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It has been recently shown that the effective electromagnetic

bulk response of a dilute colloidal system, composed by a large

collection of identical big spheres, located at random, is

spatially dispersive (non-local). Here, we extend this effective-

medium approach to the calculation of the reflection and

transmission amplitudes of the same system but with a flat

interface. We use an integral-equation approach for the

calculation of the average electric field. The integral equation
is solvedwithin the effective-field approximation, by proposing

a plane-wave solution with effective parameters that are

calculated by solving a set of consistency equations. We obtain

explicit expressions for the transmission and reflection

amplitudes as a function of the filling fraction, the radius of

the inclusions and the angle of incidence. We show and discuss

numerical results for a system of silver particles.
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Colloids are usually defined as a
system in which a dispersed phase is immersed within a
homogeneous one. Typical examples of this kind of systems
are: clouds, snow, milk, blood, paints, etc. The dispersed
phase is usually referred to as colloidal particles or
inclusions. Depending on the size a of the colloidal particles
in relation to the wavelength l of the incident radiation,
the system looks either transparent whenever a/l� 1 or
it looks turbid whenever a� l. Turbidity arises from the
electromagnetic field scattered by the randomly located
colloidal particles. In order to analyse the optical properties
of a colloidal system it is convenient to split the total
electromagnetic field within the system in two components:
an average component, usually called the coherent beam,
plus a fluctuating component, usually called diffuse field.
While turbidity is associated to the diffuse field that travels in
all different directions, the coherent beam, besides travelling
along a definite direction, it is also refracted and reflected
at a flat interface. Now, if one disregards the diffuse field,
the coherent beam seems to behave as light does in
homogeneous media, where a complex effective index of
refraction could be defined, and we could regard this, as an
optical property of a fictitious homogeneous medium known
as: effective medium. The optical properties of the effective
medium are given in terms of the optical and geometrical
properties of the two colloidal phases as well as the statistical
properties of the inclusions. The main advantage of an
effective-medium approach is that having obtained the
effective properties of the inhomogeneous system, one can
use them in continuum electrodynamics as if the systemwere
actually a homogeneous material. It has been recently shown
[1] that although it is possible to construct an effective
medium for the coherent beam in turbid colloids, this
medium turns out to be spatially dispersive. This means that
the effective electromagnetic response depends not only
on the frequency v of the exciting field but also on its
wave vector k. Nevertheless, it was also shown [1] how from
the dispersion relation for the transverse modes, it was
possible to derive a frequency-dependent effective index
of refraction neff (v). In previous works we studied the
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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reflection and refraction of light from a turbid colloidal half-
space using a multiple-scattering approach [2–5] and looked
at the repercussions on the properties of an underlying
effective medium. In these latter works we already discussed
the precautions that have to be taken for using an effective
refractive index of a turbid colloidal system in continuum
electrodynamics. For example, the use of neff (v) in Fresnel’s
relations to calculate the reflection amplitudes of the
coherent beam from a flat interface may no longer be valid.

Here, we construct the theoretical framework to
incorporate the presence of a flat interface in the spatially
dispersive effective medium of the colloidal system, and
show how to calculate correctly the transmission and
reflected amplitudes of the coherent beam. Our approach is
based on an integral-equation formulation and the construc-
tion of an effective electromagnetic response of the colloid
that, due to the presence of the interface, is no longer
translational invariant. We discuss also previous attempts to
solve this problem as well as the inconsistencies found
when trying to determine neff (v) using the conventional
procedure followed in a reflection-based spectroscopy.
Finally we comment on extensions of our approach and also
on possible applications.

2 Review
2.1 Homogeneous material Here, we review the

laws of refraction and reflection of light at a flat interface
between vacuum and a homogeneous and isotropic material,
in order to set a reference and to introduce notation. In this
case, the dispersion relation of the electromagnetic modes
in the system can be expressed as kðvÞ ¼ k0nðvÞ where
k0 ¼ v=c, v denotes the frequency of the incident radiation,
c denotes the speed of light and k and n are the norm of the
wavevector and the index of refraction in the homogeneous
medium. In the presence of a flat interface Snell’s law
demands that the parallel component of the wavevector
kjj ¼ k0sinui should be continuous across the interface. Here
ui is the angle of incidence. Therefore, in the presence of
the interface, the dispersion relation becomes
www
k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2jj þ k2z

q
¼ k0n; or kz ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2ui;

p
(1)
where the Z-axis has been chosen perpendicular to the
interface and directed towards the homogeneous material. In
the presence of absorption, n is a complex quantity, thus
kz ¼ Re kz þ i Im kz becomes also complex. This means that
within the material the wave is inhomogeneous, that is, it
propagates at an angle
tanut ¼
kjj

