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1. Introduction  

The optical properties of colloids have been a challenging area of research for many years 
providing also important applications [1-6]. In this paper we consider a colloid as a random 
system of particles embedded in a homogeneous matrix material. The appearance of a colloid 
can be turbid when the size of the particles composing the system is not very small compared 
to the wavelength. The existence of a diffuse field in a colloid, which manifests itself as 
turbidity, has been a source of confusion when referring to its effective optical parameters 
such as its effective refractive index. The concept of an effective refractive index of turbid 
colloids has actually remained rather vague. To develop a theory for the effective optical 
parameters of colloids one must first distinguish the presence of two types of fields: the 
coherent beam and the diffuse field. One must then recognize that the effective optical 
parameters should be associated only the coherent beam, which is actually defined as an 
average field, where the average is usually a configurational one taken over all possible 
random locations of the colloidal particles.  

It has been shown by several authors [1-8] that the average electromagnetic field in a 
random colloidal medium propagates with an effective wave vector. From the effective wave 
vector, one may define an effective refractive index, appropriate to the coherent beam. Thus, 
when one refers to the refractive index of a turbid colloid, one actually refers to the effective 
refractive index that describes the optical behavior of the coherent beam. Very recently, we 
have established formally the nature of the electromagnetic response of the effective medium 
associated to the coherent beam in a colloid, and it turned out that its effective electric 
permittivity εeff and its effective magnetic permeability μeff are actually non-local with a non-
local length given by the diameter of the colloidal particles. A non-local electromagnetic 
response is also known as spatially dispersive [9,10], and this means that εeff and μeff depend 
not only on the frequency but also on the wave vector of the electromagnetic fields 
propagating within the system. The non-local effective-medium approach for the 
electromagnetic response of a dilute colloid was developed in detail in Ref. [11]. In this 
reference, it was also shown that from the non-local dispersion relation for the transverse 
modes, one is able to obtain an effective refractive index that depends only on the frequency. 
However, when an effective refractive index derived from the dispersion relation of a system 
with a non-local response is naively used as the common refractive index in continuum 
electrodynamics, mistakes and misinterpretations might definitely occur. For instance, if one 
tries to measure the effective index of refraction of a colloidal system by measuring the 
reflectance in the usual internal-reflection set up, and then one uses Fresnel’s relations to 
determine it, inconsistencies might be found as shown in Refs. [12,13].   

Another important consequence of non-local optics is the possible excitation of 
propagating or evanescent longitudinal modes in the bulk or at an interface of the system. 
Although the presence of these modes might not modify the propagation of the transverse 
modes, it will definitely affect the value of the reflectance. However, the calculation of the 
reflection amplitudes of an electromagnetic wave from a non-local medium is still a topic of 
current research. Nevertheless, with proper precautions, one can determine the effective index 
of refraction of spatially dispersive systems using Snell’s law, in the same way as one would 
deal with a usual local medium with a complex refractive index. In this way, one avoids the 
disputed use of Fresnel’s reflection and transmission coefficients with an effective refractive 
index coming from a non-local dispersion relation. By refraction we mean, refraction in and 
out of the colloidal medium, as well as actual propagation of the refracted beam through the 
system.  
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2. Non-local electromagnetic response of colloidal media 

Here, we will present the main arguments that ascertain the non-locality of the 
electromagnetic response of colloidal media. For simplicity in the presentation, we will 
restrict our analysis only to mono-disperse colloids of randomly-positioned identical spherical 
particles of radius a, and refractive index np, suspended in vacuum. The fractional volume f 
occupied by the particles is assumed to be moderately small compared to one. We will assume 
an exp(-iωt) time-dependence of fields and sources throughout this paper. 

An effective-medium approach must provide constitutive relations among the average of the 
induced currents and charges and the average of the fields. In general, one must find a relation 

between the average induced current ( )indJ r
�

�

 and the average induced charge 

density ( )ind rρ �

, with the average electric field ( )E r
�

�

 and the average magnetic field 

( )B r
�

�

. If we consider that the particles forming the colloid of interest are nonmagnetic, one 

may find a direct relationship between the induced currents and the electric field within the 
particles. Then through an appropriate averaging procedure, one may determine a relation 
between the average current density in the system and the average electric field. This 
relationship defines what we call the electromagnetic response of the system. 

