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Abstract. We propose and analyse a simple method to measure simultaneously
the real and imaginary parts of the effective refractive index of a turbid suspension
of particles. The method is based on measurements of the angle of refraction and
transmittance of a laser beam that traverses a hollow glass prism filled with a
colloidal suspension. We provide a comprehensive assessment of the method. It
can offer high sensitivity while still being simple to interpret. We present results
of experiments using an optically turbid suspension of polystyrene particles and
compare them with theoretical predictions. We also report experimental evidence
showing that the refractive behaviour of the diffuse component of light coming
from a suspension depends on the volume fraction of the colloidal particles.
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1. Introduction

When light is transmitted through a colloidal suspension, it is useful and meaningful to split
its description into a coherent and a diffuse component. The coherent component corresponds
to the average of the optical fields over all possible allowed configurations of the random
system, whereas the diffuse component represents the fluctuations of the optical fields from
their average. It can be shown that, in a dilute system, the coherent component travels through
the inhomogeneous medium with an effective wavevector [1]–[15]. The effective propagation
constant, that is, the magnitude of the effective wavevector, depends on the shape, size, density
and the refractive index of the particles as well as on the statistical properties of their spatial
distribution. If the size of the particles is very small compared to the wavelength of the incident
radiation, the diffuse component carrying such a small amount of power can be neglected, and
the whole description of light propagation can be given only in terms of the coherent component.
However, if the size of the particles is comparable to the wavelength of the incident radiation,
the power carried by the diffuse component becomes important, giving rise to a turbid ap-
pearance of the system. Nevertheless, in these circumstances, one can still define an effective
refractive index in a turbid medium by considering the effective propagation constant of the
coherent wave only. This effective refractive index is in general complex and can be used to
determine the phase lag and attenuation of the coherent wave as it propagates through the random
medium. The attenuation, related to its imaginary part, accounts not only for the absorption due
to the particles but also for the scattering that is responsible for the transformation of the coherent
component into the diffuse one.

The measurement of the effective refractive index of a colloidal suspension has been studied
experimentally over the past 40 years [16]–[24]. In these works, most of the measurements
have been done using critical-angle refractometers of the Abbe type. The problem with these
measurements is that one has to assign a critical angle to a prism–colloid interface. However, the
reflectance near the critical angle in a prism–colloid interface does not have a sharp transition
to total internal reflection. This implies that in order to extract the effective refractive index
from the measurements, one requires a model for the reflectance as a function of the angle of
incidence in terms of the effective optical properties of the system. The model that has been
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consistently used is the relation between the reflection amplitude and the effective refractive
index given by the Fresnel’s relations for a non-magnetic system. Nevertheless, the persistent
inconsistencies obtained from the use of this model [20] have prevented its use as an accurate
tool for the inversion of reflectance data.

However, it has been now recognized [1]–[4] that the reflectance of a half-space of a random
system of large particles does not follow the expressions for the reflection amplitude given by
Fresnel’s relations, and an alternative model has now been proposed. This model [1]–[4] has been
derived using the full multiple-scattering theory given by Foldy–Lax equations in the effective-
field approximation. When trying to identify the effective optical parameters from this model,
it was concluded that, although the propagation of the coherent component could be described
adequately by an effective index of refraction, the reflection from a planar interface required
not only an effective electric permittivity but also an effective magnetic susceptibility. Explicit
expressions for these quantities are now under investigation. From all this we can only conclude
that further analysis is needed to validate the procedure for the determination of the effective
refractive index through measurements of reflection near the critical angle, and an attractive and
suitable alternative for its determination is to avoid any type of reflection measurements.

Here we propose a simple method to measure simultaneously the real and imaginary parts
of the effective refractive index of a dilute suspension of particles, through measurements of
the angle of refraction and transmittance of a laser beam that traverses a hollow glass prism
filled with a colloidal suspension. One would expect that the coherent wave at a plane interface
of a turbid medium should refract according to the usual laws for homogeneous media with an
index of refraction corresponding to the propagation of the coherent wave through the bulk of the
medium. Therefore, by measuring the angle of refraction of the coherent wave at a plane interface,
one may determine the effective refractive index of a turbid medium. In practice, due to turbidity,
such a simple measurement will be limited to dilute systems. Despite its simplicity and apparent
naivety, one has to recognize that there are not many other alternatives and these measurements
are not only interesting but also highly sensitive and potentially useful. Besides providing a
direct experimental verification of the laws of refraction of the coherent wave according to a
well-defined effective refractive index and Snell’s law, they provide a determination of the real
part of the effective refractive index without the intricate support of a multiple-scattering theory.
Furthermore, one could use these measurements, together with a specific model for the refractive
index, to determine some parameters of the particles in suspension, such as their particle-size
distribution and refractive index.

There are a few recent reports in the literature of measurements of the real part of the
effective propagation constant from the determination of the phase lag of an electromagnetic
wave transmitted through a turbid medium [8, 9]. As a matter of fact, in one of the earlier works
in the subject [18], the direct measurement of the angle of refraction of light at the interface of a
colloidal medium was reported using what the authors called the colloid-lens method.Apparently
this method has been ignored over the years, and to our knowledge no thorough assessment of
the method has been published to date.

The method we propose here is a modified version of the colloid-lens method. The way
we measure the angle of refraction is, however, more accurate than in [18]. We present results
of experiments using an optically turbid suspension, which consists of polystyrene spherical
particles suspended in deionized water. The diameter of the particles is comparable to the
wavelength of the laser beam. We compare our results with the angle of refraction predicted
by the appropriate form of Snell’s law that takes account of the geometry of our experimental
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design and by regarding that the effective refractive index is complex and given by van de Hulst’s
formula.