Re kz
; (2)
called angle of refraction (transmission), and its amplitude
decays along the Z-axis with a penetration length equal to
1/Im kz.
.pss-b.com
The reflection amplitudes of the electric field can be
calculated using Fresnel’s relations, which are given in terms
of the electric permittivity e and the magnetic permeability
m. They can be written, for s-polarization (E-field parallel to
the Y-axis), as
rs ¼
Er

Ei
¼

kiz �
m0

mi

ktz

kiz þ
m0

mi

ktz
; (3)
and for p-polarization (H-field parallel to the Y-axis), as
rp ¼
Er

Ei
¼

kiz �
e0
e
ktz

kiz þ
e0
e
ktz

; (4)
where the subindex i, r and t denote incident, reflected
and transmitted, respectively, while kiz ¼ k0cosui and ktz
is given by Eq. (1). Here we use SI units, while e0 and m0

retain their usual meaning. Notice that in order to utilize
Fresnel’s relations the knowledge of the index of refraction
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
em=e0m0

p
is not enough, it is also required to know e

and m, separately; with exception of materials with no
magnetic response (m¼m0) in which n ¼

ffiffiffiffiffiffiffiffiffi
e=e0

p
would be

certainly enough.

2.2 Previous attempts Probably the first attempt to
obtain the effective index of refraction for the coherent beam
in a dilute turbid colloid appeared in the book by van deHulst
[6] as early as 1957. The expression he obtained, using
simple approximations in multiple-scattering theory and a
model of randomly located, non-magnetic identical spheres,
of radius a, in vacuum, can be written as
neff ¼ 1þ igSð0Þ; (5)
where g ¼ 3f=2ðk0aÞ3, f is the volume filling fraction of
the inclusions and S(0) is the diagonal component of the
amplitude scattering matrix in the forward direction.
Here, we follow the definition given in Ref. [7]. Now, it
can be shown [5] that one cannot use naively this effective
index of refraction in, for example, Fresnel’s relations.
Furthermore, if one uses Fresneĺs relations to retrieve
neff from measurements in conventional reflection-based
refractometers, significant inconsistencies might be found
[5]. The reason for this is that the effective index of
refraction derived by van de Hulst corresponds to an
effective medium that besides having a magnetic response it
is also spatially dispersive (non-local), as we will see below.

2.3 Bulk non-local response It was recently shown
[1], as it was mentioned above, that in a turbid colloid it is
possible to construct an effective medium for the coherent
beam, This effective medium turns out to be spatially
dispersive, and for a model of randomly located identical
spheres, explicit expressions for the bulk effective non-local
generalized conductivity tensor seff have been derived [1].
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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seff is defined through
� 20
Jh iðr;vÞ ¼
Z

seffð r� r0j j;vÞ� Eh iðr0;vÞ; (6)
Figure 1 (onlinecolourat:www.pss-b.com)Diagramof the reflec-
tion geometry. All particles are identical spheres of radius a, with
their centers located at zp > a. The fictitious flat surface is at z ¼ 0
and ki, kr are the wavevectors of the incident and reflected plane
waves and. keff is the effective wavevector in the bulk.
where the brackets denote ensemble average over the
random locations of the spheres, J is the total induced
current density and E is the electric field. The frequency v
comes from a Fourier transform in time and the dependence
on r� r0j j indicates that the system is isotropic and
translationally invariant and the non-local length is given
by the size of the spheres. The name generalized indicates
that the induced current density is not split in a polarization
and magnetization components, here J includes both; it is
the total induced current.

