fb, respectively, while the backward flux by Fc and Fd. The
outgoing flux vector is then written as [Fb, Fc ]

t. First we define a new matrix, P,
derived from M, that relates the flux on the right-hand side of the slab to the ones
on the left-hand side, and is given by,

Fb

Fd

� �
¼ P

Fa

Fc

� �
where

Pa ¼ Ma �MbM
�1
d Mc

Pb ¼ MbM
�1
d

Pc ¼ �M
�1
d Mc

Pd ¼ M
�1
d

8>><
>>: ð17Þ

The conditions at the first interface, z ¼ 0, can be written as follows:

Fa ¼ T12Fincð0Þ þ R21Fc

Foutð0Þ ¼ T21Fc þ R12Fincð0Þ

�
ð18Þ
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where Fout denotes the flux that is leaving the system after crossing the boundaries.
We can thus express the flux on the right-hand side of the first interface, as a
function of the flux on the left-hand side, via a matrix 	12,

Fa

Fc

� �
¼

	12ðaÞ 	12ðbÞ

	12ðcÞ 	12ðdÞ

� �
Fincð0Þ

Foutð0Þ

� �
where

	12ðaÞ ¼ T12 � R21T
�1
21 R12

	12ðbÞ ¼ R21T
�1
21

	12ðcÞ ¼ �T�1
21 R12

	12ðdÞ ¼ T�1
21

8>>><
>>>:

ð19Þ

In the same way, we can define 	23 at the second interface, as

FoutðZÞ

FincðZÞ

� �
¼

	23ðaÞ 	23ðbÞ

	23ðcÞ 	23ðdÞ

� �
Fb

Fd

� �
where

	23ðaÞ ¼ T23 � R32T
�1
32 R23

	23ðbÞ ¼ R32T
�1
32

	23ðcÞ ¼ �T�1
32 R23

	23ðdÞ ¼ T�1
32

8>>><
>>>:

ð20Þ

Combining equations (19) and (20), we can write:

FoutðZÞ

FincðZÞ

� �
¼ b23 Pb12

zffl}|ffl{Q

Fincð0Þ
Foutð0Þ

� �
ð21Þ

We thus have a simple expression for the angular distribution of the flux at one
side of the slab as a function of the angular distribution of the flux at the other side.

Fa

0 

Fc

Finc(0) 

Fout(0) 

[T12] 

[T21] 

[R12] [R21] 

Fb

Z 

Fd
Finc(Z)

Fout(Z)

[ ] 

[T23] 

[T23] 

[R23] [R32] 

Medium 1 
Medium 2 

Medium 3 

Figure 4. Simplified notation for matrix treatment.
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This expression is easily generalized to a multilayer composed of p slabs (see
figure 5), as

FoutðZtotÞ

FincðZtotÞ

� �
¼ bpþ1,pþ2 QpQp�1 � � �Q2Q1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qp�slabs

Fincð0Þ
Foutð0Þ

� �
ð22Þ

This expression is formally similar to the one used in the treatment light transport
in non-scattering multilayers [20]. Reflectance matrices Rpq are anti-diagonal: a
flux incident in channel i will be reflected into channel N� i. The structure of
transmittance matrices Tpq is more complicated due to the possible occurrence of a
critical angle �critq (nq sin �

crit
q ¼ np, if nq>np) above which the transmittance is zero

and the reflectance is one. Such ill-conditioned matrices are difficult to invert. To
avoid this problem, another space discretization has to be defined. We regard the
refraction cone as the region where flux can emerge from the slab, and discretize it
into N channels. Another space discretization (N0 channels) is made for solid
angles not belonging to the refraction cone. In that region, we take into account the
possibility that a quantity of flux scattered in that zone will be scattered into the
refraction cone. The problem when dealing with the multilayered problem is that
the dimensions of the matrices must be properly defined. Indeed, as the spatial
discretization in each layer is different, we have to deal with rectangular matrices.

5. Results
First, we compare our predictions on two scattering slabs with very different

scattering behaviours (Rayleigh and Mie scattering), with those obtained using a
Monte Carlo method [21] and using the 4-flux theory [22]. Then, we couple these
two media and calculate, using the matrix procedure described above, the optical
properties of this bi-slab under normal incidence and � ¼ 0.55 mm. Finally, as
another example of the worth of the proposed matrix procedure, we calculate
the optical properties of a system composed of five layers: two scattering media
(latex beads suspensions) bounded by silica plates, under normal incidence and
� ¼ 0.589 mm.

