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Abstract: We compare a recently developed coherent-scattering model for 
the reflectance of light from a turbid colloidal suspension of particles with 
experimental measurements. The experimental data were obtained in an 
internal reflection configuration around the critical angle using a glass prism 
in contact with a monodisperse colloidal suspension of latex particles, and a 
polydisperse suspension of TiO2 particles. First, we review the coherent 
scattering model and extend it to the case of polydisperse suspensions in an 
internal reflection configuration. The experimental data is then compared 
with results of the coherent scattering model and results obtained assuming 
that the colloidal system can be treated as a homogeneous medium with an 
effective index of refraction. We find that the experimental results are not 
compatible with the effective medium model. On the other hand, good fits 
to the experimental curves can be obtained with the coherent scattering 
model. 
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1. Introduction 

When light, traveling in a transparent homogeneous medium, strikes the flat interface of a 
medium with random inhomogeneities, scattered light appears on both sides of the boundary. 
The total intensity (IT) can be separated, in general, as the sum of a coherent (Ic) or direct 
component, and a diffuse (Id) or incoherent one. Defining the coherent intensity as the 
magnitude squared of the mean field, Ic =|<E>|2, the diffuse intensity is given by Id = <IT>- Ic, 
where the angled brackets indicate an average over an ensemble of realizations of the random 
inhomogeneous medium. The fraction of the original power that goes into the diffuse 
component depends on the turbidity of the sample and the angle of incidence. A medium is 
regarded as homogeneous when the diffuse component is negligible, whereas a medium is 
considered turbid when the diffuse component can be easily detected. In homogeneous media 
the coherent or mean field coincides with the macroscopic field. 
 At a flat interface with a turbid medium, the mean field is refracted at the interface and 
propagates in the random medium in a manner that is consistent with the propagation of light 
in an equivalent homogeneous medium [1-10]. It is thus tempting to associate an effective 
index of refraction to the inhomogeneous medium and try to describe its optical properties (as 
far as the coherent field is concerned) in terms of this parameter [7-24]. While this is adequate 
for the case of small particles or inhomogeneities, it has been shown theoretically that for 
large ones the amplitudes of the reflected and transmitted mean fields are not consistent with 
those that can be calculated assuming this effective index of refraction in the usual Fresnel 
relations [7,8,11,13,19,20]. By large we mean particles with a size parameter, x = 2πa/λ, 
comparable or larger than one. Here a is the particles’ radii and λ is the wavelength of the 
incident radiation in the medium surrounding the particles. 
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 The coherent reflectance of a dilute system of large particles is in general small. If the 
particles are embedded in a homogenous matrix material, the reflectance from the matrix 
interface will normally be much larger than that from the particles, making it difficult to 
evaluate the contribution from the particles. An important exception occurs close to the 
critical angle in an internal-reflection configuration. The optical reflectance near the critical 
angle is highly sensitive to the optical properties of the external media. Not surprisingly, 
critical-angle refractometry has been used for the determination of the effective refractive 
index of turbid colloids [15-24]. Some evidence of inconsistencies arising from assuming 
valid the use of the effective refractive index in the Fresnel relations to calculate the 
reflectivity of light from a turbid colloid when particles are large was found in the 
experimental work of Meeten and North in Ref. [19]. The present paper is motivated in part 
by the need to provide further experimental evidence on this matter.  
 From the theoretical studies, it is apparent that the reflectivity of a sample will depend on 
several parameters of the medium, like the density of particles, their refractive indices and 
size distribution. It is thus natural to think that some of these quantities can be inferred from 
reflectivity measurements. To solve this inverse problem, however, it is necessary to have 
simple and reliable solutions to the direct problem. The coherent reflection of light from an 
ensemble of randomly placed particles can be obtained theoretically by  setting up a system of 
equations for the exciting fields at each particle, solving the coupled multiple-scattering 
equations for the electromagnetic fields, and taking a configurational average. For a random 
system of particles it is possible to obtain a hierarchy of equations using, at each level in the 
hierarchy, more detailed statistical information about the system than in the level below. For 
instance, at the first level one requires only the number density of particles. At the second 
level besides the number density one requires the two-particle correlation function. At the 
third level, besides these two functions, one requires the three-particle correlation function, 
and so on [2,3]. Truncation at the first stage in the hierarchy yields to the so-called “effective-
field approximation” and is limited to a dilute system of particles. In this approximation the 
coherent reflection coefficient of a monodisperse system of particles was derived in Ref. [4]. 
At the second stage in the hierarchy, the resulting approximation is known as the “quasi-
crystalline approximation” which is appropriate for denser systems. Using this approximation 
Kong and collaborators [2,3] devised a calculation procedure for the coherent reflection 
amplitude from a half space of randomly-located spherical particles. Both of these 
approximations are valid for small as well as for large particles.  