A related issue to the refraction of the coherent wave is whether diffuse light entering or
leaving an inhomogeneous medium through a plane interface with a homogeneous medium must
take also into account an effective refractive index. The behaviour of the diffuse component of
light within an inhomogeneous medium is commonly treated using radiative-transfer theories.
In these theories, one argues that diffuse light can be regarded as an incoherent superposition of
many coherent waves travelling in many different directions. The behaviour of diffuse light at
the interfaces of the inhomogeneous system is commonly treated by using Fresnel’s reflection
coefficients for each coherent component of diffuse light. In this treatment, the interface is
regarded as consisting of an external medium with an index of refraction n1 but the proper choice
for the index of refraction of the inhomogeneous medium is by and large never well justified
(see for example [25, 26]). Thus, the question arises whether one should consider an effective
refractive index in calculating the reflectance of the coherent components of the diffuse light
instead of the refractive index of the matrix alone (see for example [27]). Since we have already
questioned above the use of an effective refractive index in Fresnel’s relations for the reflection
amplitudes, we could ask a weaker question: does the angle of refraction of each coherent
component of the diffuse light coming from a colloidal system change when the concentration
of colloidal particles is changed? In this paper we report, as a corollary, a direct experimental
observation of the dependence of the refraction properties of diffuse light at a plane interface on
the concentration of colloidal particles.Although our results in this respect cannot be quantitative,
because this would require a validated treatment for the reflectance at the planar interface of a
colloidal system, our results rule out the description of the colloidal system in terms of the index
of refraction of the matrix alone. Furthermore, we believe that our results assess the need to
improve the treatment of the boundary conditions usually used in radiative-transfer models.

The present paper is organized as follows. In section 2, we present the theoretical background
and analysis of the proposed method to determine the effective refractive index of a colloidal
suspension. Here we derive the appropriate form of Snell’s law that takes account of the geometry
used in our measurements. In section 3, we describe the experimental work we performed to
measure the angle of refraction and discuss the experimental result. In section 4, we report a
direct experimental observation of the dependence of the transmission properties of diffuse light
through a plane interface on the concentration of colloidal particles. Finally, in section 5 we
present our conclusions.

2. Theory

2.1. The effective refractive index of a dilute particle suspension

An expression for the effective refractive index in a turbid medium consisting of a sparse
concentration of scatterers has been derived by several authors [1]–[7]. For a suspension of
identical scatterers, it can be written in the following way:

neff = nm[1 + iγS(0)], (1)

where nm is the refractive index of the medium surrounding the particles, which we may refer
to as the ‘matrix’, and S(0) is the forward scattering amplitude of a particle embedded in the
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matrix. In the case of spherical particles, S(0) can be calculated from Mie theory in terms of the
index of refraction of the particles and the matrix, and the radius of the particles. If the particles
are not spherical and their orientation is random, then S(0) should be averaged over all possible
orientations of the particles. Here γ is given by

γ = 3

2

f

x3
, (2)

where f is the volume fraction occupied by the spheres, x = kma is known as the size parameter,
km is the wave number within the matrix and a is the radius of the particles. In general, when the
particles are not small compared to the wavelength, neff is a complex number, neff = n1 + iκ1,
even though the particles are not absorbing. In this case, as mentioned above, the extinction
coefficient,κ1, for the coherent light as it propagates through the turbid medium is due to scattering
and light is transferred from the coherent component to the diffuse field. The attenuation of the
intensity of the coherent component as a function of the distance travelled through the turbid
medium is

I = I0 exp [−2k0κ1z] = I0 exp [−αz], (3)

where k0 is the wave number in vacuum and α is the attenuation coefficient. This is Beer–
Lambert’s law and the attenuation coefficient is related to the extinction cross-section Cext by
α = ηCext, where η is the particle number density of colloidal particles. Then, using the optical
theorem, it is not difficult to show that

Cext = 4π

k2
0

Re [S(0)] . (4)

Possibly the simplest, although not the earliest, derivation of equation (1) is due to van de Hulst
in [7], and some authors refer to this expression for the effective refractive index as van de Hulst’s
formula. Thus, the attenuation of the coherent light as it traverses a turbid medium provides a
simple measurement of the imaginary part of the effective refractive index. However, as already
said, the real part of the effective refractive index requires an additional measurement such as
the angle of refraction of the coherent wave at a plane interface. When a plane wave is incident
on a plane interface between a random inhomogeneous medium and a homogeneous medium at
an oblique angle of incidence, the mere existence of boundary conditions for the fields requires
that the tangential component of the wavevector of the coherent light to the plane of the interface
should be continuous [1, 2]. This continuity relation is used to derive the appropriate form of
Snell’s law for the coherent wave that is suitable for the geometry used in our measurements.
This can be cast in terms of the angles of incidence and refraction and a corresponding ‘operative’
index of refraction that depends on the angle of incidence as well as on the real and imaginary
parts of the effective refractive index of the colloid system. However, if the imaginary part of
the effective refractive index is very small, the usual Snell’s law can be used with the real part
of the refractive index and with a real angle of refraction with negligible error, as will be shown
below.

