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In this paper we describe the propagation of the coherent component of an electromagnetic wave in a
colloidal system with large inclusions using an effective-medium approach. We show that the effective medium
is nonlocal �spatially dispersive� and derive expressions for the nonlocal longitudinal and transverse compo-
nents of the dielectric response, �L and �T. Numerical calculations of the wave-vector dependence of these
response functions are displayed. The dispersion relation for the transverse modes is calculated and compared
with the results obtained using well-known approximations for the effective index of refraction. It is also
shown that some of these approximations have actually a nonlocal nature, explaining why it is not possible to
use them to calculate, for example, the reflection properties of the colloidal system using conventional con-
tinuum electrodynamics. We also calculate the effective nonlocal electric permittivity � and effective nonlocal
magnetic susceptibility � and show that this more traditional description is equivalent to the one using �L and
�T.
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I. INTRODUCTION

The propagation of electromagnetic waves through a ran-
dom system of discrete scatterers has been studied for many
years, and yet there are still very fundamental physical ques-
tions and conceptual difficulties related to this problem. One
of the remaining challenges is to understand the use of ef-
fective medium theories �EMTs� in random systems when
the size of the scatterers is not small compared to the wave-
length of the incident radiation �large particles�. Our purpose
in this paper is to clarify the meaning and the correct use of
EMT to describe the electromagnetic properties of a random
system of large particles.

EMTs are well-established in random systems of discrete
scatterers when the size of the particles is very small com-
pared to the wavelength of the incident radiation.1 The most
widely known theory in this case was developed by Maxwell
Garnett.2 This theory is valid for small spherical particles
embedded in an otherwise homogeneous matrix and moder-
ate values of the volume density of particles. Since the semi-
nal work by Maxwell Garnett in 1904, there has been a vast
number of works aiming to extend its validity to nonspheri-
cal particles or larger volume fractions, see, for example,
Refs. 3–9. In all these works it is assumed that the size of the
particles is small compared to the wavelength of the incident
radiation, and the scatterers might be approximated as point
electric dipoles.

Efforts have been also directed to extend the EMTs to the
case of random systems of large particles. These theories are
known as extended effective medium theories �EEMTs�. In
this case, the radiation pattern of the electromagnetic field
scattered by the particles may include high order terms of a
multipolar expansion. In the case of spherical particles the
magnitude and phase of each radiating multipole term is
worked out using the solution developed by Mie.10 Recently,
Ruppin analyzed the internal consistency of extended Max-
well Garnett theories and noted important limitations in their

use as compared to EMTs for small scatterers.11

When the size of the particles is not small, some authors
have noted the possibility that, even in the case when neither
the particles nor the matrix are magnetic, one may require an
effective magnetic susceptibility in addition to an effective
electric permittivity to construct a consistent EMT. For in-
stance, in Ref. 12, the magnetic dipole term in the radiation
pattern of the particles is kept and an effective magnetic
susceptibility of the system is calculated. It was shown that
the magnetic dipole term can be important when the refrac-
tive index of the particles is large compared to that of the
matrix and the size of the particles is not too small compared
with the wavelength of the incident field. Also, Bohren13

analyzed the coherent transmission and reflection of light at
normal incidence from a dilute slab of large particles and
showed that these properties can be described with a usual
effective-medium approach only if one accepts that the sys-
tem has an effective magnetic susceptibility in addition to an
effective electric permittivity. We arrived at the same conclu-
sion from the analysis of the coherent reflection of light at
oblique angles of incidence from a dilute half space of a
random system of large particles.14,15 However, we obtained
an uncomfortable result: we found that the effective electric
permittivity and magnetic permeability were functions of the
angle of incidence and depended on the polarization of light.
On the other hand, the need of an effective magnetic suscep-
tibility in systems whose components are not magnetic has
been questioned explicitly in the past. This point has re-
mained unclear, and part of the motivation of this work is to
achieve a deeper understanding in this respect.

When particles are large, the problem has traditionally
been regarded as an electromagnetic scattering problem. In
this case the electromagnetic radiation is usually decom-
posed into a coherent or average component and a diffuse
one. This decomposition is also appropriate in the case of
small scatterers; however, in that case, the power carried by
the diffuse field is negligible compared to that carried by the
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average or coherent component, and this is seldom even
mentioned. Actually, for small scatterers, as well as for what
we usually call homogenous media, the coherent field corre-
sponds to the so-called macroscopic field. In the case of large
particles the energy flux of the diffuse field is comparable or
sometimes even larger than the one carried by the coherent
field, and one refers to the random medium as being turbid. It
is precisely this fact which leads some researchers to ques-
tion the validity of EMTs in the case of large particles. Nev-
ertheless, one can restrict the use of EMTs to the description
of the coherent component only and ask oneself about the
validity and consistency of an effective-medium approach.
The answer to this question is the main issue of our work.

First of all, one can recall that even for small particles
there is always a diffuse field, and even if it is small, its mere
presence might imply that one should worry about the con-
sistency of EMTs at some level of precision. Also, the dis-
tinction between small and large particles is of course, not
sharp, and there will be always a range of size parameters
and volume density of scatterers where the diffuse field is
somewhat small but not negligible. Therefore if one could
show that EMTs are in fact applicable to the description of
the coherent beam in systems of large particles, then one
could use the whole power of continuum electrodynamics
�CE� to interpret some experiments with turbid media. For
example, there have been attempts to measure an effective
refractive index for the coherent beam in a turbid suspension
of large particles, using the same experimental procedure as
the one used to measure the refractive index of homogeneous
media.16–20 Nevertheless, the naive use of this effective index
of refraction in CE could lead to large errors, for example, if
the reflection of the coherent beam is involved. We have
recently shown that the measured reflection coefficients of
the coherent wave from a turbid suspension with a flat inter-
face are not consistent with the results obtained when its
effective refractive index is substituted in Fresnel’s
relations.14,21,22 Therefore it is of fundamental importance,
both conceptually and also in practical applications, to
clarify the applicability and the correct use of EMTs in ran-
dom systems of large particles.

Most of the work in this direction has been aimed at the
calculation of the effective propagation constant of the co-
herent beam using a scattering-theory approach. The simplest
result for the effective refractive index for the coherent wave
in a dilute system of large particles is what some authors
now call the van de Hulst effective refractive index. Al-
though this result can be traced back to earlier works in
different contexts, it was van de Hulst, in his book on scat-
tering by small particles, that provided a simple and clear
derivation of it.23 Basically it is obtained by analyzing the
transmission of a plane wave through a slab of a random
system of particles and calculating the coherent superposi-
tion of the scattered waves in the forward direction far away
from the slab. After averaging over the position of the
spheres the transmitted coherent wave is obtained. From the
comparison of this result with the one obtained for a wave
transmitted through a slab of an equivalent homogeneous
medium of the same thickness, the effective refractive index
is identified. As it turns out, the van de Hulst effective re-
fractive index coincides with that obtained from more rigor-

ous theories in the case of a small density of particles.
Probably the first works using a rigorous scattering-theory

approach to calculate the wave equation obeyed by the co-
herent wave in a random system of discrete scatterers were
those by Foldy and Lax in the 1940s and early 1950s.24–26

Since then, there have been several works over the years to
extend the formalism and results of Foldy and Lax.27–30 The
scattering-theory approach consists of setting formally the
multiple-scattering equations and averaging them. A hierar-
chy of equations involving the probability correlation func-
tions for one, two, three particles, and so forth are obtained.
The so-called effective field approximation �EFA�, in which
one assumes that the exciting field at any of the particles is
the average field, truncates the hierarchy of equations at the
first stage. Truncating the hierarchy of equations at the sec-
ond stage results in the so-called quasicrystalline approxima-
tion �QCA�. The original results by Foldy and Lax actually
correspond to the EFA and they are only valid for dilute
systems of particles. The QCA is valid for denser systems
but it requires time-consuming calculations even with a fast
modern computer. Nevertheless, the QCA has been used by
many authors in recent years to calculate the propagation,
transmission, and reflection from random systems of large
particles with flat interfaces.30–32

In all previous works with the scattering approach, an
effective propagation constant for the coherent wave is cal-
culated. From it, an effective index of refraction is identified.
However, this approach does not provide a complete EMT,
because to use an EMT in macroscopic Maxwell’s equations
one requires the effective response functions that relate the D
field with the average E field, and the H field with the aver-
age B field, and one cannot get these response functions from
the knowledge of solely the effective index of refraction. In
other words, one requires the effective response of the aver-
age induced currents to the average electric and magnetic
fields. Our approach here differs from all previous ones be-
cause it goes precisely in this direction: we first derive the
electromagnetic response of the system, that is, the relations
between the average of the current density induced in the
effective medium and the average electric and magnetic
fields, and from these we derive the effective propagation
wave vector. Thus the effective medium is fully described.