 Although calculations with the quasi-crystalline approximation or even more 
sophisticated approximations are possible with modern computers, considering the time 
required for these calculations, it is clear that in practice they can not be used to implement a 
fitting routine for experimental data analysis.  In a recent paper [7] a more intuitive approach 
to calculate the coherent reflection from a dilute half-space of randomly located identical 
particles was used. Basically, in this model the system is regarded as a collection of thin slabs; 
the multiple-scattering equations for the coherent wave among the slabs are then solved 
yielding to closed expressions for the coherent reflection coefficients. From now on we will 
refer to this model as the coherent-scattering model (CSM). 

 The coherent-scattering model is, to our knowledge, the only available candidate at 
present to be used for routine experimental data analysis in order to characterize particles in 
suspension in optically turbid media. Thus, the main purpose of this work is to test its validity 
against experimental data. In doing so, we also corroborate the inconsistencies of an effective 
medium model in the case of large colloidal particles. We provide experimental results for 
suspensions of monodisperse latex particles and polydisperse TiO2 (rutile) particles, both 
dispersed in water, with different densities.  

 The paper is organized as follows. First, in section 2 we present a summary of the 
coherent-scattering model and extend it to consider the coherent reflection from a half-space 
of a polydisperse, random system of particles in an internal reflection configuration. In section 
3 we describe our experimental setup and methods. We present experimental results for 
suspensions of monodisperse latex particles in water and polydisperse TiO2 (rutile) particles 
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in water with different densities. In section 4 we present a comparison of the theoretical and 
experimental results, together with a discussion. Finally, in section 5 we deliver our 
conclusions. 

2. Coherent-scattering model  

The model we consider in this paper uses scattering theory for the calculation of the coherent 
reflectance from a half-space of a random medium, and it was originally derived in Ref. [7]. 
There, one considered the case of a dilute monodisperse system of randomly located spherical 
particles. Here, we summarize the main results obtained in Ref. [7] and provide their 
extension to the case of a polydisperse system of spherical particles and discuss their use in an 
internal reflection configuration. As already said, we will refer to this model as the coherent-
scattering model (CSM).  

2.1 Coherent reflection coefficient from a polydisperse random system of particles 

The derivation of the coherent-scattering model in Ref. [7] is based on the slicing of the half-
space containing the particles into thin slabs as shown in Fig. 1a. First, for a thin slab, the 
coherent reflected and transmitted wave is calculated in the single-scattering approximation. 
Then, the reflection coefficient of the half-space is obtained by taking account of the multiple 
scattering of the coherent wave between the semi-infinite pile of slabs. These calculations are 
done assuming that the thickness of each slab is small compared to the wavelength of 
radiation, and there is no correlation between the positions of the particles, that is, the 
exclusion volume is ignored. The approximations used in this derivation of the half-space 
reflection coefficient limit its validity to dilute systems of particles, but it can be used for large 
particles. By large particles we mean particles with size parameter comparable or larger than 
one.  

 
Fig. 1. Coherent reflection and transmission of light from a random system of particles.          a) 
Half-space formed by a semi-infinite pile of thin slabs, and b) coherent reflection and 
transmission from an isolated thin slab. 

 The results obtained in Ref. [7] may be summarized as follows: Consider a plane wave, 
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In the above expressions, Em is the amplitude of the incident wave, d is the width of the slab, 
m
+k  and m