2.2. The colloid prism method

The arrangement we use in this work is shown in figure 1(a). It consists of a hollow prism made of
thin glass slabs and a Gaussian laser beam. The method we propose consists of filling the hollow
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Figure 1. (a) Geometry of the system; and (b) primed and unprimed system of
reference.

prism with the colloid and transmitting the laser beam through the prism near its apex. Since the
coherent component of light will decay exponentially within the colloid, the optical path inside
the medium cannot be large compared to the inverse of the attenuation coefficient, α. The laser
is incident on the prism normally to the entrance interface as shown in figure 1(a) and since
water is non-absorbing at the wavelength of the incident radiation, the beam refracts as it exits
the prism according to the usual Snell’s law. Now, if we add particles to the water by injecting a
small volume of a colloidal medium and stir it to homogenize the mixture, the laser beam refracts
further depending on the type and amount of the added particles. The additional refraction can
be determined by measuring the displacement of the laser beam far away from the prism. The
distance that the laser’s spot moves sideways is proportional to the distance to the plane of
measurement and to the increment of the angle of refraction due to the presence of the particles.
The measurement of the lateral displacement of the laser’s spot can be accurately performed by
scanning a razor blade across the beam spot and measuring the transmitted optical power with a
photodetector as a function of the blade’s position. The scan is performed perpendicular to the
refracted beam axis and along the direction of refraction as shown in figure 2. We refer to the
resulting curve as the cumulative integrated profile, and differentiating it we obtain the profile
of the beam. From this, we can obtain the angle of refraction and the attenuation of the beam.

In order to relate the measured angle of refraction and power attenuation with the propagation
and extinction properties of the colloidal suspension, we have to derive this relationship for the
prism geometry and a complex effective index of refraction neff = n1 + iκ1 for the colloidal
system. It is instructive to analyse the problem by first considering an incident plane wave that
arrives normally to the entrance interface of the prism. This implies that inside the prism, the
planes of constant amplitude are parallel to the planes of constant phase, being both parallel to
the entrance interface. Now, since the beam traverses different lengths as it arrives at the exit
interface of the prism at an angle θp, the amplitude of the field will have an exponential decay at
the exit interface away from the apex. Here θp is the angle of the prism. The mere existence of a
boundary condition at this interface requires that the amplitude of the field at the other side of the
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Figure 2. Scheme of the experimental setup.

interface (in air) should have the same exponential decay. This implies that the exit wave in air
cannot be the usual plane wave but it is rather an evanescent wave with very specific properties.
We show, in appendix A, that at the exit interface the relationship between the angle of incidence
θp and the angle of refraction θ2 can be written with a Snell’s law structure as

N1(n1, κ1, θp) sin θp = n2 sin θ2, (5)

where n1 and κ1 are the real and imaginary part of the complex effective index of refraction of the
colloidal system, respectively. n2 is the refraction index of air (n2 = n0 = 1), and an ‘operative’
index of refraction

N1(n1, κ1, θp) = n1n0√
1
2(a +

√
a2 + b2) + n2

1 sin2 θp

, (6)

where the constants a and b are defined as follows:

a ≡ n2
0 − (n2

1 − κ2
1) sin2 θp and b ≡ 2n1κ1 sin2 θp. (7)

This is the suitable form of Snell’s law for the experiments. In this case, one finds that for angles
of incidence not too close to the critical angle we have lowest order in κ1/n1

N1

n1
= 1 − sin θp

2
(

n2
0

n2
1
− sin2 θp

) κ2
1

n2
1

+ · · · . (8)

In our case, the imaginary part of the effective index of refraction of the colloidal system is due
to extinction, and van de Hulst’s expression yields

κ1

n1
= γS′(0)

1 − γS′′(0)
, (9)

where S(0) = S′(0) + iS′′(0) , thus S′(0) and S′′(0) denote the real and imaginary part of S(0),
respectively. For the polystyrene particles used in the experiments described below, their radii
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were 0.111, 0.155 and 0.240 µm, and the incident radiation had a wavelength λ0 = 0.6328 µm.
Using these values one gets that κ1/n1 for a volume fraction of spheres of 0.2% lies between
4.5 × 10−5 and 1.5 × 10−4. In our experiments, the angle of incidence to the exit interface was
about half a degree from the critical angle. In this case, sin θp/2((n2

0/n2
1) − sin2 θp) ≈ 102, thus

N1 ≈ n1 up to an order 1 in 106, which is beyond our detection sensitivity. In the expressions
above, we have ignored the glass slabs used to form the colloid prism since they do not contribute
to the refraction of light.

Let us recall that in the derivation of equation (5), we assumed that the incident beam was
an infinite plane wave, thus our solution loses all physical meaning behind the apex of the prism.
In the strict sense, the interaction of an infinite plane wave with a prism of finite dimensions is a
scattering problem. But in an actual experimental situation, one does not have an infinite plane
wave as the incident beam, but rather has a Gaussian beam of finite dimensions. In this case, one
can assume that the validity of the plane wave solution can be restricted to the region spanned
by the Gaussian beam. That is, we could describe the incident Gaussian beam as a superposition
of plane waves and, therefore, the transmitted beam could be regarded as a superposition of
evanescent waves.

However, we can analyse the refraction of a Gaussian beam in a somewhat simpler way as
follows.We propagate the Gaussian beam through the prism neglecting diffraction due to the finite
size of the beam. This is a valid approximation as long as the distance travelled within the prism,
L, is much smaller than the so-called Rayleigh distance of the Gaussian beam, ζ0 = n1πω2

0/λ0,
where ω0 is the beam waist radius and λ0 is the wavelength in vacuum. In the experiments below,
we have L ∼2 mm and ζ0 ∼ 50 cm, therefore, the latter approximation is certainly valid. Once
the electric field at the exit plane of the prism is known, we propagate the optical beam to the
detector using standard procedures in Fourier optics. In this way we take into account refraction,
attenuation and diffraction of the beam on its way to the detector. Because the fraction of the
light beam travelling farther from the apex of the prism will travel a larger distance through the
colloid than the fraction of the beam travelling closer to the apex, it may seem that the shape of
the laser’s spot will be deformed and an accurate measurement of the angle of refraction must
take this effect into account. Nevertheless, this will not be the case, as will be shown below.