Let us now consider a collection of N spheres in the presence of an external incident 

electric field. The induced current within a sphere centered at jr�  may be written as [11],  

           3
, ( ) ( , ' ) ( ') 'NL

ind j s j j excJ r r r r r E r d r= σ − − ⋅∫
� �

� � � � � � �

     (1) 

where NL
sσ�  is the generalized non-local conductivity of an isolated particle and ( ')excE r

�

�

 is the 
field exciting (incident to) the j-th particle, that is, the field scattered by all other particles plus 

the incident field. Here NL
sσ�  is called generalized because , ( )ind jJ r

�

�

 is the total current density 

induced within the particle including the closed currents that are usually taken as responsible 
of the magnetic effects. It is also called non-local because it is not the response to the total 
field at r

�

 but a response to the exciting field external to the particle. Therefore all the 
information about the size and geometry of the sphere should be in the kernel NL

sσ� , and the 

integration should sample the external field not only at r
�

 but also in the space occupied by 

the particle. When r
�

 lies outside the particle, that is, when jr r a− >� �

, the integral in Eq. (1) 

should vanish because there are no induced currents in vacuum. One can also show that NL
sσ�  

vanishes when jr r a′ − >� �

. Here, we want to point out that 0 ( , )NL
s j ji r r r r′ω μ σ − −� � � � �

 

corresponds exactly to the T-matrix operator or transition operator used in scattering theory 
[6,7]. Therefore, using NL

sσ�  could also be called a T-matrix approach. As a final comment, we 
note that when the particles are small enough for the exciting field to not vary appreciably 

within the volume of the particle, one can take ( ) ( )exc excE r E r′ ≈
� �

� �

 out of the integral in Eq. (1), 
and write                 

   , ( ) ( ) ( )sind j excJ r r E r= σ ⋅
��� �

� � �

,       (2) 

where in this local relationship 

   3( ) ( , )NL
s s j jr r r r r d r′ ′σ = σ − −∫

� � � � � �

                              (3) 

corresponds to the usual local conductivity of the material the particles are made of.. 
Therefore non-local effects become important whenever the particles are big enough or are 
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close enough for the exciting field to vary appreciably within them, and this is precisely the 
case in turbid colloids. 

Now, the total current density induced in the system will be given by, 

   ,  ( ) ( )ind ind j
j

J r J r=∑
� �

� �

.               (4) 

If we now perform a configurational average in order to calculate the average of the total 

induced current, and assume, at the same time, that one can approximate ( ) ( )excE r E r≅
� �

� �

, 

where the brackets denote configurational average, we obtain,  

   3( ) ( , ') ( ') 'ind effJ r r r E r d r≅ σ ⋅∫
� �

� � � � �

                 (5) 

where  

                                     3
0( , ') ( , ' )NL

eff s j j j

V

r r r r r r d rσ = ρ σ − −∫
� � � � � � � �

.                  (6) 

Here 0ρ is the number density N/V, V is the total volume and we have assumed a boundless 

system ( , , /N V N V→ ∞ → ∞ finite) where the probability density ( )jp r
�

 to find the center of 

the j-th sphere in the volume V is considered uniform and equal to 3 /jd r V . This 

approximation is known as the effective-field approximation, and is valid in the dilute regime. 

If we now recall that NL
sσ�  vanishes for either jr r a− >� �

 or jr r a′ − >� �

,  then, given r
�

 and 

r ′� , the region of integration in the integral over jr  in Eq. (6) will be only the overlap region 

between two spheres of radius a, one centered at r
�

 and the other at r ′� . Thus, if r
�

 and r ′�  are 
farther apart from each other than 2aaa , the kernel in Eq. (6) is zero for all jr

�

 and the effective 

non-local conductivity vanishes. This can be expressed also by saying that the range of non-
locality, or non-local length in NL

sσ� , is 2a. It is also easy to see that due to the symmetry of the 

sphere the integral over jr  will depend only on 'r r−� �

, that is,   

                                               ( )( , ') 'B
eff eeffffr r r rσ = σ −� � � � � �

                                            (7) 

where the superscript B denotes bulk. It is also relevant to point out that a spatial Fourier 

Transform of the effective conductivity ( )'B
eeffff r rσ −� � �

will yield ( , )B
eff kσ ω�

, which is in general 

a complex quantity. In particular, its imaginary part will be related not only to absorption 
processes but also to scattering, since the scattering processes take power out of the coherent 

beam into the diffuse beam. Furthermore, due to isotropy ( , )B
eff kσ ω

�

�

can de decomposed as 

   , ,ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) 1B B L B T
eff eff effk k kk k kk⎡ ⎤σ ω = σ ω + σ ω −⎣ ⎦

� � � �

�

 ,                          (8) 

Where the two scalar functions , ( , )B L
eff kσ ω

�

and , ( , )B T
eff kσ ω

�

 are the longitudinal and transverse 

projections, respectively, and ˆ /k k k≡
�

. These projections also lead to the existence of 
longitudinal and transverse modes determined by the following dispersion relations: 

   ,

0

1 ( , ) 0B L
eff

i
k+ σ ω =

ωε

�

       (9) 

   2 2 ,
0 0 0 ( , )B T

effk i k= ω ε μ + ωμ σ ω
�

.    (10) 
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We will denote by ( )Lk ω the solution for the dispersion relation for the longitudinal modes 

and by ( )Tk ω the corresponding one for the transverse modes. In this case one is able to 
define an effective index of refraction through 

   
0 0

( )
( )

T

eff

k
n = ωω

ω ε μ
,     (11) 

as it was shown in detail in Ref. [11]. Notice that although the dispersion relation might have 
a non-local character, the effective index of refraction depends only on the frequency. 