Since Eq. (6) is a convolution, after a Fourier transform
in space one can write
Jðk;vÞ ¼ seffðk;vÞ � Eðk;vÞ; (7)
and one can readily see that the k-dependence (spatial
dispersion) of seff comes from the non-locality of the
response. Due to the homogeneity and isotropy of the bulk
system one can write the tensor
seffðk;vÞ ¼ sL
effðk;vÞk̂k̂þ sT

effðk;vÞð1� k̂k̂Þ; (8)
in terms of only two scalar components sL
eff and sT

eff called
the longitudinal and transverse components, respectively. It
is possible to write sL

effðk;vÞ and sT
effðk;vÞ in terms of the

more traditional eeffðk;vÞ and meffðk;vÞ. In Ref. [1] explicit
expressions for these four scalar quantities are derived as
well as numerical results for a system of Ag and TiO2

colloidal particles. It is interesting to point out that although
the particles are non-magnetic, there is an effective
magnetic response meff coming from the closed currents
induced within the particles.

3 Formalism
3.1 Surface non-local response In this section we

include the presence of the interface in the calculation of the
generalized effective conductivity tensor. Since the system is
no longer translationally invariant in the z-direction the bulk
response is no longer adequate, due to the presence of a
surface region whose size is of the order of the non-local
length, that is, the size of the particles (see Fig. 1).

This means that seff should depend now on z and z0

separately, and can be written as seffðkjj; z; z0;vÞ where we
have used a mixed Fourier representation taking account
of translational invariance in the plane of the interface
(kjj ¼ kjj

0). There have been, however, attempts to calculate
the transmitted and reflected fields at a flat interface using
the bulk response seffðk;vÞ, and one can recall the semi-
classical infinite barrier model (SCIB) and the approach of
the additional boundary conditions (ABC), used in non-local
optics [8, 9], a couple decades ago. Nevertheless, all these
previous attempts are valid only when the size of the surface
region is much smaller than the wavelength of the incident
radiation, which is not the case here.
12 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
3.2 Isolated sphere Since our final objective is the
calculation of the reflection and transmission amplitudes of
the coherent beam in the independent-scattering approxi-
mation, for a dilute system of randomly located identical
spheres, the main ingredient of this calculation is the full
non-local generalized conductivity tensor of an isolated
sphere ssðr; r0Þ. In the many-sphere system, this isolated
sphere responds to the so-called exciting field Eexc, that is,
the field coming from the external field plus the field
scattered by all other spheres, thus one writes
Jindðr;vÞ ¼
Z
S

ssðr; r0;vÞ � Eexcðr0;vÞd3r0; (9)
where Jind is the current density induced within the
sphere and the integration is done over the volume of
the sphere because ss vanishes whenever either r or r

0 lie
outside the sphere.

The calculation of ss is performed by taking a Fourier
transform in space of Eq. (9) and the exciting field as a single
planewave of unit amplitude,wavevector k, frequencyv and
polarization vector eb. Then, by writing Jind ¼

P
a J

ind
a êa,

and choosing three independent directions for the polariz-
ation vector êa, we have that all the components of ss are
given by
êa � ssðk; k0;vÞ � êb ¼ Jinda ðk;v; êbÞ: (10)
Thus the calculation of ss is reduced to the calculation
of the currents induced within a sphere. Since the sphere
responds locally to the interior fields, Jindwill be given by
Jindðr;vÞ ¼ �ivðes � e0ÞEintðr;vÞ

þ 1

m0

� 1

ms

� �
r� Bintðr;vÞ

� 1

m0

� 1

ms

� �
dðr � aÞêr � Bintðr;vÞ;

(11)
www.pss-b.com



iv

iv

Phys. Status Solidi B 249, No. 6 (2012) 1143

Original

Paper
where the centre of the sphere is at the origin of the
coordinate system,Eint andBint are the electric andmagnetic
fields in the interior of the sphere ðr < aÞ and, es and ms are
their frequency-dependent local permittivity and per-
meability. Therefore, recognizing that the sphere responds
non-locally to the exciting field while responds locally to the
interior fields, the problem of calculating ssðk; k0;vÞ is
reduced to the calculation of the interior fields, yielding a
problem similar to Mie scattering. While in Mie scattering
the incident plane wave is transverse and self-propagating,
in our case k0 andv should be independent of each other thus
this requires the presence of external currents. Following
this procedure for different polarizations of the incident
plane wave we have calculated the different components of
ssðk; k0;vÞ for a system of Ag and TiO2 in vacuum. The
details of this complicated but important calculation will be
reported elsewhere.