−k , and ˆ
m
+e  and ˆ

m
−e  are the wavevectors and polarization vectors of the incident and 

the coherent reflected wave, respectively, ρ is the number density of particles, km  = nm  k0 is 
the wave number of the incident wave, nm is the refractive index of the medium surrounding 
the particles (the matrix), θm is the angle of incidence, and k0 = 2π / λ0 is the wave number in 
vacuum. The functions ( )j SS θ  are the diagonal components of the 2 2×  amplitude scattering 

matrix of an isolated spherical particle embedded within the matrix material, as defined in 
Ref. [14]. Here Sθ  is the scattering angle and j = 1 corresponds to a TE and j = 2 to a TM 

polarized incident wave, respectively. For a sphere, the forward scattering amplitude S1(θ = 0) 
= S2(θ = 0) ≡ S(0). In the geometry shown in Fig. 1, we have that, 
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 With this notation, the coherent reflection coefficient, rhs, of the half-space of randomly 
located spheres, obtained in Ref. [7], can be written as 
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the z-component of an effective wavevector. Although we use the term “effective” to denote 
the wavevector of the coherent wave, this does not mean the results in Eq. (3) and (4) are 
based on an effective medium approach. They are obtained from scattering theory. Now, 
considering that the y-component of the effective wavevector must be equal to that of the 
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second order terms, 2 2β − α , we obtain the so called van de Hulst effective refractive index 
[14],  
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These results correspond to a monodisperse system of spherical particles of radius a 
embedded in a boundless homogenous matrix. It is assumed that the center of all particles lie 
in the half-space z > 0. 

 Now, for a polydisperse system of particles, the number density of particles is a function 
of the particles radius: ρ(a). To extend the above results to a polydisperse system of particles 
we must average the scattering coefficients of a thin slab, α and β, with respect to the particle 
size. These coefficients are calculated in the single scattering approximation and averaging 
them is straight forward.  It consists of replacing in α and β the elements of the amplitude 
scattering matrix by the integral with respect to the radii of the product of ρ(a) times the 
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corresponding element of the amplitude scattering-matrix associated to radius a. Therefore, 
for a polydisperse system of spheres we have, 
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The subscript a in the S functions is used to remark its dependence on the radius of the 
particles. The number density of particles ρ(a) may be written as ρTn(a), where ρT is the total 
number density of particles, regardless of their radius, and n(a) is the so called size 
distribution function. It is common to find that n(a) follows a log-normal distribution function,  
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where a0 is the most probable radius, and σ is the width parameter of the distribution. In the 
experiments, however, the control is over the volume fraction occupied by the spheres, f, 
rather than over the total number of particles per unit volume, ρT. Thus one should use ρT 
given by,   
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 In conclusion, the half-space reflection coefficient from a half-space of a polydisperse 
system of particles embedded in a boundless homogeneous medium is calculated by Eqs. (3) 
and (4) with the scattering coefficients given in Eq. (6). The effective refractive index is now 
given by,   
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1 ( ) (0)eff m a

m
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2.2 Reflection coefficient with a matrix interface 

The half-space reflection coefficient given in the previous section corresponds to a random 
system of spheres where the center of all particles lies in the half-space z > 0. The plane z = 0 
may be regarded as a plane interface between the matrix medium and the composite matrix. 
At this point we may replace the composite medium by an artificial homogenous medium 
occupying the half-space z > 0 whose reflection coefficient is rhs, as given in Eq. (3). In an 
actual experiment, we have an additional interface, namely, the incident-medium – matrix 
interface, as shown in Fig. 2. Let us assume that the incidence medium is non-absorbing with 
a refractive index n1, and the interface with the matrix is at z = 0. The incident wave comes at 
an angle θi and is refracted upon transmission inside the matrix material. The angle of travel 
of light within the matrix, θm, is determined by Snell’s law at the interface: n1sinθi = nmsinθm. 
Let us now displace the half-space of particles to the right by a distance zs > amax, where amax is 
the maximum possible radii of the particles, or a value for which the probability of finding 
larger particles is negligible. In this way, the center of all the particles (or the great majority of 
them) lies to the right of the plane z = zs, thus no particles crosses the plane z = 0, and the 
reflection coefficient of the half-space of particles at an angle of incidence θm, gains the phase 
factor: 0exp(2 cos )m m sin k zθ . Then, the compound reflection coefficient of the two interfaces 
becomes, 
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and 12
Fresnelr  is the Fresnel reflection coefficient for the simple incident-medium – matrix 

interface.  

 

Fig. 2. Illustration of the reflection of the coherent wave from the compound interface: 
incident-medium − matrix and matrix − composite-matrix interface.   