Let us now consider a half-space geometry for the colloidal system, and assume that the 
probability density of finding the center of any particle in space, ( )jp r

�

, is uniformly 

distributed within the half-space z > 0. Thus, we have,  

   

3

    if    0
( )

 0        if     0.

j
j

j

j

d r
z

p r V
z

⎧
>⎪= ⎨

⎪ <⎩

�

    (12) 

We now recall that given r
�

 and r ′� , the region of integration in the integral over jr  in Eq. 

(6) will be only the overlap region between two spheres of radius a, one centered at r
�

 and the 

other at r ′� . Then by writing ( ),r r z= �

� �

 and ( ),r r z′ ′ ′= �

� �

  it is not difficult to see that in the 

half-space geometry, the non-local effective conductivity will be different for values of  –a < z 
< a  than for values of z > a. Furthermore, it is also immediate that for z > a the value of the 
integral in Eq. (6) is the same as in the boundless system, thus in this region the non-local 
effective conductivity has the bulk value. Therefore we will refer to points in space with 
values of –a < z < a as the “surface region” and to points inside the half-space, but with 
values of z farther away than a, as the “bulk”. This is illustrated in Fig. 1, where the surface 
region is drawn with a width 2a around the “probability interface” at  z = 0. For points within 

the surface region, symmetry implies that the integral in Eq. (6) must depend on r r′−� �

� �

 and z, 

z’ separately. Therefore, in the half-space geometry, we have, 
 

                       ( )
( )         if                    bulk

( , ) ; ,    if     surface region     

0                                           otherwise.

B
eff

eff eff

r r z

r r r r z z z

′⎧ σ − ∈
⎪⎪′ ′ ′σ = σ − ∈⎨
⎪
⎪⎩

� �

� � �

� � � � � �

  (13) 

It is clear that the existence of a surface region with an anisotropic response should be 
taken into account to calculate, for example, the reflection coefficient of the coherent beam at 
the interface. However, we do not need to have a detailed knowledge of the surface region to 
analyze the refraction of an incident beam into the bulk region. We only need to know that the 
surface region has a limited extent and ends where the bulk starts. 
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Fig. 1. Schematic illustrating the bulk and surface region in the effective medium of a half-space. 

 

3. Refraction of the coherent beam into a non-local colloidal half-space 

We will address the refraction of light in a colloidal half-space in the usual way but 
considering the non-local conductivity tensor described in the previous section, consisting of a 
bulk and a surface region. Solving a refraction problem corresponds to finding the direction of 
the effective wave-vector of the average propagating wave or waves excited in the bulk region 
by an incident plane wave. For this, we must solve the dispersion relation of refracted 
electromagnetic modes in the bulk region, and make sure that the appropriate boundary 
conditions can be satisfied at the boundaries of the surface region. Let us assume that a plane 

wave, given by ˆ( ) exp( )i
inc inc iE r E ik r e= ⋅

��

�

, is incident into a half-space of a colloidal medium 
as shown in Fig. 1. First let us split the incident plane wave as 

                                          ˆ( ) exp( )exp( )i i
inc inc z iE r E ik r ik z e= ⋅� �

� ��

�

,    (14)  

where the subindex �  denotes parallel to the interface of the colloidal system. Because of 
translational invariance in the x-y plane and the mere existence of boundary conditions at the 
boundaries of the surface region, the average electric field excited both within the surface 

region and within the bulk must take the form of a plane wave exp( )iik r⋅� �

�

�

 multiplied by a 

vector function of  z. This statement is equivalent to Snell’s  law in local optics.                                                               

Therefore, the solutions of Maxwell’s equations for the refracted field within the bulk have 
the form     

   ( )0 ˆ( ) exp( ) expi
zE r E ik r ik z e= ⋅� �

��

�

                                (15)                      

where the effective wave vector ( ),i
zk k k=

�

� �

 is  given by the solution of the dispersion 

relations given in Eqs. (9) and (10).  Furthermore, k
�

 is in general complex, and its real and 
imaginary parts are in general not parallel to each other (inhomogeneous waves). Since the 
spatial Fourier transform used to derive the dispersion relations given in Eqs. (9) and (10) 

assumed k
�

 as a real quantity, one might ask about its validity for complex k
�

. At this point 
one could take this extension simply as a formal analytic extension to the complex plane. 