3.3 Relation with the single-scattering problem
Since the calculation of the interior fields within the isolated
sphere is required for the calculation of the scattered field,
there should be a relation between the generalized non-local
conductivity tensor ssðk; k0;vÞand the scatteringmatrix.We
can see this by first writing the scattered field at points in
space outside the particle as
ESð

www
ESðrrÞ ¼
Z

G0ðr; r0Þ � Jindðr0Þd3r0; (12)
where
G0ðr; r0Þ ¼ 1þ 1

k20
rr

� �
eik0jr�r0 j

4pjr� r0j ; (13)
is the free Green’s function dyadic. From here on we
suppress in the notation the explicit dependence onv, unless
it leads to confusion. Then one substitutes the expression
for Jind given by Eq. (9) into Eq. (12) taking Eexcðr0Þ ¼
Ei
0e

iki�r0 êi. Since the scattering matrix relates the scattered
field in the far-field region with the incident field, we first
perform a far-field expansion of the scattered field, and one
gets
Jin
rÞ ¼ ivm0E
i
0

eik0r

4pr
ð1� k̂

s
k̂
sÞ � ssðks; kiÞ � êi

þ O
1

r2

� �
þ . . . ;

(14)
where ks ¼ k0êr and ki ¼ k0k̂
i
and k̂

s ¼ ks=ks denotes unit
vector. One can readily see that being 1� k̂

s
k̂
s
a transverse

projector, the scattered far field is perpendicular to k̂
s

(transverse), thus the components of ð1� k̂
s
k̂
sÞ � ssðks; kiÞ

can be directly related to the diagonal elements of the 2� 2
scattering matrix for a sphere, whose definition is given
through the following relation [7]
ES
jj

ES
?

� �
¼ eik0r

�ik0r

S2ðuÞ 0

0 S1ðuÞ

� �
Ei
jj

Ei
?

� �
; (15)
.pss-b.com
where the sub-indices jj and ?mean parallel and perpen-
dicular to the scattering plane, which is the plane that
contains the vectors ki and ks, u is the angle between them.
Thus comparing Eqs. (14) and (15), one gets the following
relations between ss and S1ðuÞ, S2ðuÞ:
m0ð1� k̂
s
k̂
sÞ � ssðks; kiÞ � êi? ¼ 4p

�ik0
S1ðuÞêS?; (16)
m0ð1� k̂
s
k̂
sÞ � ssðks; kiÞ � êijj ¼

4p

�ik0
S2ðuÞêSjj: (17)
These identities do not specify completely the dyadic
ss, and the other projections of ss that are used in the
calculations below. However, these other projections have
a small contribution compared to those from Eqs. (16) and
(17). We use these identities whenever possible.

We should remark that we use the expressions above for
the electric field in the far-field region only to establish, the
identities given in Eqs. (16) and (17). However, our analysis
on the reflection and refraction of light in turbid colloids does
not require that the particles are located in the far-zone
of each other. In many cases the particles will be, on
the average, less than a wavelength apart from each other.
The projections on the left hand side of Eqs. (16) and (17)
arise from the averaging procedure, and not from a far-field
requirement.

3.4 Integral equation for the mean field Here,
we deal with the multiple-scattering problem, thus we will
consider a collection of a large numberN of identical spheres
of radius a within a volume V, in the limit N ! 1, V ! 1
while n0 ¼ N=V is kept finite. We start by deriving the
equation obeyed by the total electric field
EðrÞ ¼ EincðrÞ þ EindðrÞ; (18)
where Einc is the incident or external field, while Eind is
the field induced inside and outside of the particles, and
it is given by Eq. (12) but for points outside and inside
the particles. From now on the induced current density
Jind will be the current density induced in all spheres. This
is given by
dðrÞ ¼
X

p

Z
ssðr� rp; r

0 � rpÞ � Eexc;pðr0Þd3r0; (19)
where the index p labels the spheres, Eexc,p is the field
exciting the p-th sphere and rp is the position vector of its
centre. When one introduces this expression into Eq. (12)
one obtains an equation for the scattered electric field
ES in term of the exciting field Eexc,p at all the particles.
Since in the coherent beam the fluctuations of scattered
field due to the random location of the spheres are smooth
out by an adequate averaging procedure, such as an
ensemble (configurational) average [11], we perform next
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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the ensemble average of the total electric field in the
presence of the interface. For doing this:
(1) W
Eh i