Let us define a primed coordinate system at the entrance side of the prism with its z′-axis
normal to the prism’s surface and pointing inwards, and an unprimed coordinate system at the
exit side of the prism with its z-axis normal to the prism surface and pointing outwards as shown
in figure 1(b). An expression for a Gaussian beam in the paraxial approximation can be found in
several textbooks (see for example [28]). At a small distance compared to the Rayleigh distance,
the electric field distribution of a Gaussian beam travelling in air before entering the prism can
be approximated as

�E = E0 exp

[
−x′2 + y′2

ω2
0

]
exp[ik0n0z

′]ê, (10)

where ê is the polarization vector in the x′y′-plane and k0 is the wave number in vacuum. If we
assume that the beam enters the prism normal to its face, then the electric field at the exit side of
the prism is given by

�E = tE0 exp

[
x2 + y2 cos2 θp

ω2
0

]
exp[ik0neff (L + y sin θp)]ê, (11)
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where t is a transmission coefficient due to the entrance and exit slabs of the prism, neff ≡ n1 + iκ1,
and we used x′ = x, y′ = y cos θp and z′ = L + y sin θp.Although t will be a function of n1 and κ1

we will suppose with negligible error that it is given by the product of the transmission coefficients
of the entrance and exit slabs when the prism is filled with pure water. By adding and subtracting
( 1

4k
2
0ω

4
0κ

2
1 sin2 θp)/(ω

2
0 cos4 θp) in the exponential, we can rewrite the latter expression as

�E = tE0 exp [−κ1L] exp
[

1
4k

2
0κ

2
1 tan2 θp

]

× exp

[
x2 + cos2 θp

(
y − 1

2k0ω
2
0κ1 sin θp/cos2 θp

)2

ω2
0

]
exp[ik0n1(L + y sin θp)]ê. (12)

This is still a Gaussian function; thus, although the shape of the beam spot is not deformed, its
maximum is displaced to

ym = − 1
2k0ω

2
0κ1 sin θp/cos2 θp. (13)

Now, in the colloid prism experiment, the sideway displacements of the beam spot are measured
far away from the exit point. Then we should propagate the electric field in equation (12) to the far
zone using standard procedures in Fourier optics, this procedure is outlined in appendix B. Now,
in the experiment, what is measured is the intensity integrated along the direction perpendicular
to the plane of refraction of the beam. Assuming a well-collimated beam and for κ1 small enough,
the beam profile is given by (see appendix B)

I(θ) = I0 exp [−2k0κ1L] exp

[
k2

0ω
2
0

2
κ2

1 tan2 θp

]
exp

[
−k2

0ω
2
0

2

cos2 θr

cos2 θp

(θ − θr)
2

]
, (14)

where I0 is the integrated intensity when the prism is filled with pure water, θ the polar angle in
the unprimed coordinate system in figure 1(b) and θr the angle between the direction of maximum
intensity and the z-axis. This is a Gaussian function with its maximum at θ = θr. Thus, θr is the
angle of refraction of the beam axis and it is given by Snell’s law with the real part of the effective
index of refraction, n1, that is by approximating N1 ≈ n1 and θr = θ2 in equation (5). As already
shown, this is a valid approximation for sufficiently small κ1. In fact, the factor

exp[(k2
0ω

2
0/2)κ2

1 tan2 θp] (15)

should be smaller than exp [2k0κ1L] for the equation to hold. This is explained in appendix
B. Moreover, if ω0 is a few times smaller or more than L, it is not difficult to see that
(k2

0ω
2
0/2)κ2

1 tan2 θp can be neglected in comparison to 2k0κ1L. In our experiment reported below,
ω0 was about L/6, and thus, to a good approximation the profile is given by

I(θ) = I0 exp [−2k0κ1L] exp

[
−k2

0ω
2
0

2

cos2 θ2

cos2 θp

(θ − θ2)
2

]
. (16)

This result tell us that the refraction of a Gaussian beam in the present geometry can be treated as
if it were refracted by a medium with real index of refraction but it is attenuated as if it travelled
through a slab of width L. Note that the lateral displacement of the maximum of the Gaussian
field profile at the exit plane of the prism (see equation (9)) does not appear in equation (11). This
is because in the far field this displacement is neglected. For example, in one of our experiments
when ym was estimated to be about 15 µm, the beam profile at the detection plane moved
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about 3.5 mm. Therefore, the error in neglecting ym was about 0.4% in that experiment. However,
for certain particle sizes and refractive indices, or if the detector is not placed far enough, this
error can increase considerably and must be taken into account. It is now clear that from the
measurement of the displacement of the point of maximum intensity and from its value, one can
obtain both the real and imaginary parts of the increment in the effective refractive index upon
the addition of particles.

3. Experiment

We assembled a hollow prism using 3 mm thick glass slabs. The inner volume of the prism was
about 2 ml. The apex angle of the prism was measured using a goniometer and a laser beam. We
obtained, θp = 48.1 ± 0.1◦. This is a convenient value because it is moderately close to the critical
angle defined by the refractive index of water and air (θc = 48.69◦), and thus the experiment
will have high sensitivity to changes in the effective index of refraction of the colloid. The light
source was an intensity-stabilized He–Ne laser (λ0 = 0.6328 µm) with a Gaussian profile. The
waist radius of the laser beam is ω0 ≈ 300 µm. A silicon photodiode with home-made electronics
was used as the photodetector. A lens was placed in front of the detector to collect all the light
into it. The lens also permitted to keep the photodetector fixed, while the angle of refraction of
the optical beam was changed during the experiments. A razor blade was fixed to a translation
stage with 5 µm resolution and placed about 5 cm in front of the lens. The distance from the
prism to the plane of the razor blade was D = 1.549 ± 3 mm. To obtain the beam profiles, the
razor blade was displaced in steps of 500 µm across the optical beam with its edge perpendicular
to the beam axis and to the plane of refraction. The transmitted optical power was registered at
each position of the razor blade.