 Now, if we consider a monodisperse system of spheres with radii a and assume there is no 
correlation among the positions of the spheres, but that there is an excluded-volume 
correlation between the spheres and the interface, then, any particle can approach the incident-
medium – matrix interface up to z = a . In this case, we should use zs = a in Eq. (10). This 
result was already given in Ref. [7]. However, in the case of a polydisperse system of particles 
and under the same assumptions just described, an additional difficulty arises; namely, the 
size distribution function and volume fraction are modified near the interface because the 
center of a small particle can be closer to the interface than that of a large particle. If the 
incidence-medium interface is at z = 0, the size distribution function changes to  
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where U is the unit step function, that is, U(x) = 0 if x < 0 and U(x) = 1 if x > 0. The volume 
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f(z) from zero at z = 0  to their bulk value at z > amax may be called the surface region. To 
retain the same level of approximation that our model has for a monodisperse system, we 
should model the half-space as a succession of thin slabs, but we must take into account that 
the slabs near the interface have a different size distribution function, ρ(a, z). This can be done 
by dividing the whole system in a uniform half-space of constant f and ρ(a), plus a finite 
number of slabs of variable ρ(a, z) placed in front. To calculate the reflection coefficient of 
the whole system, one may start with the reflection coefficient of the uniform half-space and 
then add slabs in front, one by one, and calculate the reflection coefficient after each slab is 
added. This yields a well-defined iterative procedure for the calculation of the reflection 
coefficient. For simplicity, we will introduce here a new approximation and assume that all 
particles, regardless of their radius, are randomly distributed from z = a0 to z = ∞. We will 
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refer to this approximation as the “sharp surface” approximation. Therefore, in the sharp-
surface approximation the coherent reflection coefficient is given by Eq. (10) with zs = a0, that 
is, the most probable radius. In this approximation we are ignoring that particles with a larger 
radius than a0 remain farther away from the interface while smaller particles approach it 
closer. In fact, we have compared the results of calculating the reflection coefficient with the 
sharp-surface approximation with the ones obtained using the iterative procedure mentioned 
above, and found that both methods differ only for size distributions of width larger than the 
wavelength of the incident radiation [25]. The lower the contrast between the refractive index 
of the particles and the matrix, the more robust is the sharp surface approximation, being valid 
for wider size distributions [25]. In case of the experiments presented below, the curves 
predicted by the sharp surface approximation follow closely those obtained by the iterative 
procedure which takes detail account of the surface region. Thus here the sharp-surface 
approximation is used just to make the theoretical analysis as transparent as possible. 

 As we have already mentioned, our main objective in this paper is to test the coherent-
scattering model by comparing it with experimental data in an internal-reflection 
configuration. We may note that in this case, when the angle of incidence is larger than the 
critical angle of the incident-medium – matrix interface, θm in Eq. (11), becomes complex. 
Therefore, the average field exciting the particles is actually an evanescent wave. This poses 
no problem to our formulation in terms of the elements of the amplitude scattering matrix 
because the mathematical procedure remains valid for an exciting field with a complex 
wavevector.  

 We are interested also in comparing the experimental data with a naïve application of the 
effective-medium concept. One may construct a simple effective-medium model by using 
Fresnel relations for an interface between the incident medium and an artificial homogeneous 
medium with an effective refractive index given by the van de Hulst formula. We will refer to 
this latter model as the isotropic effective-medium model (IEMM). Although this naïve 
application of the effective-medium concept has been proved to be incorrect in case of large 
colloidal particles [7-11], the IEEM has been used without restrain, for some time now, to 
interpret measurements of the “index of refraction” of colloids using critical angle 
refractometers [17-24].  For particles very small compared to the wavelength, rhs in Eq. (3) 
and the IEMM predict similar values of the coherent reflectance for all angles of incidence. 
However, for particles with a size parameter that is not small compared to one, the coherent 
reflectance predicted by both models differs appreciably for both polarizations [7-11]. 

 We should note that in our previous work [7-9], we dropped the second order terms 
2 2β − α , in the expression for eff

zk  in Eq. (4) which is used in the expression for rhs in Eq.(3). 
For angles of incidence not too close to grazing these terms contribute negligibly to the 
reflection coefficient for low density systems of particles. Near grazing angles they may 
contribute noticeably, although not strongly for dilute systems. However, in an internal 
reflection configuration, numerical evaluation of Eq. (3) shows that if these second order 
terms are dropped, the angle derivative of the reflectance becomes discontinuous at the critical 
angle of the incidence-medium – matrix interface, that is, at 1

1sin ( )i mn n−θ = . The 
discontinuity increases as the particle radii increases.  This indicates that these terms are 
important near the critical angle in an internal-reflection configuration and must be kept in our 
model.   