5.1. Slabs with very different scattering behaviour
The input parameters that characterize each medium are given in table 1.

Medium 1, with spherical scatterers of size parameter 0.76, has a relatively
isotropic phase function (figure 6). In contrast, the phase function of medium 2,
with spherical scatterers of size parameter 17.1, presents a strong anisotropy, with

[ß12]

[P1] [P2]
[Pp]

[ß23] [ß34] [ßpp+1] [ßpp+2]

………

n1 n2 n3 np+1 np+2

Q1 Q2
Qp

Figure 5. Multilayer representation.
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predominant scattering in the forward direction and the presence of scattering
lobes.

The discretization of the phase function depends on its structure. A phase
function with a lot of structure requires a finer discretization, in order to preserve
the relevant information in the phase function structure. The number N of
channels must be larger than the number of Legendre polynomials �max (equation
(8)) required in the expansion of the phase function, in our case we have �max ¼ 10
for medium 1 and �max ¼ 44 for medium 2. Here we have chosen a space
discretization with N ¼ 20 for medium 1 and with N ¼ 100 for medium 2. The
scattering and extinction coefficients calculated by Mie theory are given in table 1.
In table 2, we display a comparison between the optical properties (collimated and
total reflectance and transmittance coefficients) obtained by the proposed method
and the results obtained using the Monte Carlo method and using 4-flux theory.

Monte Carlo calculation. The Monte Carlo method provides a statistical evalua-
tion of integrals for quantities obeying statistical laws. The multiple scattering
process of light within a scattering medium can also be regarded as the flux of
particles, conventionally called ‘photons’, each of them with a certain probability
to disappear between depth z and depth zþdz. The probability dP for a photon to
disappear in dz because of absorption and scattering processes is defined as

Figure 6. Phase functions for medium 1 (- - - -) and medium 2 (——).

Table 1. Input parameters for medium 1 and 2 and scattering parameters calculated by
Mie theory

Medium 1 Medium 2

Spheres radius (mm) 0.05 1.0
Index of refraction of the spheres 1.5þ i 10�4 2.7þ i 10�4

Size parameter ka 0.76 17.1
Scatterers volume fraction (%) 1 0.1
Scattering coefficient ksca (mm

�1) 7.57 � 10�4 1.62 � 10�3

Extinction coefficient kext (mm
�1) 7.80 � 10�4 1.63 � 10�3

Medium thickness (mm) 1000 1000
Index of refraction of the host medium 1.333 1.5
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Table 2. Collimated transmittance (Tc) and reflectance (Rc); Scattered transmittance (Ts) and reflectance (Rs), Absorption (A) obtained with
Monte Carlo, 4-flux and N-flux models

Tc Rc Ts Rs A

Monte Carlo Medium 1 Values 0.4406 0.0244 0.2567 0.2122 0.0661
�

1 – – 2.0 � 10�3 2.2 � 10�3 3.9 � 10�3

Medium 2 Values 0.181 0.0415 0.5238 0.2336 0.0201
�

1 – – 1.4 � 10�3 2.1 � 10�3 7.1 � 10�3

4-flux Medium 1 " ¼ 1.488(2) 0.4401 0.0245 0.2474 0.2297 0.0674
Medium 2 " ¼ 1.282(2) 0.1811 0.0415 0.5334 0.2345 0.0098

N-flux Medium 1 20 channels 0.4401 0.0245 0.256 0.2169 0.0625
Medium 2 100 channels 0.1811 0.0414 0.5237 0.2338 0.0201

@(NF-MC) (3) Medium 1 – – – �7 � 10�4 5 � 10�3
�4 � 10�3

Medium 2 – – – �1 � 10�4
�2 � 10�4 3 � 10�5

1Accuracy.
2Assymetry parameter in 4-flux theory.
3Difference between values given by N-flux (NF) and Monte Carlo (MC) calculation.
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dP ¼ kabsdz and dP ¼ kscadz, respectively, while the probability that a photon will

be scattered in the direction u0 with a solid angle d!0 is given by Pðu:u0Þd!0=4�. A
balance of the energy flux made on the number of particles per unit volume leads

to the RTE, written for the number of ‘photons’ per unit volume. Under these

circumstances there is a full equivalence between these particles and flux, and the

integral in the RTE can be statistically evaluated by the Monte Carlo method.