The performed experiments consisted of filling the prism with deionized water and injecting
several times fixed amounts of particles of the same size. The particles used in the experiment
were acquired from a commercial firm (Duke Scientific), who provides the main characteristics
of the particles: the material used was polystyrene with a refractive index of 1.588 and a given
mean diameter with a standard deviation of 3%. The volume fraction (f ) inside the prism was
increased from 0 to 0.19% in six steps. A cumulative integrated beam profile was taken at each
step of the experiment. The angle of incidence at the entrance side of the prism was fixed to
0 ± 0.1◦. The uncertainty in the angle of incidence combines with the uncertainty in the angle of
the prism θp, to give an angle of incidence to the exit slab of the prism of θ1 = 48.1 ± 0.2◦. The
distance, L, travelled by the beam within the liquid was measured with an uncertainty of 12%.
Although these uncertainties can be improved, we believe that they are quite reasonable for the
present work.

The experiment was repeated for particles of three different radii: 0.111, 0.155 and 0.24 µm.
In figure 3 we show the cumulative integrated beam profiles for different values of f for the
experiment with particles of radius equal to 0.155 µm. In figure 4 we show a photograph of
the prism illuminated by the laser during one of the experiments. The change in the angle of
refraction 
θ2 is calculated as 
θ2 = 
y/D, where 
y is the difference in the position of the
beam at a given value of f and its position when f = 0 (pure water). 
y can be obtained from
the displacement of the maximum of the intensity profile of the laser at the plane of detection.
From the experimental curves, such as those shown in figure 3, we can obtain the refracted laser’s
profile by subtracting one data point from the previous one. However, if we do that, we obtain
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Figure 3. (a) Cumulative integrated beam profiles obtained from the experiment
for different values of f with particles of 0.155 µm radius; and (b) amplification
of the last four curves of (a) for better visualization.

Figure 4. Prism illuminated by the laser beam during one of the experiments.

noisy curves with low-visibility interference fringes due to multiple reflections of the beam
inside the 3 mm thick glass of the prism. An alternative procedure to remove the interference
effects is to fit a polynomial function to the experimental curves (also shown in figure 3) and
then differentiate the fitted curves. By doing this, we obtain the curves shown in figure 5. We
can see in these plots that there is a misbehaviour at the extreme ends of the curves due to the
finite order of the fitting polynomial functions. However, we are interested only in the central
portion of these curves, where the maximum of the profile is. From the curves in figure 5, we can
measure 
y and obtain 
θ2. Now, the attenuation of the laser beam, I/I0, as f increases is easily
obtained from the experimental curves by dividing the last data point in each curve by the last
data point of the curve for pure water. These data points correspond to the measurement when
the whole optical beam has entered into the photodetector.

In figure 6 we show the experimental values of 
θ2 and I/I0 as a function of f for the
three experiments performed. The maximum angle deflected from a system of smallest particles
of radius 0.111 µm (figure 6(a), first column) was about 0.14◦, for the medium-sized particles
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Figure 5. Beam profiles obtained from the derivative of the fitted curves in
figure 3.

of radius 0.155 µm (figure 6(b), first column) it was approximately 0.18◦, and for the largest
particles of radius 0.24 µm (figure 6(c), first column) it was almost 0.08◦. Also in figure 6, we
plot a linear and exponential fit to the curves of 
θ2 and I/I0 respectively. In the experiment
with particles of 0.24 µm radius, only three points of the 
θ2 versus f curve could be taken. The
reason is that for higher values of f, the colloid was not stable and we were not able to perform
accurate measurements of 
θ2 for higher values of f.

Now, to obtain the real part of the effective refractive index from the fitted curves in figure 6
(first column) we can use, as was shown above, Snell’s law ignoring the imaginary part of the
effective refractive index. It is not difficult to show that a change in the angle of refraction is
related to a change in the real part of the effective refractive index, as


θ2 = dθ2

dn1

n1 = sin θp

n2

√
1 − n2

1

n2
2

sin2 θp


n1, (17)

where n1 is the real part of the effective refractive index and n2 is the refractive index of air
which is taken as one. Clearly when there are no particles in suspension, n1 corresponds to
the refractive index of pure water at the wavelength of the laser and at ambient temperature
(T ∼= 20 ◦C), n1 = 1.3313. The imaginary part of the effective refractive index can be obtained
from Lambert–Beer’s law (equation (3)):

I

I0
= exp [−2κ1k0L] . (18)

From these equations and the fitted curves in figure 6, we can obtain the effective refractive index
at any volume fraction f. The uncertainty in the calculated effective refractive index is determined
by the uncertainties in θp and L. Furthermore, we may obtain the radii and refractive index of the
particles by using the van de Hulst formula for the effective index of refraction of the colloidal
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Figure 6. Graphs of the experimental data for the changes in the angle of
refraction 
θ2 (first column) measured in degrees and the attenuation of the
beam laser, I/I0 (second column), as a function of the volume fraction f, for the
three experiments performed. (a) Particle radius of 0.111 µm, (b) 0.155 µm and
(c) 0.24 µm. Also a linear and exponential fit are plotted for the first column and
the second one, respectively.

system, equation (1). In figure 7 we plot the contribution per unit f of the polystyrene particles to
the real and imaginary parts of the effective refractive index as a function of a/λ0. For these plots
we used the nominal values of the refractive index of the particles and water, and we indicate
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Figure 7. Real and imaginary part of the contribution of the polystyrene particles
to the effective index of refraction of van de Hulst, per unit f, as a function of a/λ0.
The star-points in graphs correspond to the nominal value of the three particle
radii used in the experiment.