 In the next section we compare the coherent-scattering model with experimental data in 
an internal-reflection configuration and around the critical angle. In calculating the theoretical 
curves with the coherent-scattering model we used the “sharp surface” approximation for the 
cases of polydisperse systems of particles, and we included the second order terms in the 
expression for  eff

zk  in Eq. (4). 
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3. Experimental setup and methods 

The objective of our experiments is to obtain reliable experimental data of the coherent 
reflectance of a well collimated beam from a glass-colloid interface and compare it with the 
coherent-scattering model described in the previous section. As already explained, the 
coherent component of the reflected light corresponds to the average of the reflected 
electromagnetic fields over all possible configurations of the random system. In experiments, 
however, one measures the light power which has, in addition to the coherent component, a 
contribution from the diffuse light. The reason is that although the average of the diffuse 
electromagnetic fields is zero, the average of the diffuse optical power is not. When a well 
collimated light beam is incident to the interface of a turbid medium, the coherently reflected 
beam travels along the specular direction, whereas the diffuse light is normally distributed 
over a broad range of reflection angles. This experimental fact can be used to separate these 
two contributions in the measurements. The reflectivity of the sample can be estimated by 
baffling or spatial filtering the light in the specular direction. Inevitably, however, some 
diffuse light will be captured as well and, to correct for this, one must estimate the 
contribution of the diffuse light and subtract it from the measurement. Since the diffuse 
component normally consists of a broad, rather featureless distribution, a simple way of doing 
this is to measure the light power received by the detector in near-specular directions.  

 The experimental setup is shown in Fig. 3. A collimated beam of light (λ=6350 nm), 
coming from a laser diode of circular cross-section (approximately 3 mm in diameter) is 
incident on a glass (BK7) Dove prism. The sample is contained in the cavity formed by 
clamping an O-ring between the base of the prism and a substrate. The laser beam enters the 
prism and refracts towards the base of the prism where it reflects from the prism-sample 
interface as indicated in Fig. 3. The reflected beam exits the prism and is refracted towards a 
Si photodetector. In order to characterize the reflectance as a function of the incidence angle 
θi, the prism is mounted on top of a high precision goniometer. The index of refraction of the 
prism at this wavelength is n1 = 1.515. The Dove prism geometry is appropriate to measure 
the reflectance about the critical angle of a glass-water interface, where the contribution of the 
particles to the coherent reflectance is expected to be largest. To obtain the value of the 
reflectance at the prism-sample interface we had to correct for the Fresnel transmittance at the 
entrance and exit faces of the prism. The reflectance curves were taken by rotating the 
goniometer in steps of one degree and displacing the photodetector in synchrony to capture 
the reflected beam. The angle of incidence at the base of the prism θi, was calculated using 
Snell’s law and the angle of entrance at the facet of the prism. Finally the system was tested 
and calibrated using distilled water as a reference. The accuracy on the angle of incidence in 
our experiments was estimated to be about 20 arc min, while the error in the reflectance was 
less than 1% 

 Before each experiment the base of the prism was carefully cleaned with distilled water, 
ethanol and acetone. Such a procedure was important to avoid the adsorption of the colloidal 
particles on the prism and obtain reproducible results First, a reflectance curve around the 
critical angle with distilled water was taken as a reference. At the wavelength of our laser, the 
refractive index of distilled water at room temperature is about nm = 1.3313. Then, the water 
was replaced by the colloidal sample and a reflectance curve was taken over the same angular 
range. All reflectance curves were normalized with respect to the reflection signal of distilled 
water just after the critical angle. It was verified that, with our experimental setup, the 
contribution of the diffuse component in the specular direction was negligible in all the cases 
studied. We performed measurements with two types of particles: (i) spherical latex particles 
made of a blend of two polymers (Butil-poliacrylate and Metil-metacrylate) and (ii) 
irregularly shaped TiO2 particles (rutile), both dispersed in water. 
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Fig.3. Schematic of the experimental setup. 

 The suspensions of latex particles used in our experiments were prepared by diluting with 
distilled water highly concentrated samples provided by the Center for Polymer Research 
(CIP, México). The refractive index of the particles, np, was expected to be between 1.47-
1.48; we performed experiments with two particle sizes: a ≅ 125 nm and a ≅  186 nm. The 
size distribution of the latex particles was determined by dynamic light scattering using a 
commercial apparatus. It was found that the particles had a narrow size distribution with a 
polydispersity index of about 1.04, thus, the samples were considered to be monodisperse in 
the theoretical calculations.  