þ

þ

�

� 201
ebuildup the interfacebyassuming that theprobability
of finding the centre of a sphere within d3r is constant for
z > a and zero for z < a.
(2) W
e perform the following plane-wave expansion of G0

that ismore convenient for dealingwith the flat-interface
geometry [10]
G0ðr; r0Þ ¼ � êzêz
k20

dðr� r0Þ

þ i

2

Z
d2kk

ð2pÞ2
1

ksz
1� k�k�

k20

� �
eik�ðr�r0Þ;

(20)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where k� ¼ kk � ksz êz and ksz ¼ k20 � k2k. The choice
� is þ �ð Þ for z > z0 z < z0ð Þ.
(3) W
e calculate the average field Eh i by taking an ensemble
average over the random location of the spheres, and
(4) w
e take account of multiple scattering by approximating
the exciting field at the every particle by the average
field Eexc;p � Eh i. This approximation is known as the
effective-fieldapproximation (EFA), and isonlyvalid for
dilute systems.
(5) W
e take as an incident field a transverse plane wave of
the form
EincðrÞ ¼ êiEi
0e

ikik�reik
i
zz (21)
where ki ¼ ðkik; kizÞ and êi � ki ¼ 0.

Under these circumstances we obtain, for z > 0, the
following integral equation for the average field:
þðzÞ ¼ êiEi
0e

ikizz

ivm0n0

Z
dk00z
2p

"
� êzêz

k20
� ssðkik; k00z ; k

i
k; k

00
z Þ:eik

00
z z

1

2kiz
ð1� k̂

i
k̂
iÞ � ssðki; kik þ êzk

00
z Þ
eik

00
z z � eik

i
zzeiaðk

00
z�kizÞ

k00z � kiz

1

2kiz
ð1� k̂

r
k̂
rÞ � ssðkr; kik þ êzk

00
z Þ

eik
00
z z

k00z þ kiz

#
� Eh i k00z

� �
;

(22)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

where ki ¼ ðkik; kizÞ, k

r ¼ ðkik;�kizÞ, kiz ¼ k20 � ðkikÞ
2
(see

Fig. 1) and Eh i zð Þ is defined through
Eh iðrk; zÞ ¼ e
iðkik�rkÞ Eh iðzÞ; (23)
while
Eh i kzð Þ ¼
Z 1

�1
dze�ikzz Eh iðzÞ (24)
2 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
is its Fourier transform. So the integral equation is given in
terms of Eh i zð Þ and an integral over its Fourier transform.
To solve this equation we propose the following ansatz
Eh iðzÞ ¼ uðzÞtEi
0e

ikeffz êeff ; (25)
where uðzÞis the step function, thus
Eh iðkzÞ ¼ tEi
0ê

eff i

keffz � kiz
: (26)
Here, the transmission amplitude t, the effective
z-component keffz of an effective wave vector keff ¼
ðkik; keffz Þ (see Fig. 1) and the polarization vector along êeff

are parameters to be determined by demanding consistency
with the integral equation. Thus, by substituting Eqs. (25)
and (26) into the integral equation, Eq. (22), we obtain two
consistency relations:
M � êeff ¼ 0; (27)
where
M � 1� vm0n0

"
� êzêz

k20
� ssðkeff ; keffÞ þ ð1� k̂

i
k̂
iÞ

� ssðki; keffÞ
2kizðkeffz � kizÞ

� ð1� k̂
r
k̂
rÞ ssðkr; keffÞ
2kizðkeffz þ kizÞ

#

(28)
and
êi ¼ ivm0n0tð1� k̂
i
k̂
iÞ � ssðki; keffÞ

2kizðkeffz � kizÞ
� êeffeiaðkeffz �kizÞ:

(29)
In the first consistency relation, the solution of Eq. (27)
requires detM ¼ 0, and this condition yields the dispersion
relation keffz ðvÞ of the electromagneticmodes in the presence
of the interface [see Eq. (1) to compare with the local case].
The second consistency relation, Eq. (28), corresponds to
the extinction of the incident wave (the Ewald–Oseen
extinction theorem) and provides the value of the trans-
mission coefficient t.