Table 1. Retrieved and nominal values of experimental parameters.

Particle size Retrieved values Nominal values

Small spheres a = 0.1076 µm a = 0.111 ± 0.005 µm
nsphere = 1.566 nsphere = 1.588
θ1 = 47.955◦ θ1 = 48.1 ± 0.22◦

L = 2.039 mm L = 1.9 ± 0.25 mm

Medium spheres a = 0.155 µm a = 0.155 ± 0.007 µm
nsphere = 1.588 nsphere = 1.588
θ1 = 48.175◦ θ1 = 48.1 ± 0.22◦

L = 2.05 mm L = 2 ± 0.25 mm

Large spheres a = 0.247 µm a = 0.24 ± 0.01 µm
nsphere = 1.55 nsphere = 1.588
θ1 = 48.337◦ θ1 = 48.1 ± 0.22◦

L = 1.65 mm L = 1.9 ± 0.25 mm

with stars the points corresponding to the nominal value of the three particle radii used in our
experiments.

To compare theory and experiment, we looked for values of a and nsphere that when used
in the van de Hulst formula gave the experimental value of the real and imaginary part of the
effective refractive index within their uncertainty. For each experiment, we chose the values of
a and nsphere so that nsphere remained closest to its nominal value of 1.588. Then we calculated
the values of θp and L needed to reproduce exactly the fitted curves to the experimental data,
and they were found to be within the experimental uncertainty. The values of a, nsphere, θp and
L determined for each experiment are shown in the first column of table 1. For comparison, in
the second column of table 1, we give the corresponding nominal values. We can see that the
‘retrieved’ values of a, θp and L are within the uncertainty of the corresponding nominal value.

New Journal of Physics 7 (2005) 89 (http://www.njp.org/)

http://www.njp.org/


15 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The manufacturer does not provide an uncertainty on the index of refraction of the particles, but
we can see from table 1 that the adjusted values of nsphere differ from the nominal value by 1.4,
0.03 and 2.4% for a = 0.111 µm, a = 0.155 µm and a = 0.24 µm, respectively. A difference
of 2.4% in the last case is larger than for the other two cases, probably due to the fact that
we had only three points on the curve of 
θ2 as a function of f. We believe that the first two
values are more representative of the method. Nevertheless, the results show good agreement
between the experiment and Snell’s law, using the van de Hulst formula for the effective index of
refraction.

The present results show that by reducing the uncertainty on θp and L, it is possible
to obtain a high precision on the determination of a and nsphere. Of course, in the case of
colloidal suspensions with a wide size distribution of particles, additional parameters related
to the size distribution should be fit. But one could gather additional information by performing
spectroscopic measurements, that is, by measuring the attenuation and the angle of refraction of
the coherent wave over a wide range of wavelengths. In that case, it may be possible to retrieve
the nsphere, a function of wavelength, and the size distribution of the particle suspension. It should
be interesting and potentially useful to investigate such a possibility in the future. The present
method could be an interesting alternative based on coherent wave optics to other methods already
studied based on diffuse reflection of light (see for example [29, 30]).

4. Refraction properties of diffuse light

When light is transmitted across a plane interface from a medium with real refractive index, n1,
to a medium with a real and higher refractive index, n2, the angle of travel of light is limited
to a cone of angle, θc = sin−1(n1/n2), with its axis parallel to the normal to the interface. The
transition of the intensity distribution in angle at the edges of the light cone is sharp and is not
difficult to observe experimentally. Actually, this is the basis of a Pulfrich-type refractometer.
Now, if medium 1 is turbid, then the angle of the light cone is related to an effective refractive
index [18]. However, when medium 1 is turbid, the transition at the edges of the light cone is
smoothed and strictly speaking there is no longer a critical angle. In this case, one may define
an ‘operative-critical-angle’, θop, as the angle for which the rate of change of the light intensity
distribution is highest [17]–[19], and this angle can be considered as the edge of the cone.

The idea of the experiment here was to observe a light cone formed only with diffuse light
coming from a colloidal medium and see whether it depends on the concentration of particles.
Such dependence would indicate that the transmission of diffuse light from a turbid medium
depends on the presence of the colloidal particles and not on the optical properties of the matrix
alone. In order to observe this effect, we used the experimental arrangement shown in figure 8(a).
We clamped a cylindrical container at the base of a Dove prism. The container was filled with
pure water and a He–Ne laser beam was incident on the prism base at an angle of about 10o

below the critical angle of the water–glass interface. Part of the laser beam was transmitted into
the water in the container. By adding a small amount (f ∼ 0.1%) of highly scattering particles,
the transmitted light was multiple-scattered and part of the diffuse light was transmitted back
into the prism. In this experiment we used TiO2 (Rutile) particles of mean diameter of about
220 nm. This configuration allowed us to ensure that only diffuse light was refracted into the
prism. The coherent reflected beam was easily separated from the diffuse light. The diffuse light
formed a relatively sharp cone within the prism. By placing a lens at the exit face of the prism
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Figure 8. (a) Method used to visualize the critical angle defined by diffuse light,
(b) top view of the cone formed by the diffuse light passing from the colloid to
the prism, and (c) the intensity pattern at the focal plane of the lens of a portion
of the edge of the cone of diffuse light for three different volume concentrations
of particles.

and a white screen at the focal plane as shown in figure 8(a), the angular distribution of the light
was mapped onto a spatial distribution of light. On the white screen, one could observe an image
of the transition from light to dark about the critical angle. A digital camera was fixed behind
the white screen and used to obtain pictures of the projected image for different concentration
of particles.