 The suspensions of TiO2 particles were prepared by dispersing dry TiO2 powder in 
distilled water. To reduce the formation of aggregates we added a surfactant and placed the 
suspensions 5 minutes in an ultrasonic bath before measurements were done. However, not all 
powder could be dispersed and a portion of it remained clogged at the bottom of the sample 
container. Therefore, we did no have an accurate estimation of the particle density of the 
suspensions prepared. The refractive index of the particles is assumed to be np ≈ 2.73, which 
corresponds to the average of the ordinary and extraordinary refractive indices of the TiO2 in 
rutile phase at the wavelength of the incident radiation. A previous characterization of the 
particles by electron microscopy [26] showed that their shape was irregular but most 
crystallites had a spheroidal shape with a wide size distribution. The size distribution followed 
a log-normal distribution with estimated values of σ and a0 of about 1.33 and 112.5 nm, 
respectively. A possible source of errors is that TiO2 particles suspended in water will 
sediment over time since the relative density of TiO2 is about 4. However, we checked for 
differences between reflectance data of TiO2 suspensions taken half an hour apart and found 
that they were small (less than about 2%). On the other hand, measuring a reflectance curve in 
our experiments took about 5 minutes. Therefore, the reflectance data taken in one experiment 
with a TiO2 suspension may be considered safely to be for the same value of the volume 
filling fraction. 

4. Results 

4.1. Results for latex particles  

In Fig. 4 we show experimental data of the reflectance of TE polarized light for latex particles 
of radius of about 125 nm. Four graphs for different values of the volume filling fraction, f = 
2.75%, 4.9%, 6.4% and 14.0% are shown. We include in the figure curves calculated with the 
coherent-scattering model (CSM) and the isotropic effective-medium model (IEMM). The 
values of a, f, nm, and np used for the theoretical curves were adjusted to fit best the 
experimental data. In this case we did not have an accurate estimation of the volume fraction 
of the samples because, as it was later realized, the polymerization reaction used to fabricate 
the particles was not complete. This means that we could not estimate the number density of 
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particles in suspension from the amount of the materials used to prepare the original samples 
and from the particle size determined by dynamic light scattering measurements. Also, the 
refractive index of the matrix could be somewhat larger than that of pure water due to the 
unknown amount of monomers left dissolved in the water. Therefore, we searched for the 
value of the volume fraction over a large range while keeping the values of a and np close to 
their nominal values to fit the experimental data. We also increased slightly the value of the 
refractive index of the water.  
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Fig. 4.  Reflectance results for a TE polarization using a suspension of latex particles. 
Experimental data for  ○ water and  ● particle suspension. Theoretical curves are calculated 
with: np=1.48, nm=1.3313, a =120.5 nm,. (a) f = 2.75 %, (b) f = 4.9 %, (c) f = 6.4 %, and          
(d) f = 14.0%, for  ——  CSM, ----- IEMM and  ····· pure water. 

 We can appreciate in Fig. 4 that the CSM as well as the IEMM reproduce fairly well the 
experimental data for volume fractions f = 2.75%, 4.9%, and 6.4%. The value of the particles 
radii adjusted for the theoretical curves agrees well with the average particle size determined 
by dynamic light scattering and the refractive index of the particles is within the interval 
expected. For a larger value of f, of about 14%, neither model can reproduce the experimental 
data. Therefore these results support the validity of both models for values of f up to 6.4% and 
a particle radius of about 120 nm.   
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Fig. 5. Reflectance results for a TM polarization using a suspension of latex particles. 
Experimental data for  ○ water and ● particle suspension. Theoretical curves are calculated 
with: np=1.47, nm=1.3313, a =186.5 nm. (a) f = 2.9 %, (b) f = 4.9 %, (c) f = 7.2 %,                   
and (d) f = 12.0%, for  ——  CSM, ----- IEMM and  ····· pure water.  