After having solved the dispersion relation for keffz ðvÞ
and the transmission coefficient t, we go back to the integral
equation and calculate the electric field for z < 0. We obtain
that it has the form
Eh i�ðrk; zÞ ¼ ei
~k
i

k�~rk Eh i�ðzÞ; (30)
where
Eh i�ðzÞ ¼ Ei
0e

ikizz þ rie
2iakizEi

0e
�ikizz (31)
and
ri ¼
ð1� k̂

r
k̂
rÞ � ssðkr; keffÞ � êeff

êi � ssðki; keffÞ � êeff
kiz � keffz

kiz þ keffz

: (32)
www.pss-b.com
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Figure 2 (online colour at: www.pss-b.com) Transmission angles
calculatedwiththevandeHulst refractive indexandwiththesolution
of the null determinant of the matrix M for p-polarization and
s-polarizations, as a function of the silver particles radius. Here
f¼ 0.02, l¼ 0.63mm and the electric permittivity of bulk silver
e=e0 ¼ �18:096þ i0:484.
where the subindex i denotes the dependence on the
polarization (êi) of the incident wave.

Since the first term in the rhs of Eq. (31) corresponds to
the incident wave, we can identify the second term in the rhs
as the reflected field, and the factor ri as the reflection
amplitude. The constant phasemultiplying ri comes fromour
selection of origin.

4 Results
4.1 Light-cone approximation (LCA) The two

main results of our work here are given by: (i) Eq. (27),
whose solution yields the dispersion relation of the
electromagnetic modes in the presence of the interface, and
(ii) Eq. (32) that provides an explicit expression for the
reflection amplitude of the coherent beam.

In this sectionwe calculate the dispersion relation keffz ðvÞ
and the reflection amplitude r within the LCA. This means
that in Eqs. (27) and (32) one replaces ssðkeff ; keffÞ �
ssðki; kiÞ, ssðki; keffÞ � ssðki; kiÞ and ssðkr; keffÞ �
ssðkr; kiÞ, sets êeff ¼ êi, then use expressions as the ones
given in Eqs. (16) and (17) to relate these quantities to the
scattering coefficients of the isolated particles, and finally
use Eq. (27) to solve for keffz ðvÞ. Now substitute keffz ðvÞ
into Eq. (32) to calculate ri. A detailed account of this
calculation will be reported elsewhere. Following this
procedure one gets for s and p polarization
www
rs ¼
S1ðp� 2uiÞ

Sð0Þ
kiz � keffz

kiz þ keffz

; (33)
rp ¼
S2ðp� 2uiÞ

Sð0Þ
kiz � keffz

kiz þ keffz

: (34)
Figure 3 (online colour at: www.pss-b.com) Penetration length
calculatedwiththevandeHulst refractive indexandwiththesolution
of the null determinant of the matrix M for p-polarization and
s-polarizations, as a function of the silver particles radius. Here,
f¼ 0.02, l¼ 0.63mm and the electric permittivity of bulk silver
e=e0 ¼ �18:096þ i0:484.We plot the penetration length predicted
with the van de Hulst refractive index and the solution of the
determinant of the matrix M for p-polarization and s-polarization.
We had obtained these reflection coefficients before,
using the multiple-scattering approach [2, 3] (although they
were expressed in a different way). One of the differences
here is that the dispersion relation for keffz contains additional
terms other than the projections of the generalized
conductivity tensor given in Eqs. (16) and (17). But, as
already said these additional terms do not contribute
appreciably in the dilute limit. Thus, the results obtained
here within the LCA can be regarded as corrections to the
multiple-scattering approach.

4.2 Refraction Here we show some results for the
angle of refraction and the penetration depth as a function of
the particle radius. In Figs. 2 and 3 we show a plot of the
refraction angle and the penetration length, respectively, as a
function of the radius of the spheres, calculated upon solving
the dispersion relation within the LCA in both, p-and
s-polarizations. One can see that these results and the ones
predicted by the van de Hulst effective index of refraction
are indistinguishable from each other. For moderate values
of the volume filling fraction occupied by the particles,
and large values of the angle of incidence, deviations are
.pss-b.com
observed.However the effective-field approximation and the
van de Hulst refractive index loose accuracy as the filling
fraction occupied by the particles increases.

