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In this paperwe analyse the self-propagation of electromagnetic

modes within an uniaxial non-absorbing metamaterial with

anisotropic electric permittivity and anisotropic magnetic

pemeability, for arbitrary values of the anisotropy ratios ek/e?
and mk/m?. We then solve the problem of refraction and
reflection from a flat interface of this material when the

interface is perpendicular to the optical axis. We establish the

general conditions under which negative refraction occurs and

study some properties of refraction, reflection and their

potential applications.
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction The study of the optical properties of
anisotropic materials has a history of over a century, and
one of the main areas in these studies has been the optical
properties of crystalline matter. The electromagnetic
response of a wide variety of materials in the linear regime,
is usually described exclusively in terms of an electric
permittivity tensor e

$
, since at high frequencies the magnetic

response of common matter is extremely weak [1]. Also,
since the actual anisotropy in the tensorial components of
real crystals is not too large, cases in which the values of
these components yield unrealistic anisotropies have not
been considered either interesting or useful. But the work of
Veselago [2] and the further development ofmetamaterials [3]
have shown that values for the electromagnetic response that
once were considered unrealistic can be actually attained.
This is the case of isotropic metamaterials designed to have,
within a definite frequency band, an effective magnetic
permeability and an effective electric permittivity, both
negative, which yield interesting phenomena like negative
refraction, and gave rise to new concepts like left-handed
materials. Analysis of the conditions for negative refraction
in metamaterials with uniaxial, non-dissipative electric
permittivity e

$
and magnetic permeability m

$
have been made

previously [4, 5] and the advantages for the design of these
metamaterials have also been discussed. Here we present a
further study of the properties of these materials and show
some unexplored possibilities on their behaviour.

We explore the consequences of having a wide range of
values for the four different components of e

$
and m

$
, and we
establish the general conditions for negative refraction. We
find, in contrast to the isotropic case, that negative refraction
is possible when only one of the tensorial components, e? or
m?, becomes negative. Also, for some range of values of
the tensorial components of e

$
and m

$
, we find an interesting

behaviour of the reflection and transmission amplitudes as a
function of the angle of incidence and of the angle of
refraction. All these results will allow to exploit anisotropic
metamaterials. The structure of this paper is as follows: in
Section 2 we study the electromagnetic properties of the
bulk. In Section 3 we set an interface between vacuum and
an anisotropic material and derive the laws of refraction as
well as some of their properties. In Section 4 we study the
reflection amplitudes of this interface, and in Section 5 we
propose a design for a collimator of diffuse light using
the optical properties studied previously.

2 Electromagnetic modes We will consider an
uniaxial anisotropic material whose response tensors are
given by
m
$ ¼ mk ðexex þ eyeyÞ þ m?ezez; (1)
$

e ¼ ekðexex þ eyeyÞ þ e?ezez; (2)
in which ei denotes a unit vector along the ith cartesian axis.
We have aligned the z axis with the optical axis. The system
is excited by an electromagnetic wave oscillating within a
frequency window in which the material is non-absorbing,
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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thus the tensorial components of e
$
and m

$
can be regarded as

real quantities. As we can see, this material is characterised
in terms of only four scalar quantities: ek, e?, mk and m?.

In order to derive the dispersion relation of the
electromagnetic modes in this system, first we write m

$
and

e
$

in terms of the anisotropy parameters: am ¼ mk=m? and
ae ¼ ek=e?, as
�k
h

www
m
$ ¼ mk I

$
þ 1

am
� 1

� �
ezez

� �
; (3)
� �� �

e
$ ¼ ek I

$
þ 1

ae
� 1 ezez : (4)
The size of ae or am relative to 1 measures how large
is the magnetic or electric anisotropy of the medium.
Then, in the absence of external currents the plane-wave
solution of Maxwell’s equations for the electric field,
E ¼ Re E0e

iðk�r�vtÞ� �
, is given by
kþ k2 I
$
�mkv

2 e
$þð1� amÞðk� ezÞðk� ezÞ

i
� E ¼ 0:

(5)
The solution of this equation, for finite E, requires the
determinant of the dyadic within the square brackets to
vanish. This yields the dispersion relations of the electro-
magnetic modes in the system. In this case one finds that
there are two bulk modes, whose dispersion relation can be
written as
k2a ¼ k20n
2
k þ ð1� aaÞk2ax ; (6)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
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Figure 1 (online colour at: www.pss-b.com) Angle between ka
and Aa as a function of Qa, for different values of aa.
where k0 ¼ v=c, nk ¼ ekmk=e0m0, the sub-index a¼m, e

denotes the type of mode. Here we assume that the vectors
ka lie on the xz plane, and kax denotes their x-component,
while ka denotes their magnitude. We use SI units, thus e0
and m0 have their usual meaning. The modes will be self-
propagating if ka is real, while for k2a<0 the modes will be

evanescent. Note that for n2k>0, ek andmkwith the same sign

and aa<0, the mode will be self-propagating. This means
that there are self-propagating e or m bulk modes with only
e?<0 or m?<0, respectively. By calculating the eigenvec-
tors in Eq. (5), one can see that if ae 6¼ am the polarisation of
modes e and m is orthogonal. Specifically, the electric field
for the mode with wavenumber k¼ ke lies in the xz plane,
while the mode with wavenumber k¼ km lies along the y
direction. On the other hand, for ae¼ am, there is only one
possible mode and the electric field can have components
both in the xz plane and along the y direction. It can also be
shown that within this material there are induced charges in

the bulk, given by rind ¼ ð1þ a�1
e Þe0kzE0z . This means that

the e mode is, in general, non-transverse. Obviously, when
there is no anisotropy (ae¼ 1), is no induced charge density
and the mode is transverse. There is an analogous behaviour
for H. For brevity in the notation, from now on we will call
Ae to Ee and Am to Hm. We now calculate the angle fa
.pss-b.com
between ka and Aa as a function of the angle Qa formed by
ka and the optical axis:
cosfaðQa; aaÞ ¼
ð1� aaÞsgnðakÞsin 2Qa

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� aaÞ2 sin2 Qa

q ; (7)
where ak and a? denote ek and e? when a¼ e, and mk

and m? when a¼m. Note that this angle is independent
of nk and depends only on the anisotropy parameter aa
and the sign of a?. Also, one can show that under the
change aa ! 1=aa one gets cosfaðp=2�Qa; 1=aaÞ ¼
�sgnða?ÞcosfaðQa; aaÞ. This symmetry property is dis-
played in Fig. 1, where we plot fa as a function of Qa for
different values of aa. One can see that for ka along the
optical axis (Q¼ 0) or perpendicular to it (Q ¼ p=2) the
angle fa is always p/2, thus in this case the vectors k, E and
H are perpendicular to each other forming an orthogonal
triad. For 0<aa<1, the angle fa is larger than p/2, attaining
a maximum value (close to p), the smaller the value of aa.
But for aa>1, the angle fa becomes smaller than p/2
attaining a minimum value (close to 0), the larger the value
of aa. For aa<0, the angle fa is always larger than p/2 with a
specular symmetry about Qa ¼ p=4. One can see that for
any value of aa<0, fa always attains the value of p, in
this case Aa lies anti-parallel to ka. Obviously, according
to Maxwells equations, when this happens, the field Aa

vanishes. Naturally, the dynamics of the mode depends
on the size of these angles, and one can see at once from
Eq. (7) and the symmetry properties mentioned above, that
the qualitative behaviour of a mode depends strongly on the
sign of aa, which has necessarily a strong influence on the
optical properties of this metamaterial.
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Another important issue in the study of these modes is
the way in which they transport energy; thus we calculate
the Poynting vector S¼E�H associated to them. After
averaging the cross product of the oscillating fields over
time, one gets
� 20
Sa ¼ A2
a0

ka þ ðaa � 1Þkaxex
2akv

¼
A2

a0

2v

kax
a?