In figure 8(b) we show a photograph of the illuminated prism from above. One can clearly
observe the cone of diffuse light within the prism. In figure 8(c) we show three images of
the intensity distribution at the white screen. They are placed in order of increasing particle
concentration: f ∼ 0.1%, f = 2.5% and f = 5%. One can appreciate a sharp transition in the
first image. For the second and third images, it is clear that the transition becomes smoother and
displaces to the right. The displacement of the edge of the illuminated area was estimated to be
roughly about ∼3 and ∼6 mm for f = 2.5 and 5% respectively. These values correspond to a
change of θop of roughly ∼30 and ∼60 mrad respectively. Thus, we may conclude that in fact
the transmission of diffuse light across a plane interface depends also on the concentration of
the colloidal particles. But it is not obvious whether one could describe this phenomenon using
an effective refractive index and, if so, if this will turn out to be the same effective index as the
one involved in the propagation of the coherent wave. From a microscopic point of view, the
fact that light is transmitted outside the cone defined by the critical angle of the water–prism
interface can be explained as follows. The light scattered by a particle contains travelling waves
as well as evanescent waves; and evanescent fields scattered from particles near the interface can
be coupled to travelling waves with its wavevector outside the cone permitted for transmission
of travelling waves. From a macroscopic point of view, one may argue that diffuse light can be
regarded as a superposition of many coherent waves which are incoherent among themselves.
Each coherent wave travelling within the colloid medium can be regarded as travelling with an
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effective wavevector. Therefore, the refraction and propagation properties of diffuse light should
consider the same effective refractive index as a coherent wave. The present experiment served
to have some direct experimental evidence of the latter argument.

5. Summary and conclusions

We have analysed the measurement of the angle of refraction at a plane interface of the coherent
wave when passing from a turbid colloidal medium to a homogenous medium. We proposed
to transmit a light beam through a hollow prism filled with the colloid. In order to isolate the
refraction effects to the exit plane of the coherent wave from the colloid, we set the angle of
incidence to zero at the entrance interface of the colloid prism. Therefore, the refraction of the
transmitted beam occurs only at the exit interface and it does so with an angle of incidence equal
to the apex of the prism.

First we analysed the light refraction considering a plane wave and derived a suitable form
of Snell’s law appropriate for the proposed geometry when the index of refraction of the prism
is complex. We showed that in this case, the refracted wave is actually an evanescent wave; and
therefore, a transmitted Gaussian beam could be regarded as a superposition of evanescent waves.
However, we used a simpler way to calculate the field of the transmitted Gaussian beam in the
prism geometry using a paraxial optics approximation. We found that the refracted beam remains
Gaussian but its maximum is slightly displaced towards the apex of the prism. Then we obtained
an expression for the intensity profile of the refracted beam in the far field. We showed that if
the imaginary part of the effective refractive index is sufficiently small, the beam axis refracts as
predicted by Snell’s law taking into account only the real part of the effective refractive index.
This was shown to be consistent with the plane wave analysis and the appropriate form of Snell’s
law derived previously. The attenuation of the beam transmitted through the prism was found to
be given by the Lambert–Beer law considering the distance travelled by the beam axis within
the colloid.

We performed experiments using polystyrene particles suspended in deionized water and
measured the increment in angle of refraction as the volume fraction was increased. We then
compared our results with Snell’s law using van de Hulst’s formula for the effective refractive
index. Theory and experiments were found to be in good agreement. These results confirm that
the refraction of the coherent wave obeys Snell’s law with a well-defined effective refractive
index. The method proposed here allows us to determine simultaneously the increment in the
real and in the imaginary part of the effective refractive index upon adding particles into the
suspension.

The colloid prism method analysed in this paper can be used to characterize optically
particles with sizes comparable to the wavelength of the incident radiation. From the results
obtained in this paper, we may conclude that an accuracy of about 1%, in the determination of
particle parameters can be achieved without much difficulty and it can certainly be improved.
The accuracy is mainly limited by the uncertainty in the measurement of the apex angle of the
hollow prism, the angle of incidence of the laser beam into the prism and on the distance travelled
within the colloid by the optical beam. For example, if we have an accuracy of 1 second of arc for
the internal angle of the prism, we could have an accuracy of about 0.05% in determining either
the particle diameter or the index of refraction of particles, if all other parameters are known
exactly. Similarly for the measurements related to attenuation, an accuracy of 1% in the distance
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that the beam travels inside the prism would correspond to an accuracy of 1 and 0.06% for the
particles’ diameter and the index of refraction of the particles, respectively.

The present method could be extended by performing spectroscopic analysis. By measuring
at different wavelengths, it should be possible to characterize particle suspensions with a wide
size distribution, and obtain a spectrum of the real and imaginary part of the refractive index
of particles. The method is, however, limited to dilute suspensions; typically to a volume
concentration of particles up to a fraction of 1%.

Finally, we reported a simple qualitative experiment on the direct observation of the
refraction properties of diffuse light in a colloidal suspension. This may be important in casting
properly the boundary conditions required in radiative-transfer theories used to describe the
propagation of light in turbid media.
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Appendix A

In the experiments we used the usual Snell’s law, n1 sin θ1 = n2 sin θ2, with all parameters as
real numbers, for the refraction of light passing from a medium of complex index of refraction
into a medium of real index of refraction. The above assumption is just an approximation and
now we will develop the appropriate form of Snell’s law.

