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We analyze the retrieval of the radius and complex refractive index of colloidal particles from the

measurement of the effective optical properties of a dilute colloid. We point out some necessary

precautions for the measurement of the effective refractive index of colloids and discuss the main

sources of uncertainty.
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1. Introduction

Since many years ago, it has been acknowledged that when an
electromagnetic wave is incident on a turbid colloidal medium, an
average or ‘‘coherent’’ wave travels through the colloid with
an effective wave vector [1]. From this effective wave vector, an
effective refractive index, neff, of the colloid may be defined.
Clearly, the effective refractive index will depend on the physical
properties of the colloidal particles, and therefore, its correct
measurement could be used to characterize the colloidal particles.
This is one of the practical interests on the understanding and use
of the effective refractive index of turbid colloids.

Particle sizing is an old problem with a large variety of
important applications and has been addressed by many authors
over the years [2]. Several techniques have been developed and
many commercial apparatus are in the market today. However, all
techniques used today are still limited in one way or another
and several challenges remain [2]. In particular, turbidimetry
techniques are attractive from a practical point of view because
the instrumentation and experimental methodology are less
complicated than other techniques and they can be used for less
diluted colloids [3]. The main limitation of the inversion of
turbidimetry techniques is that one needs to know with good
precision on the refractive index of the particles in order to
estimate correctly the particle size, and is particularly critical
when particles are small compared to the wavelength. It is not
difficult to show that in turbidimetry techniques one measures
the imaginary part of the effective refractive index but not its real
ll rights reserved.
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part. Measuring the real part of neff in addition to its imaginary
part compliments turbidimetric measurements and permits
retrieving the size of medium and small particles (with
respect to the wavelength of radiation). However, the physical
nature of the effective refractive index of colloids remained rather
obscure until recently. In Ref. [3] it is shown that the effective
electromagnetic response of a colloidal medium is actually
non-local and spatially dispersive. The range of non-locality in a
colloid is given by the diameter of the particles. It was also shown
in Ref. [3] that the non-local dispersion equation for transverse
modes in a dilute colloid has a fundamental solution
given to a good approximation by the so called van de Hulst
formula. This formula was used in the past by several authors,
however its non-local origin was not understood at the time,
causing in many cases errors or confusion when using it. For
instance, when the particle size in the colloid is not very small
compared to the wavelength of radiation, the effective refractive
index can not be used safely in Fresnel formulas to calculate the
coherent reflection coefficients. Therefore, measurements of the
effective refractive index of colloids using techniques relying on
the measurements of the reflectance of light may incur in large
errors.

However, with a few precautions neff may be measured safely
by refraction of the coherent wave [4]. Also in Ref. [4], it was
shown that it is possible to retrieve the radius and refractive index
of colloidal particles from the measurement of the real and
imaginary parts of neff per unit of the volume fraction at a single
frequency when the particles are moderately sized with respect to
the wavelength and the imaginary part of np is smaller than about
10�3 (weakly absorbing particles). In this paper, we extend the
methodology proposed in Ref. [4] to highly absorbing particles.
Additionally, we analyze the main sources of uncertainty.
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Fig. 1. Curves of x2 versus x1 for constant np and varying values of a from 0 to

500 nm at steps of Da=10 nm: (a) for real values of np=1.7, 1.8 and (b) for complex

values of np=1.7+0.1i, 1.8+0.1i.
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2. Sizing dielectric particles from the effective refractive index
of colloids

The van de Hulst formula for the effective refractive index at a
frequency o of a dilute colloid made of particles of radius a and
refractive index np(o), may be written as,

neff ðoÞ � nmðoÞ 1þ i
2p
k3

m

rT Sað0Þ

� �
; ð1Þ

where nmðoÞ is the refractive index of the matrix where the
particles are suspended which we assume to be a real quantity,
km=nmk0 where k0 is the wave number in vacuum, rT is the
number density of particles, and Sað0Þ is the forward scattering
amplitude of particles or radius a at the frequency o. In the
laboratory, one can measure and control the volume fraction
occupied by the particles, f, and not the total number density of
particles rT. These are related by f=rTVp where Vp ¼ 4pa3=3 is the
volume of one particle. The contribution of the colloidal particles
to the refractive index may be written in terms of the volume
fraction occupied by the particles as