“bulk” 

z 

2a 

“surface region” 

 
“probability interface” 
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Alternatively, since ( )B
eff r r′σ −� � �

 vanishes for 2r r a′− >� �

, it can be seen immediately that the 

integral defining the spatial Fourier transform 

                    ( ) 3( , ) ( ) expB B
eff effk r r ik r r d r⎡ ⎤′ ′ ′= − − ⋅ −⎣ ⎦∫

� �

� � � � � �σ ω σ ,                   (16)  

always exist even for complex wave vectors k
�

. 
An important property to note here is that the integral in Eq. (16) must depend only on the 

square of the effective wave vector, that is on =2k 2 2 2
x y zk k k k k⋅ = + +

� �

, which is in general a 

complex number, and should not be confused with the square magnitude. There is no 
restriction for kx, ky or kz being real or complex independently and only the sum of their 
squares determines the integral in Eq. (16). Thus, from now on we can write 

( , ) ( , )B B
eff effk kσ ω = σ ω

�

� �

, where k k k= ⋅
� �

 is a complex number and, as pointed out above, it is 

not the magnitude of the wave vector. This is valid whether the real and imaginary parts of the 
wave vector are parallel or not and means that ( , )B

eff kσ ω�

 will still be valid in general in the 

presence of losses coming from either dissipation or scattering and for homogeneous and 
inhomogeneous waves as well.  

In conclusion, the refracted fields in the bulk region have the form given by Eq. (15), they 
might have a transverse and/or a longitudinal character and require the solution of the bulk 
dispersion relation given by Eqs. (9) and (10) and denoted by ( )Tk ω  and ( )Lk ω . In Ref. [11] 

one finds explicit expressions for , ( , )B T
eff kσ ω  and , ( , )B L

eff kσ ω  in the dilute regime, together 

with detailed numerical calculations for colloidal particles made of different materials in the 
optical-frequency window. In all these cases, we found that the dispersion relation for 
transverse modes, Eq. (10), has one fundamental solution that can be well approximated 
simply by using 0k k≈  in ( , )T

eff kσ ω  on the right hand side of Eq. (10). We refer to this 

approximation as the light-cone approximation and it was also shown that the effective index 
of refraction derived from this (non-local) approximation corresponds to the well known 
effective index of refraction derive by van de Hulst many years ago [14]. It was also pointed 
out that due to its non-local origin it has to be handled with care. Finally, the exact solution 
for ( )Tk ω  was also found in Ref. [11] by an iteration procedure starting with the light cone-
approximation. Therefore, the z-component of the effective wave vector of the refracted field 
will be then given by 

   ( ) ( )T i i
zk k k k= − ⋅� �

� �

ω ω                                                  (17) 

and using Eq. (11) one can write an equivalent relation as 

                                            2
0( ) ( ) i i

z effk k n k k= − ⋅� �

� �

ω ω     .                                   (18) 

Also, it is possible to find additional solutions to the dispersion relations for transverse 
modes, as well as one or more solutions for longitudinal modes. However, we have found that 
at least for colloidal particles made of noble metals, latex and titanium dioxide, in the optical-
frequency window, all these other modes that can actually exist in the bulk have a large 
imaginary component of the effective wave vector compared to that of the fundamental mode. 
Therefore, in a refraction experiment these other modes will decay much faster than the 
fundamental mode inside the bulk and will not interfere with the measurement of the refracted 
beam corresponding to the fundamental mode. However, these other modes may affect the 
transmittance of the fundamental mode into the bulk. In general, solving for the amplitude of 
the refracted fundamental mode will require a model for the surface region, in addition to 
taking into account all possible modes excited in the bulk. 
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4. Colloids with a homogenous matrix medium different than vacuum 

Let us now assume that the particles are embedded in a boundless homogeneous matrix that, 
for simplicity we assume as nonmagnetic, with an electric permittivity εm(ω). We can repeat 
the procedure outlined above in exactly the same way but with ε0 for vacuum replaced by 
εm(ω) for the matrix. In this case, the effective non-local conductivity of an isolated particle 
corresponds to that of a particle embedded in the matrix, and the induced current within the 
particles is actually the current in excess to the current that would have been induced in the 
matrix in the absence of the particles. In this case, the dispersion relation for transverse modes 
is,  

   2 2 ,
0 0 , ( , )B T

m eff mk i k= +ω ε μ ωμ σ ω ,                  (19) 

where ,
,

B T
eff mσ  is the transverse projection of the effective non-local bulk conductivity of an 

isolated particle embedded within the matrix, while      
                       ;

, ( , ) ( )B L
eff m mk i=σ ω ωε ω ,                                                  (20) 

is the dispersion relation for longitudinal modes. Here ;
,

B L
eff mσ  is the longitudinal  projection of 

the effective non-local bulk conductivity of an isolated particle embedded within in the 
matrix. 