Let us consider the geometry of figure 1(b) in which we have two systems of reference,
primed and unprimed. The z′ = 0 plane coincides with the input plane of the prism, while the
z = 0 plane coincides with the exit plane. For simplicity in this appendix, the origin of both
systems is moved to the apex of the prism. The electric field of incident wave polarized in
x direction is given by �E0 = A0 exp(in0k0z

′)êx, where n0 is the index of refraction of air and
k0 = 2π/λ0, with λ0 the wavelength of the field also in air. Thus, the plane wave that comes from
air into the prism is normally incident on the input plane, i.e., the direction of propagation of
this wave coincides with the z′ direction. The field inside the prism, in the primed coordinate
system, is �E1 = A1 exp(ineff k0z

′)êx, but the index of refraction of medium 1, which represents
the colloid, is a complex number, given by neff = n1 + iκ1, thus the incident field inside of the
prism can be rewritten as

�E1 = A1 exp(in1k0z
′) exp(−κ1k0z

′)êx. (A.1)

We can now see that the beam is attenuated as it travels through the colloid. We also recognize
that the planes of constant amplitude, given by z′ =const., coincide with the planes of constant
phase.

New Journal of Physics 7 (2005) 89 (http://www.njp.org/)

http://www.njp.org/


19 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

By rotating the coordinate system by an angle θp, which is the internal angle of the prism,
the field inside the prism can be written as

�E1 = A1 exp[i(k1,yy + k1,zz)]êx, (A.2)

where

k1,y = k0(n1 + iκ1) sin θp and k1,z = k0(n1 + iκ1) cos θp. (A.3)

The fulfilment of the boundary conditions requires that the parallel component of the wavevector
in medium 1 and medium 2 (air again) be equal, that is

k2,y = k1,y = k0(n1 + iκ1) sin θp. (A.4)

To obtain k2,z, we use the fact that the field outside the prism must satisfy the Helmholtz equation,
that is [31]

(k2,y)
2 + (k2,z)

2 = n0k
2
0, (A.5)

thus

k2,z = k0 Re[k2,z] + ik0Im[k2,z] = k0

√
a +

√
a2 + b2

2
+ ik0

√
−a +

√
a2 + b2

2
, (A.6)

where

a ≡ n2
0 − (n2

1 − κ2
1) sin2 θp and b ≡ 2n1κ1 sin2 θp. (A.7)

The electric field in medium 2 can then be written as

�E2 = A2 exp[ik2,yy + ik2,zz]êx, (A.8)

which corresponds to an evanescent wave with an exponential attenuation in the direction
perpendicular to the propagation of the beam. This direction corresponds to a line perpendicular
to the phase constant planes and also to the direction of Poynting’s vector. It is given by

sin θ2 = Re[k2,y]√
(Re[k2,z])2 + (Re[k2,y])2

, (A.9)

where θ2 is the angle measured with respect to the z-axis. We now use equations (A.4) and (A.9)
to finally write equation (5).

Appendix B

For simplicity, let us consider again that the incident beam is polarized in the x ′-direction. For
a beam polarized in the y′-direction, the final result is the same. Here the origin of the prime
and unprimed reference systems is taken along the optical axis of the incident beam as shown
in figure 1(b). Assuming that the electric field amplitude of the light beam is negligible near the
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prism apex and the borders of the entrance and exit slabs of the prism, we can express the field
at the exit plane as an inverse Fourier transform:

E(x, y, z) = 1

4π

ω2
0

cos θp

tE0 exp[ik0n1L]
∫ ∞

−∞

∫ ∞

−∞
exp

[− 1
4k

2
xω

2
0

]
× exp[− 1

4(k0n1 sin θp − ky)
2ω2

0/cos2 θp] exp[ikxx + ikyy] dkx dky. (B.1)

Now we can add to the integrand, the factor exp [ikzz], where kz =
√

k2
0 − k2

x − k2
y and k0 is the

wave number in air to have a solution to Helmholtz equation outside the prism. The resulting
integral may be calculated in the far zone, that is for very large x, y, z, using the method of
stationary phase [32]. We get

E(r, θ, φ) = A
ik0 cos θ

2πr
exp[ik0r] exp[ik0n1L] exp

[
−k2

0ω
2
0

4
sin2 θ sin2 φ

]

× exp

[
−(n1 sin θp − sin θ cos φ)2 k2

0ω
2
0

4 cos2 θp

]
, (B.2)

where A = πω2
0tE0/cos θp. For well-collimated beams, k2

0ω
2
0 	 1, we can approximate in the

exponents, sin φ ≈ φ and cos φ ≈ 1 with negligible error. The intensity is calculated as I = |E|2.
Using neff = n1 + iκ1, we obtain

I(r, θ, φ) = I0 exp [−2k0κ1L] exp

[
k2

0ω
2
0

2
κ2

1 tan2 θp

]
exp

[
k2

0ω
2
0

2
φ2 sin2 θ

]

× exp

[
k2

0ω
2
0

2 cos2 θp

(sin θ − n1 sin θp)
2

]
, (B.3)

where

I0 = |t|2 E2
0

ω2
0

r2

k2
0ω

2
0

4

cos2 θ

cos4 θp

.

Now, in the experiment one measures the integrated intensity along the direction perpendicular
to the displacement of the beam. This direction corresponds to the φ coordinate. Now let us write
θ = θr + 
θ, where

sin θr = n1 sin θp. (B.4)

Thus integrating in φ and approximating cos 
θ ≈ 1 and sin 
θ ≈ 
θ yields

I(r, θ) = I0

[
2π

k2
0ω

2
0 sin2 θr

]1/2

exp [−2k0κ1L] exp

[
k2

0ω
2
0

2
κ2

1 tan2 θp

]
exp

[
−k2

0ω
2
0

2

cos2 θr

cos2 θp


θ

]
.

(B.5)

It may appear that there is a problem if we let κ1 increase without limit in equation (B.5).
However, if κ1 is too large, the maximum of the Gaussian field function at the exit plane of
the prism (equation (13)) would be outside the prism and we could not have taken its Fourier
transform assuming integration limits along y from −∞ to +∞. Therefore, equation (12) would
need to be corrected. However, this case is of no interest since the optical power of the refracted
beam would be practically zero.
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