Dneff �
3

2
nmf

Sað0Þ

x3
m

ð2Þ

where xm=kma is the so called size parameter of the particles. The
effective refractive index increment in Eq. (2) is in general a
complex quantity, Dneff ¼Dn0eff þ iDn

00

eff . The imaginary part of it
takes into account attenuation of the coherent wave due to
scattering and absorption. The scattering losses convert the
coherent radiation into diffuse radiation whereas absorption
losses convert the coherent radiation into heat.

Let us suppose we have a dilute colloid made of particles of
radius a and real refractive index np, embedded in a homogeneous
substance (the matrix) with a real refractive index nm. Let us
define the effective colloid parameters,

x1 �
Dn

00

eff

f

and

x2 �
Dn0eff

f
: ð3Þ

To see whether we may retrieve a and np from the measurement
of the effective properties vector, x=(x1, x2), we can plot curves of
x1 versus x2 for constant np and different values of a. If these
curves are well separated in the (x1, x2)-space, then the inversion
of np and a is unique and well conditioned. We obtain np simply
by recognizing to which curve the experimental point x belongs
and a from its position along the curve. An example is illustrated
here in Fig. 1. We plot two curves of x2 vs. x1 for np=1.7 and
np=1.8 and varying a at steps of Da=10 nm from a=0 to 500 nm,
assuming a wavelength of l=635 nm. For larger particle radius,
both curves tend to the origin and cross each other and the
inversion of a and np is no longer possible [4].

When the particles absorb light their refractive index is a
complex quantity, np ¼ n0pþ in

00

p. At a specific wavelength we may
view n0p and n

00

p as independent variables. In Fig. 1b we compare
the curves of Fig. 1a with the same two curves but for particles
with an imaginary part of their refractive index of n

00

p ¼ 0:1. Clearly
one may not retrieve the value of a nor n0p if one does not know
that n

00

p ¼ 0:1. In Ref. [4] it was shown that if n
00

po10�3 we can
ignore it and retrieve correctly a and n0p from the measurement of
the effective properties, x=(x1, x2). When n

00

p is larger we cannot
longer ignore it and we have three unknowns in the inverse
problem. Therefore, we need at least three effective optical
properties of the colloid to solve for the three particle’s
parameters.
3. Extended methodology for highly absorbing particles

The imaginary part of the effective refractive index of a colloid,
in the dilute regime, is proportional to the so called extinction
cross section of the particles Cext. We have, Dn

00

eff ¼ fCext=2k0Vp [5].
It is well known that the extinction cross section can be divided as
the sum of a scattering and an absorption cross section, that is,
Cext=Csca+Cabs [5]. Then, we can split the imaginary part of the
effective refractive index in two components, one due to
scattering and one due to absorption. That is

Dn
00

eff ¼ ðDn
00

eff ÞscaþðDn
00

eff Þabs ð4Þ

where ðDneff Þsca ¼ fCsca=2k0Vp and ðDn
00

eff Þabs ¼ fCabs=2k0Vp. As
already said, the measurement of the coherent transmittance of
a collimated beam readily gives Dn

00

eff , whether it has contribu-
tions from scattering or absorption or both.

However, it is also possible to measure the optical absorption
by the particles independently of the scattering of the particles.
Such measurements are in principle possible by either photo-
thermal techniques [6] or by integrating-cavity techniques [7]. In
either case one could determine experimentally what fraction of
the coherent beam was absorbed and therefore can determine
ðDn

00

eff Þabs. Then, let us define the third effective optical property
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needed in the case of highly absorbing particles as

x3 �
ðDn

00

eff Þabs

f
ð5Þ

To see whether the three measurements x=(x1, x2, x3) are
sufficient to determine a, n0p and n

00

p in the case of highly absorbing
particles, we may plot, using Eq. (2), curves of constant n0p and n

00

p

for different values of a in the (x1, x2, x3) space. If these curves are
well separated from each other, it means that the values of a, n0p
and n

00

p may be inverted from experimental measurements. In
Fig. 2 we plot the same curves of Fig. 1b but in the three
dimensional space (x1, x2, x3). We can appreciate that the four
curves are well separated from each other and thus the inversion
of the particles’ parameters is unique and well conditioned.