As already mentioned, the solution for the fundamental mode can be well approximated 
with the light-cone approximation in the dispersion relation for transverse modes. In this case, 
this approximation corresponds to replace k by km on the right hand side of Eq. (19). Now, 
following closely the procedure used in appendix D of Ref. [11], one can show that 

, 3
, 0( , ) 4 ( ) (0)B T

eff m m m mk k S=�σ ω πρ ωε  where now S(0) corresponds to the diagonal element of 

the scattering matrix in the forward direction of an isolated particle embedded within the 
matrix (this same result was derived in Ref. [11] for particles in vacuum). Using 

0( ) ( ) /T
effn k kω = ω , 0m mk n k=  and recalling that the refractive index of the matrix is 

0/m mn = ε ε  yields, 

  
3

3
( ) ( ) 1 2 (0)

2eff m
m

f
n n i S

x
= +ω ω

3

3
( ) 1 (0) ...

2m
m

f
n i S

x

⎡ ⎤
≈ + +⎢ ⎥

⎣ ⎦
ω              (21)

      

where m mx k a= is the size parameter in the matrix and we used 3
0 3 4f a=ρ π , where f is the 

volume fraction occupied by the particles. Expanding the square root and keeping only the 
first two terms leads to the van de Hulst formula for the effective refractive index [14]. 

Finally, it is important to notice that although the van de Hulst expression is a good 
approximation to the solution of the non-local dispersion relation, an obvious improvement is 
to determine the effective index of refraction by solving the non-local dispersion relation with 
the exact expression for ,

, ( , )B T
eff m k

�σ ω  (within the effective-field approximation) rather than 

using ,
, ( , )B T

eff m mk
�σ ω . As mentioned above, this solution can be obtained by an iteration 

procedure using the expressions for ,
, ( , )B T

eff m k
�σ ω  given in Ref. [11]. 

5. Measurement of neff 

At this point, we have made a rather complete analysis of the electromagnetic response of a 
turbid colloid, pointing out the non-local character of the transverse dispersion relation needed 
to define and determine properly the effective refractive index. With this in mind, in this 
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section, we will analyze all the considerations that are necessary to measure accurately the 
effective index of refraction.  

As shown in Eqs. (15) and (18), the effective wave vector of the refracted beam inside the 
bulk is calculated with the effective refractive index in the exact same way as in a usual 
homogeneous and local medium with a complex refractive index due to absorption. The main 
difference when dealing with a colloidal medium with an effective non-local electromagnetic 
response is the presence of the diffuse field, the presence of the surface regions and a 
transmission coefficient for this transverse mode into the bulk of the colloid that depends on 
the possible excitation of rapidly decaying modes within the surface region. However, the 
surface region is of limited extent dictated by the non-local length (2a in the case of a mono-
disperse colloid, as shown above). Additionally, one must recall that the effective refractive 
index is attached only to the behavior of the coherent or average field even if there is also a 
diffuse field which carries optical energy as well. 

Therefore, devising a method to measure neff will simply require making sure that the 
effect of the surface regions is negligible, and that the measurement does not depend on the 
transmission or reflection coefficients of the refracted coherent beam in and out of the 
colloidal medium. Also, one must ensure that the diffuse field is not interfering with the 
measurement of only the average coherent component.  

Usually, in dilute colloids, it is not difficult to subtract a possible spurious contribution of 
the diffuse field to the measurement of the coherent optical power carried by the average wave 
(coherent power). The diffuse field is spread smoothly over all scattering angles, whereas the 
coherent power can be restricted to a short range in scattering angles (in the order of 1x10-3 
radians in the case of well collimated laser). Therefore, one may sample the diffuse power per 
unit area at scattering angles around the range of angles where the coherent power is 
concentrated. Then one may extrapolate the value of the contribution of the diffuse power 
when measuring the power density of the coherent wave and subtract it. In many cases, this 
correction will be negligible.  

Making a measurement independent of the transmission coefficient of the average wave 
into a colloidal medium rules out reflectance techniques to measure the effective refractive 
index. Thus, one must look into interferometric or refraction methods. We can think of two 
ways of measuring a complex neff  by transmitting a beam of light through a colloidal medium: 
i) in a slab geometry as illustrated in Fig. 2(a) or ii) in a prism geometry as illustrated in Fig. 2 
(b). In the slab geometry one may obtain the real part of neff from the phase delay of the beam 
through the bulk region, and its imaginary part from its attenuation. To ensure that the effect 
of the surface regions on the phase delay measurement is negligible, as well as for making the 
measurement independent of the transmission coefficients at the interfaces of the colloidal 
slab, one can perform two measurements of the phase delay and of the attenuation of the 
coherent beam; a first measurement with a slab of width d1 (> 2a) and a second one with a 
slab of width d2 > d1 but otherwise identical. Clearly, the difference in the measured phase 
delays corresponds to the phase delay of the coherent wave as it traverses a distance d2−d1 in 
the bulk. On the other hand, the transmitted coherent power is proportional to the product of 
the transmittance factors at the interfaces times either exp[-2k0Im(neff)d1] or exp[-
2k0Im(neff)d2]. Being the transmittance factors at the interfaces equal in both cases, the ratio of 
the measured values of the transmitted coherent power is equal to exp[-2k0Im(neff)(d2- d1)], 
and from this, we may obtain Im(neff) without knowing the transmittance factors of the 
interfaces.   
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Fig. 2.  Schematic illustration of refraction in (a) a colloidal slab and (b) a colloidal prism. 
 