To keep things simple, we restrict ourselves to an un-
bounded system of spherical particles in vacuum. We assume
that all particles are nonmagnetic and have the same radius
and the same refractive index, and their location is random
with a uniform density of probability function throughout
space. We also assume that the density of particles is small
enough, so that the effective-field approximation in the solu-
tion of the multiple scattering equations is valid. For con-
creteness in this paper we refer to the random system of
particles as a colloidal medium or simply as a colloid. We
find that the relation between the total average induced cur-
rent and the coherent electric field is actually nonlocal. By
“total current” we mean that we do not split the induced
current into polarization and magnetization components, as
is usually done. Thus there is only an effective dielectric
tensor that contains all the induction effects including those
that are traditionally regarded as magnetic. Recognizing the
fact that the response is nonlocal, we calculate the longitudi-
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nal and transverse dielectric functions in momentum space
that are given in terms of the corresponding diagonal com-
ponents of a transition operator �commonly known in scat-
tering theory as T matrix� of an isolated sphere. We use a
special procedure to calculate the longitudinal and transverse
components of this transition operator that require the calcu-
lation of only the electric field within an isolated sphere ex-
cited by an external plane wave driven by external sources.
We then derive the dispersion relations for the transverse and
longitudinal electromagnetic modes of the system and define
an effective index of refraction for the transverse case. We
find that van de Hulst effective refractive index actually has
a nonlocal character and this explains why its use as a local
refractive index in CE is wrong and may lead to mistakes.
Then we discuss the energy balance in our EMT and its
relation to the power carried by the diffuse field. Finally, we
present the relation of our approach to the traditional split-
ting of the induced current into polarization and magnetiza-
tion components, derive an expression for the effective mag-
netic permeability, and discuss its relevance and physical
meaning. This alternative equivalent interpretation may help
to clarify the meaning of a magnetic response of turbid col-
loidal systems. Actually, the importance of the nonlocal ef-
fects in the coherent propagation of light in random systems
of large particles has been noted recently,33 although without
firm theoretical grounds.

II. FORMALISM

We consider a colloidal system in the presence of an ap-
plied electromagnetic field oscillating at frequency �. Our
objective is the calculation of the average current density
induced in the system and its relation with the average elec-
tric field. We will use the SI system of units and will denote
by �0 and �0 the permittivity and permeability of vacuum,
respectively. The colloidal system will be regarded as an in-
finite collection of identical spheres of radius a located at
random in a unbound homogeneous matrix. Furthermore, we
will assume that the spheres are made of a nonmagnetic ma-
terial characterized by a frequency-dependent local permit-
tivity �s���, or equivalently, by a frequency-dependent local
conductivity �s���, related to �s by �s=�0+ i�s /�. By non-
magnetic we mean a material with magnetic permeability
�s=�0, and for simplicity in the presentation we will assume
that the embedding matrix is vacuum.

We start by writing the equation for the electric field E� in
the system, as

� � �� � E� � − k0
2E� = i��0J�ind, �1�

where i=�−1, k0
2=�2�0�0, and J�ind is the total current den-

sity induced in the colloidal system. By total we mean the
current induced by all possible mechanisms, that is, not only
conduction and polarization currents but also the induced
currents that are traditionally regarded as the sources of mag-
netism.

The formal solution of Eq. �1� can be written as

E� �r�;�� = E� inc�r�;��

+ i��0�
s=1

N � GJ0�r�,r��;�� · J�ind,s�r��;��d3r�, �2�

where r� denotes the position vector, N is the total number of

particles, E� inc is the incident field, J�ind,s is the current density

induced in the sth sphere, and GJ0�r� ,r�� ;�� is the free dyadic
Green’s function given by

GJ0�r�,r��;�� = �1J +
1

k0
2 � �� exp�ik0	r� − r��	


4�	r� − r��	
. �3�

Here 1J is the unit dyadic and the second term in the right-
hand side �rhs� of Eq. �2� corresponds to the field generated
by the induced currents. In case r� lies within the spheres, the

rhs of Eq. �2� is called the internal field E� I, while if r� lies
outside the volume of the spheres the second term in the rhs
of Eq. �2� is called the scattered field.

First, we start by recognizing that if we consider a single
isolated sphere, centered at the origin, in the presence of an

incident electric field E� inc, while the current induced J�ind

within the sphere responds locally to the internal field E� I, it

responds nonlocally to the incident electric field E� inc, that is

J�ind�r�;�� = �s���E� I�r�;��

=
1

i��0
� TJ�r�,r��;�� · E� inc�r��;��d3r�. �4�

This is easy to see because while E� I has the information
about the size and shape of the sphere, as well as its polar-

ization properties, E� inc does not have this information thus

this information should be given in the nonlocal kernel TJ,
whose range of nonlocality is given by the size of the sphere.

Technically, the kernel TJ is the r-representation of the tran-
sition operator �also called T matrix�, and this operator is
exactly the same as the one used in formal scattering
theory.30 To be more precise, it obeys a Lippmann-Schwinger
integral equation that in our case can be written as

TJ�r�,r��;�� = U�r�;�����r� − r���1J

+ �
Vs

GJ0�r�,r��;�� · TJ�r��,r��;��d3r�� , �5�

where

U�r�;�� = � 0 if r� � Vs

�2�0��s��� − �0
 if r� � Vs,
� �6�

and Vs is the volume of the sphere. One can immediately see
that the information about the size, shape, and polarization

properties of the sphere are now in TJ.
Then, going back to the system composed by a collection

of N identical spheres, the total current induced within the
spheres will be given by
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J�ind�r�;�� = �
s=1

N

J�ind,s�r�;��

=
1

i��0
�
s=1

N �
Vs

TJ�r� − r�s,r�� − r�s;�� · E� exc,s�r��;��d3r�,

�7�

where the field applied on the sth sphere is called the excit-

ing field E� exc,s which is defined as the sum of the incident
electric field plus the electric field produced by the currents
induced in all the spheres but the sth sphere. Here r�s denotes

the location of the center of the sth sphere and the kernel TJ

is, as before, the r-representation of the transition operator of
an isolated sphere, but now centered at r�s. Notice that the

response of the induced current J�ind,s to E� exc,s is already non-
local because the exciting field is not the internal field.

Thus the combination of Eqs. �2� and �7� together with the
definition of exciting field leads to the system of coupled
integral equations used by Foldy and Lax in their scattering-
theory approach to this problem. The main difficulty in solv-
ing these equations is the calculation of the exciting field

E� exc,s that appears in Eq. �7�. At this point one recalls that our
objective here is the calculation of the average induced cur-
rent density. As a consequence of the random location of the
spheres, the induced currents and the induced fields have a
random component. By average we will consider here any
procedure that smooths out this random component yielding
a smooth function with spatial variations of the order of the
wavelength of the applied electromagnetic field. In our case,
and for our purposes related to the optical properties of col-
loidal systems, we take as an averaging procedure the con-
figurational average, that will be denoted by ¯�. The justi-
fication and appropriateness of this choice is based on the
fact that measurements in the laboratory may actually corre-
spond to the configurational average of a system of particles
of finite size. Also, the configurational average procedure is
always well-defined, regardless of the size of the scatterers
and their probability density function in space.

Here we avoid the explicit calculation of the exciting field
by ignoring the correlations among particles and introducing

the effective-field approximation �EFA�, E� exc,s�E� �, which
will be valid in the dilute regime, that is, when the volume
filling fraction of the spheres is small. The average of the

total current induced in the system is given by J�ind�
= �sJ�ind,s�, and is obtained by averaging Eq. �7�. Thus within
the EFA one can write

J�ind��r�;��

=
N

i��0
� � 1

N
�
s=1

N

TJ�r� − r�s,r�� − r�s;��� · E� ��r��;��d3r�,

�8�

where E� � is the actual macroscopic electric field. This equa-
tion establishes a nonlocal relation between the average of
the total induced current and the macroscopic electric field

showing, explicitly, the nonlocal nature of the electromag-
netic response in this kind of systems.

If we further assume that on the average the system is
homogeneous and isotropic, one can write

� 1

N
�
s=1

N

TJ�r� − r�s,r�� − r�s;��� = TJ��	r� − r��	;�� , �9�

denoting that after performing the average, the resulting
function depends only on 	r�−r��	. Equation �8� looks like a
nonlocal Ohm’s law where in case of homogeneous and iso-

tropic systems the kernel NTJ��	r�−r��	 ;�� / i��0 plays the
role of an effective nonlocal conductivity. In order to avoid
confusion we will call Eq. �8� a generalized nonlocal Ohm’s
law, where the term generalized is introduced to remind us
that in the average induced current there is not only the con-
tribution of the conduction current but also the contribution
of all the currents induced by all possible mechanisms, in-
cluding those traditionally assigned to magnetic effects.

We now transform the integral relation in Eq. �8� into the
momentum representation �p-representation� using

TJ�r� − r�s,r�� − r�s;�� =� d3p

�2��3 � d3p�

�2��3

exp�ip� · �r� − r�s�
TJ�p� ,p��;�� exp�− ip�� · �r�� − r�s�
 �10�

and performing the configurational average by neglecting
correlations among spheres. Assuming a uniform density of
probability function for the position of the particle reduces
the configurational average procedure to the integration:
�1/V��d3rs, where V is the total volume of the system, and
this integration yields a term proportional to ��p� − p���. This
approximation is valid in the dilute regime, which is consis-
tent with the EFA, and one gets the following algebraic re-
lation:

J�ind��p� ;�� =
n0

i��0
TJ�p� ,p� ,�� · E� ��p� ,�� , �11�

where n0�N /V is the number density of spheres, and

TJ�p� ,p��;�� =� d3r� d3r� exp�− ip� · r�
TJ�r�,r��;��exp�ip�� · r��


�12�

is the Fourier transform of the transition operator of an iso-
lated sphere. We will be using the same symbol for quantities
in the r- and p-representations, the difference being only in
the arguments. Notice that in Eq. �11� only the p��= p� com-

ponent of TJ remains due to the configurational averaging
procedure.