The disadvantage of this method is that the results present statistical fluctua-

tions and the accuracy of the final results (reflection, transmission and absorption)

is only proportional to N
�1=2

, where N is the number of particles. To get rid of

this problem, one has to work with a large number of particles, leading to

calculation times that can sometimes be extremely long. The results obtained by

a Monte Carlo calculation presented in table 2, have been computed for N ¼ 106,

providing an accuracy of the order of 10�3. The difference between the Monte

Carlo simulations and our results are between 10�5 and 2 � 10�3. Thus we

conclude that the proposed model provides results with very much the same

accuracy as those obtained using the Monte Carlo method. We present the angular

distribution of the scattering flux as a function of the scattering angle in figure 7(a)

and (b); angles between 0	 and 90	 correspond to the transmitted flux. We can see

Figure 7. Comparison between N-flux method (- - - - -) and Monte Carlo method (——):
angular distribution of fluxes for medium 1 (a) and medium 2 (b).
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that the angular distribution obtained with our procedure is also very close to
the one obtained using the Monte Carlo method. As mentioned above, the
Monte Carlo method is very time consuming. We performed N-flux and Monte
Carlo computations with a Macintosh G4 computer (256 Mb RAM, 400 MHz):
for medium 1, the N-flux method required 0.82 s and the Monte Carlo method
required 62 s; for medium 2, 42 s for N-flux and 87 s for Monte Carlo.

4-flux calculation. The 4-flux theory is a simplified method for solving the RTE.
The quantities considered in this theory are the collimated reflected and trans-
mitted fluxes, obeying the Beer–Lambert law, and the forward and backward
scattered fluxes, integrated over all directions in each hemisphere. After this
integration is performed, the equations still depend on an asymmetry coefficient
", which depends on the angular distribution of scattered quantities, and is given
by, " ¼

Ð 1
0 Fðz, �Þdðcos �Þ=

Ð 1
0 Fðz, �Þ cos �dðcos �Þ. With this method, it is not poss-

ible to determine " because this requires F(z, �) whose calculation is beyond the
scope of the method itself. Usually " has to be chosen arbitrarily, between 2, for an
isotropic distribution of scattered flux, and 1 for a very anisotropic angular
distribution. Nevertheless, taking into account our previous calculations of
F(z, �), we determined values of " of 1.488 for medium 1 and 1.282 for medium 2.

The results given by the 4-flux method are less accurate than ours: we can
estimate an accuracy of the order of 10�2 for 4-flux, while it was 10�3 for the
N-flux method when compared with the Monte Carlo calculation. This lack of
accuracy can be attributed to the fact that scattering properties are taken into
account only in an average way:

(i) locally, the asymmetry of the phase function is taken into account via the
so-called asymmetry parameter g (integration of the phase function weight-
ed by cos�)

(ii) at the macroscopic scale, the asymmetry of the flux angular distribution is
taken into account via the asymmetry coefficient ".

In both cases, this leads to an overestimation of the total scattered flux.

5.2. A two-layered slab
We now present an example that illustrates the use of the multislab model.

Here we construct a bi-slab composed of the two scattering layers described above.
Figure 8 displays the angular distribution of the scattered flux by unit solid angle
for each layer. The backward direction (reflectance) corresponds to angles belong-
ing to interval [�/2,��/2]. When these two layers are put together, one notices
(figure 9) that the presence of medium 1 (Rayleigh scattering behaviour) modifies
the shape of the scattering profile (full curve) very little. The thickness of medium
2 (Mie scattering behaviour) has to be reduced by a factor of 100 (dashed curve) to
attenuate the dominant Mie behaviour enough to enter the Rayleigh regime.

5.3. A multislab composed of five layers
In this section we present an example of a calculation more related to exper-

iments of practical interest. A sketch of the system is shown in figure 10: it is
composed of a Rayleigh-type suspension of latex beads (medium 2) between two
silica plates (medium 1 and 3) put together with a Mie-type suspension of
latex beads (medium 4) between two silica plates (medium 3 and 5). The input
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parameters for each layer are summarized in table 3. The phase functions of
the two scattering media are shown in figure 10. Due to the different number
of structures showing up in the phase function of medium 4 (�max ¼ 53), the
discretization number N is taken equal to 120.

In figure 11 we present results for the optical properties of this system: the
transmittance clearly exhibits a Mie type behaviour (more appreciable in linear
scale) while the reflectance behaves like the first medium crossed by the incident
light, i.e. Rayleigh dominant. Because of the strong scattering anisotropy of
medium 4 and of its thickness, which is ten times weaker than that of medium
2, the detection of the Mie type medium is essentially visible in transmittance, and
the backscattering effects produced by medium 4 are destroyed in the propagation
through medium 2.