In the prism method, one measures the angle of refraction of the beam exiting the prism, and 
from this angle and the prism geometry, one infers the real part of the effective refractive 
index of the prism. This method has actually been tested by the authors in a previous 
publication [15] and referred to as the colloidal-prism method. However, at the time the exact 
non-local nature of the effective refractive index was not yet established. In the colloidal 
prism the coherent beam refracts according to Snell’s law with the effective refractive index 
neff. Since neff is complex, the coherent wave inside the prism is an inhomogeneous wave, and 
Snell’s law must be used in its generalized form for complex refractive indices. This is 
actually discussed in Ref. [15]. In the colloidal prism method, the surface regions have no 
effect on the measurement of the real part of neff as long as the beam cross section completely 
enters the bulk. This is perhaps a fundamental advantage of refraction measurements over 
interferometric ones in the case of non-local media. However, for the measurement of the 
attenuation of the coherent beam, necessary to derive the imaginary part of neff, one must also 
ensure here that the effects of the surface regions are negligible. As explained above, one 
could use the ratio between two measurements for two different distances traveled within the 
colloid to make the measurement independent of the transmittance factors at the interfaces of 
the colloidal medium. Also, the modeling and measurement of the beam’s refraction must be 
performed with care when the wave attenuates as it traverses the prism, since this attenuation 
is not uniform through the beam’s cross section, simply because different portion of the beam 
traverse different distances within the prism of the prism’s shape. Nevertheless, this can be 
modeled using physical optics with a complex index of refraction with out much difficulty 
[15].    

Clearly, in either the slab or the prism method, the distance traveled through the bulk can 
not be too long nor the colloid can be too turbid as not to transmit a measurable amount of 
coherent power. This means that in general one will be limited to measuring the effective 
refractive index of dilute colloids.  

6. An application: Sizing small particles from measuring neff 

Once the theoretical framework for understanding and measuring the effective refractive 
index of colloids is established, we can explore interesting applications. Particle sizing from 
optical properties has been investigated and used for many years. We can mention two 
techniques: angle-resolved scattering measurements and spectroturbidimetry. In the first 
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technique, features from the scattering pattern of isolated particles (highly dilute limit) are 
measured and the particle size is inferred (see for example Refs. [16,17]). In 
spectroturbidimetry techniques (see for example Refs. [18-20]), a spectrum of the extinction 
coefficient is measured, and from it, the particle size distribution is obtained. In both these 
techniques the refractive index of the particles must be known and are limited to sufficiently 
large particles.  

What we want to show is that by measuring not only the extinction coefficient, which is 
proportional to the imaginary part of the effective refractive index, but also the real part of the 
effective refractive index, we do not need to assume or guess the real refractive index of the 
particles, which is often not well known, and is an important source of errors. We have 
already made some measurements with latex particles in water [15] and found it was possible 
to determine the refractive index and size of the particles in that particular case. Here, we 
show that this method can actually be used for small particles as well as particles of moderate 
size. Furthermore, we provide a general picture of the inversion method and its limitations. By 
moderately sized particles we mean particles with a size parameter larger than one but not 
much larger.   

Let us consider a monodisperse colloid of spherical particles of real refractive index 
dispersed in a matrix of real refractive index. Suppose we know, or have the means to 
measure, the volume fraction occupied by the particles f, and we measure both the real and 
imaginary parts of the effective refractive index. Then, using a model [e.g., Eq. (21)], it may 
be possible to retrieve the size of the particles and their refractive index. A graphical method 
can be used to obtain the inverse solution and explore the applicability and attainable 
sensitivity of the retrieval. Let us consider a system of spherical particles suspended in a 
matrix of refractive index of nm = 1.36 and light of a wavelength in vacuum of λ = 635 nm. In 
Fig. 3(a), we plot the real part of the refractive index increment (that is, the contribution of the 
particles to the  refractive index) normalized by the volume fraction, f, versus the imaginary 
part, also normalized by f. We plot curves for values of the refractive index of the particles of 
1.45, 1.47, … 1.55. The symbols in each curve correspond to values of the particles radii from 
zero (points at the ordinate axis) to 1.5 μm at 30 nm steps. For simplicity, these plots were 
calculated using the van de Hulst effective refractive index of the system given by Eq. (21). 
Then, the measured values of Re(neff – nm) / f and Im(neff) / f correspond to a point on the two-
dimensional space of the graphs. By recognizing to which curve the experimental point 
belongs, we know the refractive index of the particles and by locating its position along this 
curve we obtain its radius. Figure 3(a) shows that inverting the refractive index and size of the 
particles from the measurement of Re(neff – nm) / f and Im(neff) / f  has a unique solution when 
the particle radius is in the interval from 0 to 1.5 μm. In Fig. 3(b), we plot the same curves but 
for particle’s radii up to 50 nm at steps of 5 nm. In Figs. 4(a) and 4(b) we plot similar curves 
but for particles with a refractive index of 1.80, 1.85, 1.90, 1.95, and 2.0. In Fig. 4(a) the 
symbols are for particles of radius from 0 to 800 nm at steps of 10 nm. In Fig. 4(b) we plot 
this same graphs but for particle’s radii from 0 to 50 nm at steps of 5 nm.  