Equation �11� can now be identified with the generalized
nonlocal Ohm’s law, in the p-representation, with an effec-
tive nonlocal conductivity given by

�Jef f�p� ,�� =
n0

i��0
TJ�p� ,p� ,�� . �13�

BARRERA, REYES-CORONADO, AND GARCÍA-VALENZUELA PHYSICAL REVIEW B 75, 184202 �2007�

184202-4



Thus in the dilute regime this effective nonlocal conductivity
is proportional to the number density of spheres times a fac-
tor containing the p��= p� component of the transition operator
of a single, isolated sphere. Thus one can assign this conduc-
tivity to the response of an effective medium that is, on the
average, homogeneous and isotropic.

Now we introduce the longitudinal and transverse projec-
tion operators as

P̂L � p̂p̂ and P̂T � 1J − p̂p̂ , �14�

where p̂= p� / p is the unit vector along p� , and project all ten-
sorial and vectorial quantities along its longitudinal and
transverse components. With these projections the general-
ized nonlocal Ohm’s law will look like

�J�ind�L

J�ind�T
� = ��Jef f

LL �Jef f
LT

�Jef f
TL �Jef f

TT � · �E� �L

E� �T
� , �15�

where the vectorial quantities are projected as J�ind�L�T�

= P̂L�T� · J�ind�, and the tensorial quantities as �Jef f
L�T�T�L�

= P̂L�T� ·�Jef f · P̂T�L�; but since the effective medium is homo-
geneous and isotropic, there is no LT coupling, thus �Jef f

LT

=�Jef f
TL =0, and one can write

�Jef f
LL = �ef f

L �p,��p̂p̂ and �Jef f
TT�p,�� = �ef f

T �p,���1J − p̂p̂
 ,

�16�

where the two scalar functions �ef f
L and �ef f

T are called lon-
gitudinal and transverse components, respectively. Using Eq.
�16� one can also write �Jef f�p� ;�� in dyadic form as

�Jef f�p� ,�� = �ef f
L �p,��p̂p̂ + �ef f

T �p,���1J − p̂p̂
 . �17�

In the same manner, the transition-operator tensor can be
written as

TJ�p� ,p� ;�� = TL�p,��p̂p̂ + TT�p,���1J − p̂p̂
 , �18�

where TL and TT denote longitudinal and transverse compo-
nents. Finally, one can write the generalized nonlocal Ohm’s
law as

J�ind� = �ef f
L E� �L + �ef f

T E� �T, �19�

where

�ef f
L�T� =

n0

i��0
TL�T��p,�� . �20�

We now introduce the displacement field through

D� = �0E� � +
i

�
J�ind� , �21�

and define the effective electric permittivity tensor �Jef f �also
called effective dielectric function� as

�Jef f = �01J +
i

�
�Jef f , �22�

thus the usual relation D� =�Jef f · E� � is fulfilled. Since J�ind� is
the total induced current, all the effects traditionally regarded

as “magnetic” are already included in �Jef f and the field H� will

be simply given by H� =B� /�0.
We now use Eqs. �13�–�22� to relate the longitudinal and

transverse components of �Jef f to the corresponding ones of
the transition operator, and get

�̃ef f
L�T��p,�� = 1 +

n0

k0
2 TL�T��p,�� , �23�

where L�T� denotes longitudinal �transverse�, and �̃�� /�0.
Then, in the momentum representation, the displacement
field is given by

D� = �̃ef f
L E� �L + �̃ef f

T E� �T, �24�

where E� �L= p̂�p̂ · E� �� and E� �T=−p̂� �p̂� E� �� are the lon-
gitudinal and transverse components of the average electric
field. This description of the electromagnetic response of the
system in terms of �̃ef f

L and �̃ef f
T will be called the LT scheme,

and in this scheme we will analyze the nonlocal electromag-
netic response of the colloidal system.

III. TRANSITION OPERATOR

In this section we calculate the longitudinal and transverse
components of the transition operator in the p-representation.
The straightforward procedure would be to transform, first,
the integral equation given in Eq. �5� into the corresponding
integral equation in the momentum representation, then solve

this integral equation for TJ�p� , p��� for the case of a single

sphere, and finally take TJ�p� , p��= p��. A calculation procedure

for solving the integral equation for TJ�p� , p��� for the case of a
sphere has been devised by Tsang and Kong28 using a spheri-
cal basis. Here we will use an alternative procedure that

yields TJ�p� , p��= p�� directly.
We start by considering that in Eq. �4� the incident electric

field is the field corresponding to an electromagnetic plane

wave with wave vector p� and amplitude E� 0, that is, E� inc

=E� 0 exp�ip� ·r�
. This plane wave is not a free electromagnetic
wave, it is rather a plane wave generated, in general, by an
external charge density and an external current density. In
this way the wave vector p� and the frequency � can be

managed independently. We take p� along the Z axis and E� 0 in
the XZ plane. Since our objective is the calculation of
TL�T��p ,��, and these scalar functions are associated to the
LL �TT� component of the effective conductivity tensor, we
split the calculation into two different cases and consider
separately that the incident plane wave is either longitudinal
�L� or transverse �T�. Then we solve the scattering problem

and calculate the internal field E� I�r� ;�� following very much
the procedure used to solve the Mie-scattering problem:10

one first expands the fields on a spherical basis and then one
uses boundary conditions to calculate the expansion coeffi-
cients. Here care must be taken when considering that the
exciting field is not a free electromagnetic wave. Having

E� I�r� ;�� we calculate the total current induced within the

sphere through J�ind�r ;��=�s���E� I�r� ;��. We then calculate

NONLOCAL NATURE OF THE ELECTRODYNAMIC… PHYSICAL REVIEW B 75, 184202 �2007�

184202-5



the Fourier transform of the induced current J�ind�p� ;�� and
use the
relation

J�ind�p� ,�� =
1

i��0
TJ�p� ,p� ;�� · E� 0 �25�

to calculate the components TL�T��p ,��. These components
correspond to the LL�TT� projections of the effective con-
ductivity. In order to determine them we take the L�T� pro-

jection of J�ind�p� ;�� for the case in which the incident plane
wave had a corresponding L�T� character. Since the polariza-
tion of the longitudinal �transverse� incident plane wave lies
along the Z�X� axis, the corresponding longitudinal �trans-

verse� component of TJ can be calculated by using Eq. �25�,
and will be given by

TL�T��p,�� = êz�x� · TJ�p� ,p� ;�� · êz�x�

=
k0

2

− i��0E0
� êz�x� · J�ind,L�T��r�;��exp�− ip� · r�
d3r ,

�26�

where êz�x� is a unit vector along the Z�X� direction, J�ind,L�T�
denotes the induced current density corresponding to an in-
cident L�T� plane wave, and we recall that k0

2=�2�0�0.
We will illustrate our procedure for the transverse case

and a sphere of radius a. In this case the incident electric

field can be written as E� i
T=E0 exp�ip� ·r�
êx, and the incident

magnetic field as B� i
T= �p /��E0 exp�ip� ·r�
êy, both of them

generated by an applied external current density J�ext
T

= �−i /��0��p2−k0
2�E� i

T. For p=k0, there is no external current
and the plane wave becomes a free electromagnetic wave.
Also, in the long wavelength limit �p→0�, one can write

TT�p → 0,�� =
k0

2

− i��0E0
� êx · J�ind,T d3r = k0

2 p�0 · êx

�0E0

= k0
2���� , �27�

where J�ind,T is the current density induced by an incident T
plane wave, p�0 is the dipole moment induced in the sphere,
and ���� is the polarizability of the sphere. Since TT�p
→0,�� is equal to k0

2 times the polarizabilty ���� of the
sphere, this yields a clear physical interpretation of TT in this
limit.

We now use the spherical basis

M� emn = � � �r�	emn�, M� omn = � � �r�	omn� , �28�

N� emn =
� � M� emn

k
, N� omn =

� � M� omn

k
,

L� emn =
�	emn

k
, L�omn =

�	omn

k
, �29�

where e �o� refers to even �odd� and the generating scalar
functions

	emn = cos�m
�Pn
m�cos ��zn�kr� , �30�

	omn = sin�m
�Pn
m�cos ��zn�kr� �31�

are solutions of Helmholtz equations. Here �r ,� ,
� denote
the spherical coordinates, zn�kr� are any of the four spherical
Bessel functions jn, yn, hn

�1�, or hn
�2�, and the Pn

m are the asso-
ciated Legendre polynomials with the normalization given
by Bohren.34 The fields of the incident plane wave polarized
in the X direction can be written only in terms of the func-
tions with m=1, as

E� i
T = �

n=1

�

En
T�M� o1n

�1� − iN� e1n
�1� � , �32�

B� i
T = −

p

�
�
n=1

�

En
T�M� e1n

�1� + iN� o1n
�1� � , �33�

where En
T= inE0�2n+1� /n�n+1� and the superscript �1� indi-

cates that the radial dependence is given by the spherical
Bessel function jn�pr�.