 In Figure 5 we present our results for latex particles with a diameter of about 186 nm. For 
these experiments the light polarization was TM. We also show four graphs for different 
values of the volume fraction between 2.9% and 12.0%. In this case we had a fair estimation 
of the volume fractions in the samples prepared for the experiments because the 
polymerization reaction that formed the particles was complete. The nominal values of f were 
fnom = 3%, 5%, 7% and 12% with a relative uncertainty of about 5%. The adjusted values 
shown in the inset of the graphs are f = 2.9%, 4.9%, 7.2% and 12% which coincide with the 
nominal values within the uncertainty. The particles radius used to adjust the CSM to the 
experimental data coincides with that obtained by dynamic light scattering measurements. The 
refractive index of the particles in the adjusted curves is np = 1.47 which also lies within the 
expected range. After finalizing the experiments we filtered the particles out from one sample 
and measured the refractive index of the remaining water. Its value differed at most by 3 units 
in the fourth digit from that of pure water. This means that there was a negligible amount of 
monomer dissolved in the water and one should expect the agreement between the nominal 
values of f and those used to adjust the theoretical curves.  

 We also performed measurements of the average extinction cross section of the particles 
by transmission through a 1 mm thick glass container filled with diluted samples. The 
obtained cross section was consistent with the adjusted values in Fig. 5.  We can appreciate 
that the CSM reproduces very well the experimental data for f = 2.9%, 4.9% and it still does 
fairly well for f = 7.2%. For f = 12% the CSM deviates noticeably from the experimental data. 
For f = 2.9%, 4.9% and 7.2% we see that the IEMM is somewhat off the experimental data 
and further off for f = 12%. In this experiment, we had a fair knowledge of the value of all the 
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parameters required in the reflectance model and we see that all the adjusted values coincide 
with them. Therefore, this experiment gives clear evidence of the validity of the CSM and of 
the limitations of the IEMM to model large particles.  

4.2. Results for TiO2 particles  

We obtained similar results of the coherent reflectance as a function of the angle of incidence 
for suspensions of TiO2 particles in water. In these experiments the volume filling fractions 
used were much lower than for latex particles since TiO2 particles disperse light a lot more 
efficiently. In Fig. 6 we present three graphs for three different values of f : 0.38%, 0.70% and 
1.20%. In this case the polarization of light was TE and we compare the experimental data 
with results from CSM and IEMM for polydispersed systems assuming a log-normal size 
distribution. We varied the values of f, σ, and a0 to fit the experimental data and used the 
nominal values for the refractive index of the particles and water, namely, np = 2.73 and nm = 
1.3313. The adjusted value of a0 is 126.6 nm and differs less than 13% from the value 
estimated by electron microscopy. The values of f were varied over a large range since we did 
not have an accurate estimation of the volume fraction. The reason is that not all the particles 
could be dispersed when preparing the particle suspensions and some remained clogged at the 
bottom of the container where the samples were prepared. The value of σ used for the 
theoretical curves, 1.23, differs from that estimated by electron microscopy, 1.33. Using a 
larger value of σ deteriorates the fitting. A possible reason of this discrepancy is that larger 
particles sediment faster than smaller ones and, after time passes, the width of the size 
distribution of particles suspended in water decreases. Nevertheless, in the log-normal 
distribution the difference between a value of σ = 1.23 and σ = 1.33 is not large. We again see 
that the CSM reproduces fairly well the experimental data, while the IEMM does not. In this 
case the differences of both models are larger. Actually, trying to fit the IEMM to the 
experimental data was unsuccessful, even for the experiment with the smallest value of f.  

 In Fig. 7 we show similar curves but for TM polarization. The samples used in these 
experiments were prepared from a different lot of particles, presumably with the same 
characteristics. We show graphs only for two different values of f. To fit the CSM model we 
again supposed the nominal values of np = 2.73 and nm = 1.3313. We varied the values of f, σ, 
and a0 to fit the experimental data of the two experiments consistently. In this case the value 
of a0 found is 107.6 nm and differs less than 5% from the estimated value by electron 
microscopy. We again found that a somewhat smaller width of the size distribution, σ = 1.23, 
fitted better the experimental data. Here the CSM reproduces again well the experimental data 
while the IEMM could not be fitted and the differences with the CSM are important all along 
the angular range shown. In this experiment we also performed measurements of the average 
extinction cross section of the particles. Again, we did this by transmission through a 1 mm 
thick glass container filled with diluted samples, and found that the measured cross section 
was consistent with the values of np, nm,  f, σ, and a0 used in Fig. 7. The second graph in Fig. 7 
is for an adjusted value of f = 2.1%. Note that the change in reflectance behind the critical 
angle with water is about 75%. Similarly, in Fig. 5 for latex particles we can appreciate 
changes up to 80%. These changes in reflectance about the critical angle are quite strong and 
allow us to detect the presence of the particles in suspension easily, even though the particle 
suspension is in the diluted regime. In this sense testing the CSM in an internal reflection 
configuration and about the critical angle provides stronger evidence of its validity. 
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Fig. 6. Reflectance results for a TE polarization using a suspension of TiO2 particles. 
Experimental data for ○ water and ● particle suspension. Theoretical curves are calculated 
with: np=2.73, nm=1.3313, ao=126.6 nm, σ=1.23, a) f = 0.38 %, b) f = 0.705 % and c) f = 1.2 %, 
for  ——  CSM, -----IEMM and  ····· pure water.  
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Fig.7. Reflectance results for a TM polarization using a suspension of TiO2 particles. 
Experimental data for ○ water and ● particle suspension. Theoretical curves are calculated 
with: np=2.73, nm=1.3313, ao=107.6 nm, σ = 1.23, a) f = 0.4 %, and b) f = 2.1 %,                    
for  ——  CSM, ----- IEMM and  ····· pure water.  