In both Figs. 3(b) and 4(b), we can appreciate clearly that the larger the refractive index of 
the particles, the better resolution will be possible in determining the particles radius because 
the points forming the curves are farther apart from each other.  Also from these curves, we 
can see that in practice it should be relatively simple to size very small non-absorbing 
particles in the range of a few nanometers and a few tenths of nanometers. The limit in sizing 
very small, non-absorbing particles will come from our ability to measure Im(neff) /f.    

In Figs. 3(a) and 4(a) we can see that as the particles get very large, the curves get closer 
to each other, meaning that the resolution in determining a and np worsens. Actually, all 
curves will approach the origin and show oscillations as the particle radius increases as is 
clearly seen in Fig. 4(a). In this region the curves intersect each other and may intersect 
themselves. Therefore, in this region, it will not be possible to resolve the particle’s radii and 
refractive index, showing that the present method is limited to moderate and small sized 
particles. 
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Fig. 3. Graphs of Im(neff ) / f  versus  Re(neff ) / f  for a colloid with a matrix of refractive index 
nm = 1.36 and particles of refractive index np = 1.45, 1.47, …1.55. The symbols in each plot in 
(a) are for a particles of radius a = 0, 30nm, 60nm, …1500 nm. In (b) are for a = 0, 5nm, 10nm, 
15nm, …50nm. 
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Fig. 4. Graphs of Im(neff ) / f  versus  Re(neff ) / f  for a colloid with a matrix of refractive index 
nm = 1.36 and particles of refractive index np = 1.80, 1.85, …2.0. The symbols in each plot in 
(a) are for a particles of radius a = 0, 10nm, 20nm, …800 nm. In (b) are for a = 0, 5nm, 10nm, 
15nm, …50nm. 

A rough and conservative estimate of the largest radius of the particles that can be 
characterized with the present method is when the curves turn around and head towards the 
origin. The turning point in each curve corresponds to when Im(neff) /f is maximum. In Fig. 5 
we plot the particle’s radii at which Im(neff) /f is maximum as a function of the refractive index 
of the particles, np. We can appreciate that the range in particle size for which the present 
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method may be used decreases exponentially as the refractive index increases. For np = 2.0 the 
maximum particle size is about 176 nm.  
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Fig. 5. Particle radius at which the imaginary part of the effective refractive is maximum as a 
function of the refractive index of the particles.  

     We must emphasize that the results presented here are for a monodisperse colloid of non-
absorbing particles. If the particles absorb light, that is, their refractive index has an imaginary 
part, the curves may be affected and we may incur in an error. However, if the imaginary part 
of np is not too large the curves are nearly unaffected and we may still use the present method. 
To estimate the magnitude of the imaginary part of the particles’ refractive index that may be 
tolerated by the present method we plot in Fig. 6(a) two curves for particles with np = 1.50 and 
1.55 at steps of Δa = 80 nm, and we added the corresponding points for particles with an 
imaginary part of the refractive index of Im(np) = 1x10-3 and 1x10-2. In Fig. 6(b) we do the 
same but for Re(np) = 1.80 and 1.90 and steps in a of 40nm.  In Fig. 6 we can appreciate that 
the points for Im(np) = 1x10-3 (squares) are very close to those for Im(np) = 0 (circles), and the 
error we would incur if we ignored an imaginary part of np as large as 1x10-3 would be small 
(maximum error less than 5 nm in a and less than 0.001 in np ).  
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Fig. 6.  Two curves for two different values of the particles’ refractive index, (a) np = 1.50, 1.55 
and (b) 1.80, 1.90 at steps of (a) Δa =80 nm and (b) Δa =80 nm. Points with the same value a 
and np but with an imaginary part added to np of Im(np) = 10-3 (squares) and Im(np) = 10-2 
(triangles) are also plotted.  