Since we have an external current J�ext, the fields within
the sphere are now solutions of Helmoltz equations with
sources. One can show that the internal field �ra� can be
expanded as

E� I
T = �1 − ���

n=1

�

En
T�cn

TM� o1n
�1� − idn

TN� e1n
�1� � + �E� i

T, �34�

B� I
T = −

kI

�
�1 − ���

n=1

�

En
T�dn

TM� e1n
�1� + icn

TN� o1n
�1� � + �B� i

T, �35�

where �= �k0
2− p2� / �kI

2− p2� and the radial dependence of M� �1�

and N� �1� is through jn�kIr�, with kI=���s�0. The factor � is
required by the presence of the external sources that generate
the incident plane wave. If the incident plane wave were a
free plane wave, then p=k0, �=0, and one recovers the Mie
scattering problem. On the other hand, the scattered fields
�r�a� are divergenceless and obey the wave equation, thus
one can write

E� S
T = �

n=1

�

En
T�− bnM� o1n

�3� + ianN� e1n
�3� � , �36�

B� S
T =

k0

�
�
n=1

�

En
T�ibnN� o1n

�3� + anM� e1n
�3� � , �37�

where the superscript �3� indicates that the radial dependence
is through hn�k0r�.

The expansion coefficients cn
T and dn

T of the internal field
are obtained through the boundary conditions, that is, by
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imposing that the tangential components of the electric and
magnetic field be continuous at r=a. This yields

cn
T =

jn�xi��x0hn�x0�
� − hn�x0��xijn�xi�
�
jn�xI��x0hn�x0�
� − hn�x0��xIjn�xI�
�

, �38�

dn
T =

xijn�xi��x0hn�x0�
� − x0
2hn�x0�

1

xi
�xijn�xi�
�

xIjn�xI��x0hn�x0�
� − x0
2hn�x0�

1

xI
�xIjn�xI�
�

, �39�

where xi� pa, x0�k0a, and xI�kIa are dimensionless vari-
ables and the primes denote the derivative with respect to the
argument. In the long wavelength limit �p→0� the factor �
→1/ �̃s and the only coefficient that survives is d1

T, with the
following asymptotic value:

d1
T�p → 0� � d1

T�0


= −
2

3

x0
2h1�x0�

xIj1�xI��x0h1�x0�
� − x0
2h1�x0�

1

xI
�xIj1�xI�
�

,

�40�

thus the internal field becomes

E� I
T�p → 0� = �1 −

1

�̃s
�E0

3

2
d1

T�0
N� e11
�1� �kIa,�,
� +

1

�̃s

E0êx,

�41�

where �̃s��s /�0. If one also takes the small-particle limit �
k0a→0, kIa→0� then d1

T�0
→2/ ��̃s+2� and N� e11
�1� → �2/3�êx,

thus the internal field approaches the well-known result, E� I
T

→E0êx�3/ ��̃s+2�
.
The total current density induced within the sphere by the

incident transverse plane wave is given by �sE� I
T, and can be

written as

J�ind,T = �s�����1 − ���
n=1

�

En
T�cn

TM� o1n
�1� − idn

TN� e1n
�1� � + �E� i� .

�42�

One can see from the angular dependence of the basis func-
tions that in the multipole expansion there are closed and
open induced currents corresponding to the terms with the

functions M� o1n
�1� and N� e1n

�1� , respectively, plus currents propor-
tional to the incident electric field. There is also a surface
charge density induced at the surface of the sphere generated
by the open currents. Now, according to Eqs. �25� and �26�,
the p-Fourier component of this induced current projected
into the X direction is proportional to TT�p ,��.

Thus in order to calculate the transverse component

TT�p ,�� one introduces the multipolar expansions for J�ind,T

into Eq. �26� and performs the volume integration. The inte-
gration is done by expanding the exponential exp�−ip� ·r�
 in
the same spherical basis, and after a long but straightforward

algebra, that is sketched in Appendix A, one gets the follow-
ing expression for the transverse component of the transition
operator:

TT�p,�� =
4�a3

3
k0

2��̃s − 1�� k0
2 − p2

k0
2�̃s − p2 +

3

2

k0
2��̃s − 1�

k0
2�̃s − p2 �

n=1

�

��2n + 1��cn
TI2�n,n� + dn

T�n + 1

xi
I1�n,n − 1�

+
n

xI
I1�n + 1,n� − I2�n + 1,n − 1���� , �43�

where the symbols I1 and I2 denote integrals given by

I1�n,m� � �
0

1

xjn�xix�jm�xIx�dx , �44�

I2�n,m� � �
0

1

x2jn�xix�jm�xIx�dx , �45�

I2�n,n� =
1

xi
2 − xI

2 �xIjn�xi�jn−1�xI� − xijn−1�xi�jn�xI�
 . �46�

In the long wavelength limit �p→0�, to lowest order, the
only coefficient that survives is d1

T and we get

TT�p → 0,�� =
4�a3

3
k0

2�1 −
1

�̃s
��1 + 3��̃s − 1�d1

T�0
 j1�xI�
xI

� .

�47�

According to Eq. �27�, one can identify the polarizability
���� of the sphere with

���� =
4�a3

3
�1 −

1

�̃s
��1 + 3��̃s − 1�d1

T�0
 j1�xI�
xI

� ,

which in the small particle limit �x0→0 and xI→0� becomes
equal to 4�a3��̃s−1� / ��̃s+2�, and this corresponds to the
well-known expression for the polarizability of a sphere in
the quasistatic limit.

Now, one follows a similar procedure for calculating the
longitudinal component of the transition operator. This pro-
cedure is sketched in Appendix B, and one gets

TL�p,�� =
4�a3

3
k0

2�1 −
1

�̃s
��1 + ��̃s − 1��

n=1

�

3n�n + 1��2n

+ 1�dn
L jn�xI�

xI

jn�xi�
xi

� , �48�

where
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dn
L =

− x0
2hn�x0�

1

xi
jn�xi�

xIjn�xI��x0hn�x0�
� − x0
2hn�x0�

1

xI
�xIjn�xI�
�

. �49�

In the long wavelength limit �p→0� the only coefficient that
survives in the expansion for TL is d1

L, and one obtains the
following expression:

TL�p → 0,�� =
4�a3

3
k0

2�1 −
1

�̃s
��1 + 6��̃s − 1�d1

L�0
 j1�xI�
xI

� ,

�50�

where

d1
L�0
 � d1

L�p → 0�

=
1

3

− x0
2h1�x0�

xIj1�xI��x0h1�x0�
� − x0
2h1�x0�

1

xI
�xIj1�xI�
�

.

�51�

Now, comparing Eq. �50� with Eq. �47�, and recalling that
d1

L�0
=d1
T�0
 /2 one can see that

TT�p → 0,�� = TL�p → 0,�� . �52�

IV. LT SCHEME

Our description of the electromagnetic response of the
colloidal system is given in terms of two scalar functions: the
longitudinal and the transverse effective nonlocal permitivi-
ties, �̃ef f

L �p ,�� and �̃ef f
T �p ,��. These two functions can be

readily obtained by combining Eqs. �23�, �43�, and �48�.
From Eqs. �23� and �52� one can immediately see that in the
long wavelength limit both of these functions coincide, that
is,

�̃ef f
L �p → 0,�� = �̃ef f

T �p → 0,�� � �̃ef f
�0
��� , �53�

where

�̃ef f
�0
��� = 1 + f�1 −

1

�̃s
��1 + 3��̃s − 1�d1

T�0
 j1�xI�
xI

� , �54�

and f =n0�4�a3 /3� is the filling fraction of the spheres. This
means that in our system, in the long wavelength limit, there
is no distinction between a longitudinal or a transverse re-
sponse. One can also show that at small wavelengths �pa
1� both of these functions behave as

�̃ef f
L�T��p,�� = �̃ef f

�0
��� + �̃ef f
L�T��2
����pa�2 + ¯ , �55�

where the explicit expressions for the frequency dependent
coefficients �̃ef f

L�2
��� and �̃ef f
T�2
��� are given in Appendix C.

Since we are interested here in the response of the system in
the case of big spheres, that is pa�1 or even larger, then our
main interest here lies in the dependence on p of the func-
tions �̃ef f

L �p ,�� and �̃ef f
T �p ,��.

We now show numerical evaluations for real and imagi-
nary parts of �̃ef f

L �p ,�� and �̃ef f
T �p ,�� in the optical region of

the spectrum for the case of two different materials: silver, a
noble metal, and TiO2, an insulator with a high index of
refraction . The frequency dependence of the real and imagi-
nary parts of the dielectric function �s��� for these materials
were obtained from the literature35 and are plotted for refer-
ence in Fig. 1.