6. Conclusions
In this paper we have developed a matrix procedure for solving the problem of

light scattering by multilayered media. By separating the volume-scattering
behaviour from the properties of interfaces, we have achieved a complete matrix
solution with the same structure as the one already known for the case of non-
scattering media. We have used the Discrete Ordinate Method to solve the
Radiative Transfer Equation (N-flux), and we have compared the results obtained
for a single slab with other methods (Monte Carlo and 4-flux calculations),
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Figure 8. Fluxes by unit solid angle for medium 1 (——) and medium 2 (——).
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Figure 9. Fluxes by unit solid angle: medium 1 and 2 coupled.
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Figure 10. Phase functions for medium 2 (- - - -) and medium 4 (——).
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yielding a proof of the accuracy of the N-flux method. We then built a matrix
procedure to extend the N-Flux method to a multislab system by introducing
suitable scattering laws for volume and interfaces. A comparison with another
semi-analytical method [31] has been handled and is to be published. This
simplified formulation allows the separate treatment of the volume and the
interfaces. This separation becomes very convenient when one wants to extend
the treatment to non-spherical particles (volume) or to include the roughness of
the interfaces. Even if there are few matrix inversions, this method is very fast in so
far as the dimensions of the matrices generated are related to the particles size
parameter and in general do not need to be very large. Consequently this method
can be introduced in a fit algorithm to recover, by comparison with optical
measurements, geometric characteristics of the scattering medium (number of
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Figure 11. Fluxes by unit solid angle for the multislab.

Table 3. Input parameters for the multilayered slab

Medium 1 Medium 2 Medium 3 Medium 4 Medium 5

Spheres radius (mm) – 0.05 – 1.5 –
Spheres index – 1.5905 – 1.5905 –
Medium thickness (mm) 1500 1000 2700 100 1100
Medium index 1.458 1.333 1.458 1.333 1.458
Scatterers volume fraction (%) – 1.5 – 4.0 –
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slabs, thickness of each slab) and the nature of its constituents (relative index of
refraction and shape of the scatterers, size parameter, volume fraction). This
method can be used for a large set of fundamental (modelling of atmospheres,
interstellar particles), industrial applications (paints, papers, cosmetics), and also
biomedical diagnosis (modelling of light scattered by human skin).

References
[1] CHANDRASEKAR, S., 1960, Radiative Transfer (New York: Dover Publications).
[2] KOURGANOV, V., 1963, Basic Methods in Transfer Problems (Oxford: Oxford

University Press).
[3] LAGENDIIJK, A., and VAN TIGGELEN, B. A., 1996, Phys. Rep., 270, 2145.
[4] YODH, A., and CHANCE, B., 1995, Phys. Today, 48(3), 34.
[5] TSANG, L., 1985, Theory of Microwave Remote Sensing, Wiley series in remote sensing

(New York: John Wiley & Sons).
[6] KUGA, Y., ULABY, F. T., HADDOCK, T. F., and DEROO, R., 1991, Radio Sci., 26, 329.
[7] FUNG, A. K., 1994, Microwave Scattering and Emission in Random Media (Artech

House).
[8] SCHUSTER, A., 1905, Astrophys. J., 12, 12.
[9] SCHWARZSCHILD, K., 1906, Ges. Wiss. Gottingen. Nachr., Math-Phys. Klasse, 1, 41.

[10] SCHWARZSCHILD, K., 1914, K. Berl. Ber. Math. Phys. Kl., 1183.
[11] WICK, G. C., 1943, Z. Phys., 120.
[12] LATHROP, K. D., and CARLSON, B. G., 1965, Los Alamos Scientific Laboratory

Report, 3186.
[13] FIVELAND, W. A., 1987, Trans. ASME, J. Heat Transfer, 109, 809.
[14] MUDGETT, P., and RICHARDS, L. W., 1971, Appl. Opt., 10, 1485.
[15] STAMNES, K., and SWANSON, R., 1981, J. Atmos. Sci., 38, 387.
[16] JIN, ZH., and STAMNES, K., 1994, Appl. Opt., 33, 431.
[17] STAMNES, K., and CONKLIN, P., 1984, J. Quant. Spectrosc. Radiat. Transfer, 31, 273.
[18] STAMNES, K., 1986, Rev. Geophys., 24, 299.
[19] LIOU, B.-T., and WU, C.-Y., 1996, Heat Mass Transfer, 32, 103.
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