Another example is considered in Fig. 3 for metallic particles.
We plot curves of constant n0p and n

00

p varying a from a=0 to
a=100 nm at steps of 5 nm at a wavelength of l=635 nm. The
values of n0p and n

00

p for each curve are close to those for gold
particles at this wavelength.

We can appreciate in Fig. 3 that, again, all the curves are
separated from each other, and thus, the inversion of the particle’s
parameters is well conditioned and unique in this example. In the
next section we point out some aspects on the measurement of
Dneff that need special care.
4. Necessary precautions for the measurements of neff

The experimental determination of the effective refractive
index of a turbid colloid requires several precautions. First, one
must determine neff from measurements of the coherent intensity
only. Therefore, one must subtract any contribution of diffuse
light that may be superimposed to the coherent power collected
by the detector. Second, one must bear in mind the non-local
origin of the effective refractive index, and this rules out the
unrestricted use of common techniques based on reflectance
measurements [4]. The imaginary part may be obtained from the
measurement of the attenuation of the coherent intensity as it
travels through the bulk of the colloid and the real part may be
obtained from the measurement of the refraction angle of the
coherent component of light at a colloidal interface.
For the determination of the imaginary part of neff, one must
ensure that the transmission coefficients of the coherent light
entering and leaving the colloid does not affect the measurement.
This is so because we do not have a general and safe way to
calculate these transmission coefficients. On the other hand, these
transmission coefficients depend also on the real part of neff which
are to be determined as well. Experimentally, this can be
accomplished by measuring the transmittance factor of the
coherent beam, as illustrated in Fig. 4a, for two cells of different
widths but otherwise identical. The ratio of these two
measurements will depend only on the attenuation of the
coherent beam on the difference in cell’s widths, and will be
independent of the transmission coefficients at the cell’s
interfaces.

In an experiment to determine the real part of neff, one can use
the refraction of a well defined optical beam at the interfaces of a
colloid. For instance, one may use a prismatic cell filled with the
colloid and measure the deflection angle of a beam transmitted
trough it. The so called differential refractometer, illustrated here
in Fig. 4b, may be particularly convenient for measuring Dn0eff . The
deflection angle will be obtained from the shift in position of the
intensity maximum or the intensity ‘‘centroid’’ of the light spot of
the coherent beam at some detection plane. For a given optical
beam and colloidal prism, one must carefully calculate the lateral
displacement and deflection angle of the coherent beam
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transmitted through the colloidal prism, which in general depend
on both, the real and imaginary parts of the effective refractive
index. For very well collimated beams which start to diffract at
distances large compared with the dimensions of the colloidal cell
it can be shown that the angle of deflection depends only on the
real part of neff [8]. However, one must be careful on subtracting
the lateral shift of the beam that occurs as it traverses the
prismatic cell with the colloid [8]. If the beam is not so well
collimated, as it could be with non-laser beams, the deflection
angle may depend also on the imaginary part of neff. The latter
effect may be thought as being due to uneven attenuation of the
coherent beam due to diffraction.

We have already applied the proposed methodology in our
laboratory to sizing small glass and polystyrene particles in water.
The radii of the particles were in the range between 20 nm and
60 nm. To obtain f in the colloidal samples we first withdraw a
know volume, vs, of the colloid with a precision syringe and
weight it. Then we let the water evaporate and weight the
remaining solids. Knowing the density of water we calculated the
volume of evaporated water, vw, and obtained the volume fraction
occupied by the particles in the colloid as f=(vs–vw)/vs. We
measured Dn0eff and Dn