FIG. 1. Experimental data of the real and imaginary parts of the
index of refraction for silver and titanium dioxide as a function of
frequency or wavelength in vacuum. �a� Real and �b� imaginary part
for silver and, �c� real and �d� imaginary part for titanium dioxide.
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In Figs. 2–5 we show, for these materials and particles of
radius a=0.1 �m, the real and imaginary parts of �̃ef f

L �p ,��
and �̃ef f

T �p ,�� as functions of p at different frequencies. We
actually plot Re�(�̃ef f

L�T��p ,��−1) / f
 and Im��̃ef f
L�T��p ,�� / f


which corresponds to the contribution of the colloidal par-
ticles scaled by their filling fraction. The effective response

functions do not scale with the product pa, nevertheless we
plot them as a function of pa, just to use a dimensionless
variable and be able to compare them easily. One can readily
see how the quadratic behavior shown by the dashed curves
and quoted in Eq. �55� survives up to pa�1. One can also

FIG. 2. �Color� Contribution of silver particles to the transverse
component of the nonlocal dielectric function ��a� real and �b�
imaginary part
, normalized to the volume filling fraction, as a func-
tion of pa, for several vacuum wavelengths. The particle radius is
fixed at a=0.1 �m.

FIG. 3. �Color� Contribution of silver particles to the longitudi-
nal component of the nonlocal dielectric function ��a� real and �b�
imaginary part
, normalized to the volume filling fraction, as a func-
tion of pa, for several vacuum wavelengths. The particle radius is
fixed at a=0.1 �m.

FIG. 4. �Color� Contribution of titanium-dioxide particles to the
transverse component of the nonlocal dielectric function ��a� real
and �b� imaginary part
, normalized to the volume filling fraction,
as a function of pa, for several vacuum wavelengths. The particle
radius is fixed at a=0.1 �m.

FIG. 5. �Color� Contribution of titanium-dioxide particles to the
longitudinal component of the nonlocal dielectric function ��a� real
and �b� imaginary part
, normalized to the volume filling fraction,
as a function of pa, for several vacuum wavelengths. The particle
radius is fixed at a=0.1 �m.
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see that the sign of the quadratic coefficients, Re��̃ef f
L�2
���


and Re��̃ef f
T�2
���
, can be either positive or negative, thus the

curvature coming from them is either concave or convex.
A local response function does not depend on p, thus the

nonlocal behavior of �̃ef f
L and �̃ef f

T is revealed by its p depen-
dence, and one can see, in these figures, that there are fre-
quencies for which this dependence is quite strong and it can
be of the order of a few times the magnitude of the filling
fraction f . To see this more clearly, in Figs. 6–9 we plot
Re�(�̃ef f

L�T��p ,��−1) / f
 and Im��̃ef f
L�T��p ,�� / f
, also for par-

ticles of radius a=0.1 �m, as a function of frequency �, but
instead of � we have chosen to plot them as a function of the
corresponding wavelength in vacuum �0. We show plots for
different values of pa in order to display the frequency re-
gions in which the p dependence is stronger. We can see that
the change in Re�(�̃ef f

L�T��p ,��−1) / f
 and Im��̃ef f
L�T��p ,�� / f


for values of �0 between 0.2 and 0.9 �m is again in the order
of a few times the filling fraction. Actually, in these ex-
amples, the maximum change observed in Re�(�̃ef f

T �p ,��
−1)
 is about 8 times f in the case of TiO2 particles, for p
equal to 15 �m−1.

Note that �̃ef f
L �p ,�� and �̃ef f

T �p ,�� have a nonzero imagi-
nary part even in spectral regions where the spheres do not
absorb any energy ��s is real�. Actually, from Figs. 2–9 we
can see that the contribution of the particles to the imaginary
part of both electric permittivity functions �L and T� can
reach a numerical value comparable to that reached by the
corresponding real part, even if there is no absorption of
light. Here one has to realize that the description of the co-
herent field is not a complete description of the problem,
because besides the coherent field there is also a fluctuating
�diffuse� field. Since the energy flux is given by the Poynting

vector S� =E� �B� /�0, one can show that in case the fields are
oscillating at a single frequency �, the balance for the time
average of the power over the period � of oscillation can be
written as

FIG. 6. �Color� Contribution of silver particles to the transverse
component of the nonlocal dielectric function ��a� real and �b�
imaginary part
, normalized to the volume filling fraction, for sev-
eral values of pa, as a function of the vacuum wavelength �0. The
particle radius is fixed at a=0.1 �m.

FIG. 7. �Color� Contribution of silver particles to the longitudi-
nal component of the nonlocal dielectric function ��a� real and �b�
imaginary part
, normalized to the volume filling fraction, for sev-
eral values of pa, as a function of the vacuum wavelength �0. The
particle radius is fixed at a=0.1 �m.

FIG. 8. �Color� Contribution of titanium-dioxide particles to the
transverse component of the nonlocal dielectric function ��a� real
and �b� imaginary part
, normalized to the volume filling fraction,
for several values of pa, as a function of the vacuum wavelength �0.
The particle radius is fixed at a=0.1 �m.
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− � ·
1

2
Re�E� �

B� *

�0
� =

1

2
Re�J�ind · E� *
 , �56�

where E� and B� are the actual electric and magnetic fields in
the system, the superscript asterisk denotes complex conju-
gate, and the right-hand side corresponds to the power den-
sity dissipated as heat, Q. By splitting the fields into an av-
erage �coherent� and a fluctuating �diffuse� component, that

is, E� = E� �+�E� and B� = B� �+�B� , it can be easily shown that
the configurational average of Eq. �56� can be written as

− � · S�coh� = Q� + � · S�dif f� , �57�

where

S�coh� =
1

2
Re�E� � � B� �*/�0
 �58�

is the Poynting vector associated to the coherent field, and

S�dif f� =
1

2
Re�E� � �B� */�0� �59�

is the average of the Poynting vector associated to the diffuse

field and Q�= 1
2ReJ�ind ·E� *� is the average of the dissipated

heat. On the other hand, if one calculates −� · S�coh� directly
from macroscopic Maxwell’s equations, one gets

− � · S�coh� =
1

2
Re�J�ind� · E� �*
 . �60�

Furthermore, using J�ind�=−i���Jef f −�01J
 · E� � in the equation
above one can readily show that

1

2
Re�J�ind� · E� �*
 =

�

2
�Im �ef f

L �p,��	E� �L	2

+ Im �ef f
T �p,��	E� �T	2
 , �61�

where E� �L and E� �T are the longitudinal and transverse com-
ponents of the average electric field. Therefore comparing
Eqs. �57�, �60�, and �61� one concludes that the imaginary
parts of �̃ef f

L �p ,�� and �̃ef f
T �p ,�� should take account not only

of heat absorption within the spheres, but also of the field
scattered away from the coherent beam and converted into a
diffuse beam. This means that due to scattering, in the energy
balance part of the energy flux carried by the coherent beam
along a definite direction is being converted into flux carried
by the diffuse beam and traveling along all different direc-

tions. Furthermore, since E� �L and E� �T are independent, then
both Im �̃ef f

L �p ,�� and Im �̃ef f
T �p ,�� should be positive. One

can see in Figs. 2–9 that this is the case.

V. ELECTROMAGNETIC MODES

The next problem is to see how �̃ef f
L �p ,�� and �̃ef f

T �p ,��
determine the free propagation of the electromagnetic modes
in the system. In our case, these modes will be plane waves
with a definite frequency � and wave vector p, and Max-
well’s equations impose a well-defined relationship between
� and p, called the dispersion relation, and given either as
p��� or ��p�. The nonlocal character of the effective electri-
cal permittivity �̃ef f

L �p ,�� and �̃ef f
T �p ,�� has a direct effect on

the dispersion relation of these modes. In our colloidal sys-
tem there are two different types of modes: longitudinal and
transverse. The dispersion relation, p��� or ��p�, of the lon-
gitudinal modes is given through the solution of

�̃ef f
L �p,�� = 0, �62�

while the dispersion relation for the transverse modes is
given through the solution of

p = k0
��̃ef f

T �p,�� . �63�

These two equations are analytically extended to the com-
plex p-plane and should be solved for a complex p= p�
+ ip�. The imaginary part of p accounts for the spatial decay
of the modes due to absorption and scattering.

In our particular case in which the matrix is vacuum, the
dispersion relation of longitudinal modes given in Eq. �62� is

1 + f
3

4�a3k0
2TL�p,�� = 0. �64�

Nevertheless since our theory is valid only when the second
term in Eq. �64� is much less than one, it is not expected to
find these kinds of modes under our actual assumptions. We
found that this is indeed the case for silver and TiO2 colloids
in the optical window of frequencies.