5. Conclusions 

In this work we presented a comparison of our own measurements of the reflectance of light 
from a dilute random system of particles embedded in a boundless, non-absorbing, 
homogeneous matrix, with the predictions of a coherent-scattering model. Experiments were 
performed in an internal-reflection configuration and near the critical angle, where the 
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contribution of the particles to the reflectance is expected to be largest. We also introduced the 
isotropic effective-medium model as a naïve application of the Fresnel’s relations and the 
effective-medium concept. The experiments were performed with diluted suspensions of latex 
and TiO2 (rutile) particles in water. We obtained reflectance data about the critical angle 
defined by the glass-water interface. The suspensions of latex particles used in this work had a 
narrow size distribution and were considered monodisperse; whereas the TiO2 suspensions 
had a wide particle size distribution following a log-normal distribution. We then compared 
the coherent-scattering model and the isotropic effective-medium model to experimental data.  

 We found that the coherent-scattering model could reproduce fairly well the experimental 
data within the experimental uncertainty; whereas the isotropic effective medium model could 
not. Therefore, the experimental results support the validity of the coherent-scattering model 
and confirm that Fresnel relations are not satisfied with a colloidal medium when the size 
parameter of the particles is not small, and the medium is, in consequence, turbid. Although 
our results are not exhaustive, they definitely support the validity of the coherent-scattering 
model for dilute suspensions with a volume fraction up to the order of a few percent and for 
particles with a refractive index as high as 2.7. Even though the coherent-scattering model 
presented here is limited to dilute suspensions, it was able to reproduce accurately changes in 
reflectance as high as 80%, when the measurements are performed close to the critical angle.  

 Theory and experiments show that in an internal-reflection configuration about the critical 
angle, there is a high sensitivity of the optical reflectance to changes in particle concentration 
and the type of particles in suspension. In a critical-angle refractometer, the effective 
refractive index of the external media is obtained by using the isotropic effective-medium 
model. This is usually done by determining the angular location of the inflexion point of the 
reflectance curve about the critical angle. The Fresnel’s reflection coefficients relate in a 
simple way the effective refractive index to the inflexion point. However, the relation between 
the coherent reflectance and the effective refractive index is not explicit in the coherent-
scattering model as it is in the case of Fresnel’s relations. Therefore, another conclusion of our 
work is that, in general, one cannot obtain accurately the effective refractive index of a turbid 
medium from a critical angle refractometer once the size parameter of the particles is large 
enough, since the relation between the Fresnel reflection coefficients and the effective 
refractive index is no longer valid. However, when the size parameter of the particles is rather 
small, as well as the contrast of their refractive index with respect to the one of the matrix, a 
critical angle refractometer may still produce accurate results, even though the colloidal 
suspension is already turbid. The coherent-scattering model could now be used to perform 
detail analysis of the errors involved in critical-angle refractometers, when applied to turbid 
colloids.  

 Nevertheless, the results presented here show that in practice, it is potentially very useful 
to measure the coherent reflectance about the critical angle, given its high sensitivity to the 
presence of colloidal particles. If one is aiming to characterize highly scattering particles, this 
offers a new alternative: one may invert the experimental reflectance curves about the critical 
angle using the coherent-scattering model, and obtain one or more of the following 
parameters: np, nm, a0, σ, and f. For this, it will be necessary to perform, in the near future, a 
sensitivity analysis of the reflectance curve to changes in these parameters.   
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