00

eff using a prismatic cell and a rectangular
one respectively. We performed the measurements at l=475 nm
using a solid state laser. First we made measurements with pure
water and then added the colloidal particles and obtained Dn0eff

and Dn
00

eff . We found good agreement between the retrieved
particle radii with the proposed methodology and those measured
by a commercial apparatus based on dynamic light scattering and
with TEM micro-photographs of the colloidal particles. Details of
these and other measurements will be published elsewhere. In
our measurements the largest experimental relative error was on
the determination of the volume fraction occupied by the
particles. In the next section we analyze the uncertainty on the
retrieval of a and np arising from the uncertainty on f.
5. Uncertainty on particle sizing due to errors in determining f

Let us suppose the relative error on the measurements of the
real and imaginary parts of the effective refractive index are small
compared to the relative error on measuring f. If the three
parameters x1, x2 and x3 were obtained for the same colloidal
sample, the error in f is the same for the three measurements and
their uncertainties are correlated. The uncertainty on the value of
xj is given by dxj � xjðf=df Þ for j=1, 2 and 3. Then we can write,
dx¼ xðdf=f Þ, where x=(x1, x2, x3). Now, when surfaces of constant
a are separated from each other in the (x1, x2, x3)-space, there is a
well defined inverse function a(x). Then, if for a given colloid, we
determine experimentally x¼ x7dx, the uncertainty in retriev-
ing a is given by, da¼ra � dx. In the x-space, ra is a vector
perpendicular to the surfaces of constant a. Its direction may be
found from the cross product of two vectors on that surface, say,
N¼ @x=@n0p and M¼ @x=@n

00

p. Then we may write,ra¼ jrajn̂a,
where the unit vector n̂a is given by, n̂a ¼ ðN�MÞ=N�M. The
magnitude of the gradient of a at x may be calculated as
jraj � da=ds where ds is the distance in x-space between the
surface for particles of radius a+da and that for particles of radius
a at point x. Now, consider the differential vector in x-space,
dx¼ ð@x=@aÞda. If we project this vector along the direction n̂a we
get the corresponding value of ds for a given value of da, that is,
ds¼ dx � n̂a. Thus, we get, da¼ ½ð@x=@aÞ � n̂a�

�1ds, and therefore,
jraj ¼ 1=ð@x=@aÞ � n̂a. Using the formulas just given we may write,
the relative uncertainty on the retrieved value of the particle
radius due to the uncertainty in the particle’s volume fraction as,
da=a¼ Fðdf=f Þ, where the factor F is given by x � n̂a=½að@x=@aÞ � n̂a�.
Similar formulas may be obtained for the relative uncertainty on
retrieving n0p and n

00

p. For instance, dn0p=n0p ¼ Gðdf=f Þ where the G

factor is given by, G¼ x � n̂n0p=½n
0
pð@x=@n0pÞ � n̂n0p � and where n̂n0p is

the corresponding unit vector of nn0p ¼ ð@x=@aÞ � ð@x=@n
00

pÞ.
We illustrate in Fig. 5a the normal vector n̂a and the tangent

vector N in the 2D-space (x1, x2) for the case of dielectric particles.
Numerical evaluation of the factors F and G in the case of
dielectric particles smaller than one wavelength and with low
refractive index contrast with the matrix show that these are less
than one. In other cases these factors may be smaller or larger
than one. In Fig. 5b we plot some values of the F and G factors
calculated for an example of metallic particles. In this particular
example, the magnitude of the factor F is always less than 0.5, but
that of the G factor is larger than one, meaning that the relative
error in retrieving the particle radius will be smaller than that on
retrieving the real part of the refractive index of the particles.

Another important source of uncertainty will come in the case
of colloids that have a wide size distribution. In the next section
we briefly analyze the effect of the size distribution when
estimating the size of colloidal particles with the proposed
methodology.
6. Polydisperse colloids