On the other hand, the solution of Eq. �63� actually exists
and can be denoted by pT���. One can now define an effec-
tive complex index of refraction Nef f through

FIG. 9. �Color� Contribution of titanium-dioxide particles to the
longitudinal component of the nonlocal dielectric function ��a� real
and �b� imaginary part
, normalized to the volume filling fraction,
for several values of pa, as a function of the vacuum wavelength �0.
The particle radius is fixed at a=0.1 �m.
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Nef f��� =
pT���

k0
. �65�

We now compare the effective index of refraction obtained
through the exact solution of Eq. �63� with the ones obtained
with three different approximations:

�i� We define the long wavelength approximation �LWA�
through

p = k0
��̃ef f

T �p → 0,�� � k0
��̃ef f

�0
��� , �66�

then the index of refraction becomes

Nef f
LWA��� = ��̃ef f

�0
��� . �67�

�ii� We define the quadratic approximation �QA� by using
in Eq. �63� the quadratic expansion of �̃ef f

T �p ,�� given in Eq.
�55�, that is,

p2 = k0
2��̃ef f

�0
��� + �̃ef f
T�2
����pa�2
 , �68�

then we solve for p��� and the effective index of refraction
becomes

Nef f
QA��� =� �̃ef f

�0
���
1 − �k0a�2�̃ef f

T�2
���
, �69�

which contains a nonlocal correction through �̃ef f
T�2
���.

�iii� We define the light-cone approximation �LCA� by
replacing p=k0 in the rhs of Eq. �63�, that is,

p = k0
��̃ef f

T �p = k0,�� . �70�

In this approximation the effective index of refraction can be
written as

Nef f
LCA��� = 1 + i�S�0� , �71�

where S�0� is the scattering amplitude in the forward direc-
tion and

� �
3f

2�k0a�3 . �72�

One can prove that this effective index of refraction coin-
cides with the one proposed by van de Hulst23 a long time
ago. To demonstrate this assesment one has to show that

TT�p = k0,�� = i
4�

k0
S�0� , �73�

and this is done in detail in Appendix D. Here we remark that
up to now the effective index of refraction proposed by van
de Hulst Nef f

LCA��� has been always regarded as a local index
of refraction without any recognition of its nonlocal charac-
ter.

The problem in solving Eq. �63� and finding the disper-
sion relation of the transverse modes is that p being a com-
plex quantity, one has to explore the whole complex plane in
order to find the zeros of these equations. For silver and TiO2
colloids in the optical window of frequencies we found so-
lutions for the dispersion relation using the method of recur-
sive iterations. We did this by setting p���� p�0
���, as given
by the light-cone approximation �Eq. �70�
, into the right-

hand side �rhs� of Eq. �63�. Then one obtains p�1
��� and puts
it back into the rhs of Eq. �63� to generate the second itera-
tion p�2
���. One repeats the procedure r times, for the real
and imaginary parts of p, until convergence is reached. Then
one calculates the effective index of refraction as Nef f���
= p�r
��� /k0. In general, the convergence and the final values
obtained using this procedure will depend on the initial value
p�0
���; but in our case, the same values were always ob-
tained with a rather fast convergence for different initial val-
ues p�0
. The values obtained this way turned out to lie close
to the ones obtained using the van de Hulst expression. The
existence of other solutions in other regions of the complex p
plane, or for other frequencies, or for other particle sizes, is
still possible because we did not perform an exhaustive and
systematic search.

In Figs. 10 and 11 we show plots for the effective index of
refraction as a function of frequency for the three approxi-
mations mentioned above as well as for the exact solution.
We do this for TiO2 and silver particles of radius a
=0.1 �m with a volume filling fraction of 2% �f =0.02� and
at optical frequencies. One can see that the effective index of
refraction proposed by van de Hulst, Eq. �70�, is a good
approximation to the exact result obtained from Eq. �63�, for
most frequencies considered in the graphs. This was also
concluded in a recent paper36 that reports refraction experi-
ments at one specific frequency in the optical regime, and
determines the real and imaginary parts of Nef f��� in colloi-
dal systems composed by latex particles with size parameters
in the order of one.

FIG. 10. �Color� Different approximations to the real �a� and
imaginary �b� parts of the effective index of refraction of a colloidal
system of silver particles, as a function of the vacuum wavelength
�0. The label LWA corresponds to set p=0 in the dispersion relation
before solving it. The curve labeled by QA is obtained by expand-
ing, in the dispersion relation, the effective nonlocal transverse di-
electric function up to terms of order p2 before solving it. The labels
LCA and Exact correspond to set p=k0 in the dispersion relation
and to the exact iterative solution, respectively. The radius is fixed
at a=0.1 �m and the volume filling fraction at f =0.02.
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Nevertheless, the small differences between Nef f
LCA��� and

Nef f���, noted in Figs. 10 and 11, can actually be measurable
at some specific frequencies. For instance, in the case of
silver particles �Fig. 10�, the difference between
Re�Nef f

LCA���−1
 and Re�Nef f���−1
, that is the contribution
of the particles to the real part of the index of refraction, can
be as large as 2.9�10−4 at �0=0.49 �m, which represents a
relative error of 3.6%. For the imaginary part, the difference
Im�Nef f

LCA���
 and Im�Nef f���
 reaches 6.5�10−4 at �0

=0.73 �m, representing an error of around 3%. In the case of
TiO2 particles �Fig. 11�, the differences can be larger. For
example, in the contribution of the particles to the real part
of the effective index of refraction the differences can be as
large as 1.7�10−3 at �0=0.54 �m, which represents a rela-
tive error of around 28%, and for the imaginary part the
difference is 2.1�10−3 at �0=0.43 �m, representing a rela-
tive error of 10.3%. All the differences mentioned above are
well within the measurable range of a real experimental
setup. Further calculations have shown that the relative error
increases as the value of f increases and a more complete
analysis of the errors incurred by the use of van de Hulst’s
effective refractive index for different materials and different
frequency bands, as well as its experimental validation, is
left for future work.

Although we have shown that Nef f
LCA��� yields in general a

good description of the propagation of transverse waves in
colloidal systems with low particle’s volume filling fraction,

even in the case of large particles, what is important here is
to note that Nef f

LCA��� is not a local effective index of refrac-
tion, but that it has a nonlocal character. One of the most
important consequences of the nonlocal character of the ef-
fective refractive index is that it cannot be used directly in
Fresnel’s relations to calculate the reflection amplitude of
electromagnetic plane waves from a colloidal system with a
flat interface. The naive use of Nef f

LCA��� in Fresnel’s relations
might lead to sizable errors, as was pointed out in recent
work,14,21,22 where the authors compare the results obtained
with this naive approach with the ones obtained from experi-
ment and from a more elaborated model derived directly
from multiple-scattering theory.

VI. �� SCHEME

An equivalent and more traditional way to look at the
electromagnetic response of the colloidal system is to use,
instead of the two scalar response functions �ef f

L and �ef f
T , the

effective electric permittivity, usually denoted by �ef f, and
the effective magnetic permeability, usually denoted by �ef f.
We will call this description the �� scheme.

In what follows we derive the relationship between the
two schemes, that is, the relation between the two scalar
responses �ef f and �ef f, with �ef f

L and �ef f
T . We start by recall-

ing that in the �� scheme one introduces two additional

fields, called material fields: the polarization field P� and the

magnetization field M� . The polarization field P� is defined by

� · P� = − �ind� , �74�

where �ind� is the average of the induced charge density and

is related to J�ind� by charge conservation, that is

� · �J�ind� + i�P� 
 = 0. �75�

Thus the quantity in square brackets can be always written as
the curl of a vector field, that is,

J�ind� + i�P� = � � M� , �76�

where M� is called the magnetization field. This means that
the induced current

J�ind� = − i�P� + � � M� � J�P + J�M �77�

is split in two parts: one �J�P� associated with −i�P� , the time

derivative of P� , and the other �J�M� with the curl of M� . First

of all note that up to this point, P� and M� are not uniquely

defined because �� P� and � ·M� can be still freely chosen,

and consequently J�P and J�M do not have yet a physical in-

terpretation. Also note that J�M is transverse �� ·J�M =0�, while

J�P has, in general, longitudinal and transverse components.

Now we describe how a unique choice of P� and M� can be

made by identifying P� and M� with well-defined physical

quantities: First, one identifies P� with the average volume
density of induced electric dipole moments by showing that

FIG. 11. �Color� Different approximations to the real �a� and
imaginary �b� parts of the effective index of refraction of a colloidal
system of titanium-dioxide particles, as a function of the vacuum
wavelength �0. The label LWA corresponds to set p=0 in the dis-
persion relation before solving it. The curve labeled by QA is ob-
tained by expanding, in the dispersion relation, the effective nonlo-
cal transverse dielectric function up to terms of order p2 before
solving it. The labels LCA and Exact correspond to set p=k0 in the
dispersion relation and to the exact iterative solution, respectively.
The radius is fixed at a=0.1 �m and the volume filling fraction at
f =0.02.
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the electric and magnetic fields produced by �ind� and J�P,

when written in terms of P� through � · P� =−�ind� and J�P=

−i�P� , are exactly the same as the electric and magnetic
fields produced by an average electric dipole volume density

given by P� . The same happens with M� because one can also

show that the electric and magnetic fields produced by J�M

=��M� are exactly the same as the ones produced by the
average volume density of induced magnetic dipole moments

given by M� . Although these identifications are shown to be
valid in the quasistatic limit in most elementary textbooks, it
can be easily shown that they remain valid for time-
dependent fields oscillating with an arbitrary frequency �.37

With this physical interpretation P� and M� are defined unam-
biguously and one can assure that in linear materials the
average induced electric dipole volume density is linearly
related to the total average electric field, while the average
induced magnetic dipole volume density is linearly related to
the total average magnetic field. We now rewrite Eq. �19�,
which is in the p-representation, as