On the other hand, the coherent description of the
refraction of the coherent beam according to Snell’s law and
the van de Hulst complex effective refractive-index was
already confirmed experimentally [4] for dilute colloids,
showing that the van de Hulst refractive index is reliable for
the interpretation of refraction results. This fact has been
already exploited for retrieving particle properties from
refraction experiments [12] and [13].
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4 (online colour at: www.pss-b.com) Logarithm of the
square amplitude of the reflection coefficient for s-polarization as
a function of the angle of incidence for two particle radii:
a¼ 0.0701mm and a¼ 0.2801mm. Here, f¼ 0.02, l¼ 0.63mm
and the electric permittivity of bulk silver e=e0 ¼ �18:096þ
i0:484. For comparison we plot the predictions of the Fresnel’s
relations with the van de Hulst index of refraction and those of
Eq. (33), labelled as non-local effective medium (NLEM).

Figure 5 (online colour at: www.pss-b.com) Logarithm of the
square amplitude of the reflection coefficient for p-polarization as
a function of the angle of incidence for two particle radii:
a¼ 0.0701mm and a¼ 0.2801 mm. Here, f¼ 0.02, l¼ 0.63mm
and the electric permittivity of bulk silver e=e0 ¼ �18:096þ
i0:484. For comparison we plot the predictions of the Fresnel’s
relations with the van de Hulst index of refraction and those of Eq.
(34), labelled as non-local effective medium (NLEM).
4.2 Reflection In Fig. 4, the logarithm of the square of
the reflection amplitude for the s-polarization is plotted as a
function of the incidence angle for two particle radii. For
comparison we plot the values predicted by the Fresnel
formula, Eq. (3), using the van de Hulst’s effective refractive
index and the values obtained with Eq. (33). We can see that
for the smaller particle size both results are basically the
same, but for the larger particle radius there are appreciable
differences. A similar result, using Eq. (34), is seen for
p-polarization in Fig. 5. The dip seen in the plots for
p-polarization corresponds to a Brewster-angle effect.

In general, for not very small particles, differences
between the non-local effective medium theory and the
Fresnel predictions are important. We can anticipate these
differences from inspecting the corresponding formulas. In
the non-local effective medium formula for the reflection
coefficients, the scattering amplitude coefficients, S1 or S2
appear evaluated at the ‘‘specular direction’’ that is atp� 2ui
whereas in the local Fresnel relationships with the van de
Hulst effective refractive index involve only the forward
scattering amplitude Sð0Þ. However, for very small
particles the coefficients S1 or S2 simplify and the reflection
coefficient for the non-local theory approaches the
Fresnel reflection coefficients as one may expect. Also, we
may understand the failure of the Fresnel relationships
recalling that the width of the surface region discussed in
Section 3.1 increases as the particles’ radius increases. Once
this region has a width comparable to the wavelength of
radiation we may no longer use the regular boundary
conditions used in Continuum Electrodynamics of hom-
ogenous media, and thus we should not expect to obtain the
Fresnel reflection coefficients.
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
5 Conclusions In this overview, we described the
main steps to find a complete solution of the problem of light
reflection and refraction by a half-space of randomly
positioned spherical particles, in the effective-field approxi-
mation. It is shown that it is possible to state the problem
using an effectivemedium approach, and solve it through the
integral equation method. As a consequence, the need of
boundary conditions is avoided, surpassing difficulties that
appear when one has a non-local response of the effective
medium. From the numerical results presented here we can
see that the van de Hulst effective refractive index could
be used safely to calculate the refraction angle and the
penetration depth of the average wave, but not for the
reflection coefficients. The integral-equation method yields
the reflection formulas that must be used instead of the
Fresnel’s formulas in terms of the non-local generalized
conductivity tensor of the sphere. The components of
this simplify in the LCA (light cone approximation) and
can be written in terms of the scattering amplitudes of
an isolated sphere. Also, the integral-equation method
provides the dispersion relation for an inhomogeneous
half-space. The non-local effective medium approach used
here, for the first time in a half-space of a turbid colloidal
system, yields Eqs. (27)–(29) and (32) for the dispersion
relation, the extinction theorem and the reflection coeffi-
cients. These new equations can be investigated beyond
the light cone approximation, which is possibly the main
contribution of this paper.
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