The methodology described above assumes a monodisperse
colloid, that is, it is assumed that the colloidal particles have a
narrow size distribution. We may consider a colloid to be
monodisperse when the most probable particle radius, the
average particles’ radius, and the radius of a particle with the
average volume, are close to each other in terms of the required
precision for the size determination. If the size distribution is not
narrow, we refer to the colloid as being polydisperse. In this case
we will need to perform additional measurements to obtain
information on the particle’s size distribution. When particles are
not too small it may be enough to perform the same measure-
ments but at other wavelengths.
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If the colloid is polydisperse, the effective refractive index may
be written as,

neff ðoÞ � nmðoÞ 1þ i
2p
k3

m

Z 1
0

rðaÞSað0Þda

� �
; ð6Þ

where r(a) da is the number density of particles with radius
between a and a+da. We may write r(a)=rT n(a) where rT is the
number density of all particles regardless of their radius and n(a)
is the size distribution function. In this case the volume fraction
occupied by the particles is given by f ¼ rT/VpS where
/VpS¼ 4p/a3S=3 is the average volume of one particle. The
average in this case is taken over the size distribution function
n(a), that is, / �S¼

R
ð�ÞnðaÞda. The refractive index increment in

the case of a polydisperse colloid may be written in terms of the
volume fraction occupied by the particle, f, as,

Dneff � i
3

2
nmf

/Sað0ÞS
k3

m/a3
mS

ð7Þ

Therefore, with polydisperse colloids we will actually obtain an
equivalent particle radius ae and refractive index npe that solves
the real and imaginary parts of the equation Sae ð0Þ=a3

e ¼

/Sað0ÞS=/a3S. In general, ae will coincide with neither the most
probable radius, nor the average radius, nor the radius of the
average volume. For instance, for very small particles, it is not
difficult to show that we will retrieve an equivalent particle
radius that is larger than the average radius and the radius of the
average volume. For very small particles we may approximate [5],
Sað0Þ ¼ ½�ibk3
ma3þ2

3b
2k6

ma6þ :::� where b¼ ðm2�1Þ=ðm2þ2Þ and m

is the relative refractive index np/nm. Corrections to the imaginary
and real parts of the later expansion of Sað0Þ are of order Oðk5

ma5Þ

and Oðk7
ma7Þ, and higher, respectively. For instance, let us suppose

a log-normal particle size distribution,

nðaÞ ¼
1

a
ffiffiffiffiffiffi
2p
p

lns
exp �

ln2
ða=a0Þ

2 ln2 s

 !
ð8Þ

where s and a0 are the width and particle radius parameters
respectively. a0 is close but somewhat larger than the most
probable radius. Using (8) to calculate /Sað0ÞS=/a3S yields,

ReðDneff Þ ¼
3

2
nmfb

and

ImðDneff Þ ¼ nmfb2k3
ma3

0 expð12½6
2
�32
�ln2sÞ ð9Þ

Therefore, in this case, the retrieved value of the particles’
refractive index is actually np but the retrieved value of the
particles’ radius is ae ¼ a0 expð3

2

2 ln2sÞ. We may compare
the retrieved equivalent radius with the radius of the average
volume: av ¼ a0 expð32ln2sÞ. We can see that the equivalent radius
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is expð3ln2sÞ times larger than av. Thus, for s=1.1, 1.2, 1.3 and 1.4
the retrieved radius is 2.8%, 10%, 23% and 40% larger than the
radius of the average particle volume. Of course, for other size
distribution functions the relation between ae and av will be
different, but in any case, the value of ae will be well within the
interval of particle sizes, but towards the region of larger particles.
For larger particles we can expect ae to be closer to av and
eventually it could be smaller. As an example, in Fig. 6a and b we
show a log-normal size distribution for f=0.02 and a0=80 nm,
with s=1.1 and 1.4, respectively. We indicate in the figures the
average radius, the radius of the average volume, and the
equivalent particles’ radius retrieved for particles of refractive
index np=1.6 in water.
7. Summary and conclusions

It is possible to retrieve the radius and refractive index of small
and moderately sized, weakly absorbing particles, from the
measurement of the real and imaginary parts of the effective
refractive-index increment Dneff per unit volume fraction occu-
pied by the particles. If one also measures the contribution from
optical absorption to the imaginary part of Dneff it is possible to
retrieve the size and complex refractive index of highly absorbing
particles. We analyzed the uncertainty on the retrieved para-
meters due to the uncertainty on determining the volume fraction
of the particles and discussed the case when the colloidal particles
have a wide size distribution.
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