J�ind� = �ef f
L �E� �L + E� �T� + ��ef f

T − �ef f
L �E� �T

= �ef f
L E� � + ��ef f

T − �ef f
L �E� �T, �78�

where we have omitted to write explicitly the dependence on
�p ,�� of the response functions and the fields. In the long
wavelength limit �p→0��ef f

T =�ef f
L , and the term that survives

is proportional to E� �, thus one can identify in the equation
above

J�P = �ef f
L E� � , �79�

and then J�M should be identified necessarily with

J�M = ��ef f
T − �ef f

L �E� �T. �80�

We now use Faraday’s law to write E� �T=−�� / p2�p� � B� �,
where B� � is the average magnetic field, write J�M = ip� �M�

and J�P=−i�P� , and use the relation between �Jef f and �Jef f
given in Eq. �22�, to obtain

P� = ��ef f
L − �0�E� � �81�

and

M� =
�2

p2 ��ef f
T − �ef f

L �B� � . �82�

As mentioned above, in the so-called �� scheme one intro-
duces for a homogeneous and isotropic system, two scalar
response functions: the effective electric permittivity �ef f and
the effective magnetic permeability �ef f, defined through

P� = ��ef f − �0�E� � �83�

and

M� = � 1

�0
−

1

�ef f
�B� � . �84�

Thus the relationship between the LT scheme and the ��
scheme is given by the identification of Eqs. �81� and �82�
with Eqs. �83� and �84�, that is,

�ef f�p,�� = �ef f
L �p,�� , �85�

1

�ef f�p,��
=

1

�0
−

�2

p2 ��ef f
T �p,�� − �ef f

L �p,��
 , �86�

where we have put back the explicit dependence on �p ,��.
In Figs. 12 and 13 we plot Re�(�̃ef f�p ,��)−1−1
 / f and

Im�(�̃ef f�p ,��)−1−1
 / f to show the contribution of the par-
ticles to the real and imaginary parts of the magnetic perme-
ability, where �̃ef f =�ef f /�0. We can see that these contribu-
tions to the effective magnetic permeability are of the same
order of magnitude as the contributions of the particles to the
effective electric permittivity. Note that although
Im �̃ef f

T �p,���0 and Im �̃ef f
L �p,���0, and

Im �̃ef f�p,�� = 	�̃	2
k0

2

p2 �Im �̃ef f
T �p,�� − Im �̃ef f

L �p,��


�87�

is proportional to the difference between Im �̃ef f
T �p ,�� and

Im �̃ef f
L �p ,�� , Im �̃ef f can be negative. However, one can

show that the total energy dissipated as heat is always posi-
tive because in our case there are no intrinsic magnetic ef-
fects; they are generated only through Faraday’s law. Finally,
we want to stress that �̃ef f�p ,�� represents an actual mag-

FIG. 12. �Color� Real �a� and imaginary �b� parts of the inverse
of the effective nonlocal magnetic permeability minus one, normal-
ized to the volume filling fraction f , as a function of pa, for differ-
ent vacuum wavelengths. The colloidal system is made of silver
particles and with radius set at a=0.1 �m.
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netic response of the system directly related to an average
volume density of induced magnetic dipole moments in-
duced by the time variation of the average magnetic field, as
shown by Eqs. �82� and �84�. This magnetic response is ac-
tually a diamagnetic response and is proportional to �̃ef f

T

− �̃ef f
L .
If we now look at the dispersion relation of the electro-

magnetic modes of the system from the point of view of the
�� scheme, we know that the dispersion relation for the lon-
gitudinal modes is given by

�̃ef f�p,�� = 0, �88�

p2 = k0
2�̃ef f�p,���̃ef f�p,�� . �89�

At this point it is important to stress that one can check that
these dispersion relations are exactly the same than those
obtained in the LT scheme, and given in Eqs. �62� and �63�.
This is consistent with the idea that both schemes are com-
pletely equivalent.

Finally, we want to point out that in Ref. 33, the identifi-
cation of a nonlocal dielectric response from the dispersion
relation of propagating modes is highly questionable, besides
the confusion caused by calling local response the one with
p=k0. On the other hand, here we have calculated a bona fide
nonlocal effective electromagnetic response and we have
stressed that the approximation p�k0 has actually a nonlocal
nature.

VII. CONCLUSIONS

Here we have shown that it is indeed possible and valid to
formulate an extended effective medium theory to describe

the coherent fields in a turbid colloid. For simplicity, we
chose a model of identical spheres of unrestricted size, lo-
cated at random in vacuum, and show that the effective me-
dium is actually nonlocal and can be described in terms of
the longitudinal and transverse dielectric functions �̃L�p ,��
and �̃T�p ,��, respectively. We derived closed expressions for
these response functions �̃L and �̃T, and display plots of them
as functions of the wave vector p and the frequency �, for
both silver and TiO2, at optical frequencies. Both response
functions coincide at p=0, and one can see that up to pa
�1 they depend quadratically on p. The consequences of
this nonlocal behavior are the existence of longitudinal and
transverse modes. The dispersion relations for these modes
are given in terms of �̃L and �̃T, respectively. In relation with
the transverse modes, we define an effective index of refrac-
tion in terms of the solution of the nonlocal dispersion rela-
tion p���, and compare it with common approximations that
have appeared in the literature. In particular we show that the
effective refractive index, proposed many years ago by van
de Hulst and used commonly as a local index of refraction,
has a nonlocal nature. This implies, for example, that it can-
not be used in Fresnel relations to calculate the reflection
amplitudes from a colloidal system with a flat interface. Fi-
nally we show that our description is completely equivalent
to the one that uses �̃ef f�p ,�� and �̃ef f�p ,��, and we remark
that in the optical regime there is actually a significant true
nonlocal magnetic response given by �̃ef f�p ,��.
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APPENDIX A: INTEGRALS FOR TT
„p ,�…

The transverse component of the transition operator is cal-
culated using Eq. �26�, where the expression for the internal
field is given by Eq. �34�. For this calculation one requires

the projection E� I
T · êx of the internal field, which is expressed

in terms of the vector spherical harmonics, thus one needs

M� o1n
�1� · êx = jn��I��cos� Pn� − sin2
 sin2� Pn�
 , �A1�

N� e1n
�1� · êx = n�n + 1�

jn��I�
�I

cos2
 sin2� Pn� +
1

�I

d

d�I
��Ijn��I�


���cos2
 cos2� + sin2

Pn�

− cos2
 cos� sin2� Pn�� , �A2�

where �I�kIr and Pn denotes the Legendre polynomial of
order n, and is a function of cos �. We recall that the primes
denote a derivative with respect to the argument. We now
expand the term exp�−ip� ·r�
 in the spherical basis as

FIG. 13. �Color� Real �a� and imaginary �b� parts of the inverse
of the effective nonlocal magnetic permeability minus one, normal-
ized to the volume filling fraction f , as a function of pa, for differ-
ent vacuum wavelengths. The colloidal system is made of titanium-
dioxide particles and with radius set at a=0.1 �m.
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exp�− ip� · r�
 = �
l=0

�

�2l + 1��− i�l jl��i�Pl�cos�� , �A3�

where �i� pr�0, and we substitute it in Eq. �26�. The equation for the transversal component of the transition operator can
then be written as

TT�p,�� =
k0

2�s�

E0
��

n=1

�

�
l=0

�

En
Tcn

T�2l + 1��− i�l�
0

a

r2drjl��i�jn��I� � �
0

2�

d
�
−1

1

d��cos� PlPn� − sin2
 sin2� PlPn�


− i�
n=1

�

�
l=0

�

En
Tdn

T�2l + 1��− i�l�
0

a

r2drjl��i��
0

2�

d
�
−1

1

d��n�n + 1�
jn��I�

�I
cos2
 sin2� PlPn� +

1

�I

d

d�I
��Ijn��I�


���cos2
 cos2� + sin2

PlPn� − cos2
 cos� sin2� PlPn���� +
k0

2�s

E0
�1 − ��E0

4�a3

3
. �A4�

To calculate the angular integrals, we use �1−�2�Pn�=2�Pn�−n�n+1�Pn and �1−�2�Pn�=nPn−1−n�Pn,38 and we obtain

TT�p,�� −
4�

3
k0

2a3�s�1 − �� =
k0

2�s�

E0
��

n=1

�

En
Tcn

T2n�n + 1��− i�n��
0

a

r2drjn��i�jn��I�

+ �
n=1

�

En
Tdn

T��− i�n�2n2�n + 1�2

2n + 1 ��
0

a

r2drjn−1��i�
jn��I�

�I
+ �

0

a

r2drjn+1��i�
jn��I�

�I
�

+
2n�n + 1�

2n + 1 ��n + 1��
0

a

r2drjn−1��i�
1

�I
��Ijn��I�
� − n�

0

a

r2drjn+1��i�
1

�I
��Ijn��I�
���� . �A5�

Recalling that En
T= inE0�2n+1� / �n�n+1�
 and using the fol-

lowing relations39

jn−1�z� + jn+1�z� = �2n + 1�
jn�z�

z
, �A6�

njn−1�z� − �n + 1�jn+1�z� = �2n + 1�
d

dz
jn�z� , �A7�

together with the change of variable: x=r /a, xI=kIa, x0
=k0a, and xi= pa, we can write the expression for TT�p ,�� as