However, for Im(np) = 1x10-2 this error will not be small any more in this example and can 
be large in relative terms for small particles (up to 80 nm in a and about for np = 1.50). From 
inspection of Fig. 6(b) we see that the error in ignoring the imaginary part of np is less than in 
Fig. 6(a). Meaning that the method may tolerate larger values of Im(np) as the value of Re(np) 
increases. For practical purposes we may set a limit for the present method for particles with 
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an imaginary part of their refractive index of 1x10-3. In most cases the experimental 
uncertainty will be larger than the error caused by assuming a real refractive index of the 
particles.  
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Fig. 7.  Difference between the effective refractive index calculated by solving exactly the non-
local dispersion equation for transverse modes [Eq. (19)] and that calculated with the van de 
Hulst expression [Eq. (21)] normalized by the particle’s volume fraction f.  The curves shown 
are for a volume fraction of  f  = 1%, 2%, 3%, 4% and 5% and a particles’ refractive index of 
1.53 immersed on a matrix of refractive index 1.36 and a vacuum wavelength of 635 nm. 
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Fig. 8.  Difference between the effective refractive index calculated by solving exactly the non-
local dispersion equation for transverse modes [Eq. (19)] and that calculated with the van de 
Hulst expression [Eq. (21)] normalized by the particle’s volume fraction f.  The curves shown 
are for a volume fraction of  f  = 1%, 2%, 3%, 4% and 5% and a particles’ refractive index of 
2.00 immersed on a matrix of refractive index 1.36 and a vacuum wavelength of 635 nm. 

As already mentioned, the calculations used to generate the plots in Figs. 3-6 were made 
with the van de Hulst expression for the effective refractive index, Eq. (21). This expression is 
in general a very good approximation to the exact solution of the non-local dispersion 
equation for transverse modes within the effective-field approximation, Eq. (19). Let us now 
define D as the difference between the exact solution to Eq. (19) and the van de Hulst formula 
in Eq. (21). In Figs. 7 and 8 we plot the real and imaginary parts of D normalized by the 
volume fraction occupied by the particles, f, as a function of the particles radius and for 
different values of f . To generate the plots in Figs. 7 and 8 we solved Eq. (19) iteratively 
using the expression for ,

, ( , )B T
eff m k

�σ ω  derived in Ref. [11] but for particles embedded in a 

matrix with an electric permittivity εm = (1.36)2. In Figs. 7 and 8 we assumed a vacuum 
wavelength of 635 nm and a refractive index of the particles of 1.53 and 2.00 respectively. We 
can appreciate in these graphs that the improvement of using the exact solution to Eq. (19) is 
in general modest for values of f below 5%. In Fig. 7 and for f = 5% the maximum difference 
in the real and imaginary parts of the calculated refractive index is about 0.007 and 0.004 
respectively. In Fig. 8 the maximum differences are about 0.033 and 0.022 for the real and 
imaginary parts of D respectively. From Figs. 3 and 4 we can estimate that these differences 
would result in an error on the size determination of at most about 3%. For lower volume 
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fractions these maximum differences are lower and the maximum error in determining the 
particle’s size is about 1% for f = 2%. Therefore, if a precision on the order of a few percent is 
required, it is in general safe to use the van de Hulst approximation to estimate the size and 
refractive index of particles from measurements of the effective refractive index. 

7. Summary and conclusions 

We have presented a rigorous theoretical framework for the definition and calculation of the 
effective refractive index of a dilute colloidal system, whether it is optically turbid or not. The 
effective refractive index comes from a non-local effective medium theory and is in general a 
complex number, even in the absence of optical absorption. The effective medium theory 
describes only the average or “coherent” wave and the non-local length is the diameter of the 
colloidal particles. We have restricted our analysis to monodisperse colloids of spherical 
particles.  

The effective refractive index is associated with the fundamental solution to the non-local 
dispersion equation for transverse waves. The non-local nature of the average electromagnetic 
response of a colloidal system has important consequences that one must bear in mind when 
attempting to measure the effective refractive index. In particular, surface effects will in 
general invalidate the use of the usual Fresnel reflection coefficients for a flat interface. 
However, we showed that Snell’s law in its generalized form for complex refractive indices 
can be used safely, in the usual way, with the effective refractive index. This clears two 
possible ways to measure the effective refractive index without significant complications 
coming from the non-local nature of the electromagnetic response: The real part of neff may be 
obtained either from the phase delay of the coherent wave as it traverse a known distance 
through the colloid or from refraction at an interface with the colloidal medium. The 
imaginary part may be obtained from the attenuation of the coherent wave. Approaches to 
deal with the interface effects were discussed.  

Finally we illustrated the usefulness of measuring precisely the complex effective 
refractive index. In particular, we showed that from the measurement of the real and 
imaginary parts of the effective refractive index increment due to the colloidal particles and 
the volume fraction of the particles, it is possible to determine the size and refractive index of 
dielectric particles. This method is applicable particles with small and moderate size 
parameter. The maximum size parameter allowed for this method decreases as the refractive 
index increases. We also showed that for a precision of a few percent in the determination of 
the particle size in colloids with a volume fraction less than 5%, it is possible to use the so 
called van de Hulst formula for the effective refractive index to interpret the measurements. 
This is rather advantageous, since the valuation of the van de Hulst formula is relatively 
simple.   
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