TT�p,�� −
4�

3
x0

2a�s�1 − ��

= 2�x0
2a�s��

n=1

�

�2n + 1��cn
T�

0

1

x2jn�xix�jn�xIx�dx

+
dn

T

xixI
�n�n + 1��

0

1

jn�xix�jn�xIx�dx

+ �
0

1 d

dx
�xjn�xix�


d

dx
�xjn�xIx�
dx�� . �A8�

Thus we need to calculate three radial integrals. The first
integral can be done in closed form,40

�
0

1

x2jn�xix�jn�xIx�dx

=
1

xi
2 − xI

2 �xIjn�xi�jn−1�xI� − xijn−1�xi�jn�xI�
 , �A9�

and by rewriting the other two integrals as

n�n + 1��
0

1

jn�xix�jn�xIx�dx + �
0

1 d

dx
�xjn�xix�


d

dx
�xjn�xIx�
dx

= �n + 1�xI�
0

1

xjn�xix�jn−1�xIx�dx

+ nxi�
0

1

xjn+1�xix�jn�xIx�dx

− xixI�
0

1

x2jn+1�xix�jn−1�xIx�dx �A10�

we obtain Eqs. �43�–�46�.

APPENDIX B: CALCULATION OF TL
„p ,�…

In this case the incident electric field is longitudinally

polarized in the Z direction, that is, E� i
L=E0 exp�ip� ·r�
êz and

there is no magnetic field. This field is generated by an ex-
ternal charge density �ext=�0 exp�ip� ·r�
, where �0= ip�0E0,
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which by charge conservation should be together with an

external current density J�ext= i��0E� i. In the spherical basis
defined in Eqs. �28�–�31�, one can check that the longitudinal

incident plane wave can be written only in terms of L� func-
tions with m=0, as

E� i
L = �

n=0

�

En
LL� e0n

�1� , �B1�

where En
L��2n+1�in−1E0, and the superscript �1� indicates

that the radial dependence is given by the spherical Bessel
function jn�pr�. For the internal fields �ra� one has to take
care of the presence of the external charge density and cur-
rent density, so it is expanded as

E� I
L = �1 − ���

n=1

�

En
Ldn

LN� e0n
�1� + �E� i, �B2�

B� I
L = − i

kI

�
�1 − ���

n=1

�

En
Ldn

LM� e0n
�1� , �B3�

where ��1/ �̃s. On the other hand the scattered fields �r
�a� are divergenceless and obey the wave equation, so they
can be expanded as

E� S
L = �

n=1

�

En
LanN� e0n

�3� , �B4�

B� S
L = −

ik0

�
�
n=1

�

En
LanM� e0n

�3� , �B5�

where the superscript �3� indicates that the radial dependence
is through hn�k0r�. The expansion coefficients dn

L are ob-
tained by imposing the same boundary conditions as above,
and one gets for the coefficients dn

L the expression given in
Eq. �49�. Notice that the poles of dn

L and dn
T coincide, they

have the same denominator, so the excitation of the N� e1n
�1� and

the N� e0n
�1� modes obeys the same condition, and in the small-

particle limit �pa→0, k0a→0, kIa→0� this condition be-
comes �̃s=−�n+1� /n.

In the long wavelength limit �p→0� the only coefficient
that survives in the expansion of the internal field is d1

L, thus
one can write

E� I
L�p → 0� = �1 −

1

�̃s
�3E0d1

L�0
N� e01
�1� �kIa,�,
� +

1

�̃s

E0êz,

�B6�

where d1
L�0
 is given by Eq. �51�. If one also takes the small-

particle limit �k0a→0, kIa→0� then d1
L�0
→1/ ��̃s+2� and

N� e01
�1� → �2/3�êz, thus the internal field approaches the well-

known result: E� I
L→E0êz3/ ��̃s+2�.

One now obtains the longitudinal component of the tran-
sition operator, TL, by following the same procedure as in the
transverse case. That is, one introduces into Eq. �26� the
series expansion for the internal electric field given in Eq.
�B2� and the expansion of the plane wave given in Eq. �A3�,
then by performing the volume integrals one gets, after
lengthy but straightforward algebra, the expression for
TL�p ,�� given in Eq. �48�.

APPENDIX C: EXPRESSIONS FOR �̃eff
L†2‡

„�… AND �̃eff
T†2‡

„�…

The coefficient �̃ef f
L�2
��� is given by

�̃ef f
L�2
��� = f

��̃s − 1�2

�̃s
�6d1

L�2
 j1�xI�
xI

+ 6d2
L�1
 j2�xI�

xI

−
3

5
d1

L�0
 j1�xI�
xI

� , �C1�

where d1
L�0
 is given by Eq. �51�, and the other two coeffi-

cients d1
L�2
 and d2

L�1
 are given by

d1
L�2
 = −

1

30

x0h1�x0�

2�1 − �̃s

��̃s
�h1�x0�j1�xI� − x0h1�x0�j2�xI� + xIh2�x0�j1�xI�

, �C2�

d2
L�1
 =

1

15

x0h2�x0�

3�1 − �̃s

��̃s
�h2�x0�j2�xI� − x0h2�x0�j3�xI� + xIh3�x0�j2�xI�

. �C3�

The coefficient �̃ef f
T�2
��� is given by

�̃ef f
T�2
��� = f

��̃s − 1�2

�̃s
�3

2
�c1

T�1
 + d2
T�1
�

j2�xI�
xI

+ 3d1
T�2
 j1�xI�

xI
−

1

xI
2�1 −

3

10
d1

T�0
�5j2�xI� − 2xIj1�xI� + 10
j1�xI�

xI
��� , �C4�

where d1
T�0
 is given in Eq. �40�. The other coefficients are

c1
T�1
 =

− x0h2�x0�
3�xIh1�x0�j2�xI� − x0h2�x0�j1�xI�


, �C5�
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d1
T�2
 =

2h1�x0�
3

+
2x0

2h1�x0�
15

−
x0h2�x0�

3

� xI
2 − x0

2

xI
2h1�x0�j1�xI� + x0

2h1�x0�j2�xI� − x0xIh2�x0�j1�xI�� , �C6�

d2
T�1
 =

1

15

− 3x0
2h2�x0�

� xI
2 − x0

2

xI
�3h2�x0�j2�xI� + x0

2h2�x0�j3�xI� − x0xIh3�x0�j2�xI�
. �C7�

APPENDIX D: THE RELATION BETWEEN TT
„k0…

AND S„0…

To prove Eq. �73�, we start by recalling that the field
scattered by a single, isolated sphere, in the presence of an
incident transverse free electromagnetic plane wave with
wave vector k�i and polarization êi, is given by

E� S�r�� = E0� d3r�� d3r�GJ0�r�,r��� · TJ�r��,r��� · êi exp�ik�i · r��
 ,

�D1�

where ki=k0 and êi ·k�i=0, and GJ0 and TJ are defined in Eqs.
�3� and �7�. In the far-field region �k0r�1� one can write an
expression for the field, to order �1/r�, as

E� far
S �r�� = E0�1J +

1

k0
2 � �� ·

exp�ik0r

4�r

� d3r�

� d3r�exp�− ik�Sr��
TJ�r��,r���exp�ik�i · r��
 · êi, �D2�

where k�S�k0r̂ is known as the scattered wave vector. Using
now Eq. �12�, this expression can be rewritten as

E� far
S �r�� = E0�1J +

1

k0
2 � �� ·

exp�ik0r

4�r

TJ�k�S,k�i� · êi. �D3�

Now to lowest order in �1/r� one has

�
exp�ik0r


r
� ik�S

exp�ik0r

r

+ O� 1

r2� , �D4�

and then

E� far
S �r�� = E0

exp�ik0r

4�r

�1J − k̂Sk̂S� · TJ�k�S,k�i� · êi. �D5�

Now we look at the field scattered in the forward direction
�k�S=k�i�, and write

E� far
S �r�� = E0

exp�ik0r

4�r

�1J − k̂ik̂i� · TJ�k�i,k�i� · êi. �D6�

Performing an LT decomposition, as in Eq. �18�, one can
finally write

E� far
S �r�� =

exp�ik0r

4�r

TT�k0�E0êi. �D7�

We compare this expression with the one that relates the
scattered and the incident fields through the scattering matrix
�as defined in Ref. 34, Eq. 3.12�, that is,

� Efar,�
S

Efar,�
S � =

exp�ik0r

− ik0r

�S2��� S4���
S3��� S1���

�� Ei,�

Ei,�
� , �D8�

where � and � denote parallel and perpendicular to the scat-
tering plane. For a sphere S3���=S4���=0, and for the field
scattered in the forward direction ��=0� we have that,
S2�0�=S1�0�, thus one can write

E� far
S �r�� =

exp�ik0r

− ik0r

S�0�E0êi. �D9�

By comparing Eqs. �D7� and �D9� we obtain Eq. �73�.
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