; 0;
kaz
ak

� �
;

(8)
here a ¼ e;m if a¼m, e. It can readily be seen that, in each
mode, the relative orientation between the Poynting vector
Sa and the wavevector ka can attain a wide range of values
depending on the size and sign of the anisotropic response
functions ek, e?, mk and m?. This could have been already
guessed by the wide range of values that fa can reach. It can
also be readily seen that the projection of Sa on ka is
proportional to k20n

2
k=ak, thus the sign of Sa � ka is given by

the sign of ak for mode a.

3 Refraction Here we consider a flat interface
between a non-dissipative, isotropic medium with index of
refraction n1 ¼

ffiffiffiffiffiffiffiffiffi
e1m1

p
and the anisotropic metamaterial.

The interface lies perpendicular to the optical axis (at z¼ 0)
and a plane wave with wavevector k1 and k1 ¼ k0n1, is
incident at an angle ui from the isotropicmedium. The setting
of boundary conditions for the electric and magnetic fields
requires
k1x ¼ k0n1sin ui ¼ kex ¼ kmx � kx: (9)
A condition usually known as Snell’s law. Therefore, in
the presence of the interface, the dispersion relations for
the transmitted or refracted electromagnetic modes in the
anisotropic system are obtained by substituting Eq. (9) into
Eq. (6), to yield
k2a ¼ k20 n2k þ ð1� aaÞn21sin u2i
h i

; (10)
which looks like the dispersion relation in the bulk but with
kx fixed by Snell’s law.

3.1 Refraction of the wavevector By Snell’s law
k1x ¼ kax � kx, but k1 6¼ ka, thus for each mode a there is
an angle of refraction of the wavevector ka given by
sinQa ¼ kx=ka, that can be written in a form similar to the
usual Snell’s law for isotropic media, as
NaðuiÞsinQa ¼ sin ui; (11)
where
NaðuiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ ð1� aaÞ sin2 ui

q
; (12)
plays the role of an ‘operative’ relative index of refraction
for mode a, which depends not only on the values of the
anisotropic components of the response functions but also
on the angle of incidence. Here n � nk=n1. In case of normal
incidence ui¼ 0, one can immediately see from Eqs. (10)
12 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
and (12), that only one mode is excited with wavevector
k ¼ k0nk and Nað0Þ ¼ n. For ui>0 both modes, e and m,
might be excited in the metamaterial, and they will be
propagating whenever jsinQaj � 1 in Eq. (11), that is
when Qa is a real quantity. On the contrary, when
jsinQaj>1, we say that there is no refraction and this
means that the excited a mode is evanescent.

One can immediately see in Eqs. (11) and (12), that the
angle of refraction for eachmode is an increasing function of
the angle of incidence ui when n2>0 and decreasing when
n2<0. The angle Qa attains the value p/2 when the angle of
incidence is equal to
uca ¼ arcsin
nffiffiffiffiffi
aa

p
� �

; (13)
which is called the critical angle. Thus, when n2>0, the
angle of refractionQa increases from 0, at normal incidence,
up to p/2 at ui ¼ uca ; when n

2<0, the behaviour of refraction
is reversed, that is there is no refraction for normal incidence
up to ui ¼ uca , where Qa decreases from p/2 down to
arcsin 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2 � aa

p� �
at ui ¼ p=2.

In order for uca to be a real number between 0 and p/2,
when n2>0, aa should be a positive number between 0 and
n2; but when n2<0, aa should be a negative number smaller
than n2. If neither of these conditions is satisfied, there will
not be a critical angle. In case n2<0 and aa>0, therewould be
no refraction at any angle of incidence and the system will
behave as a perfect mirror, as we will show below.

It can also be seen from Eq. (12), that for aa=n
2 � 0, the

operative index of refraction goes as 1
� ffiffiffiffiffi

aa
p

sin ui, for
sufficiently large ui. When this is inserted on Eq. (11), it
gives an angle Qa ¼ arcsin 1

� ffiffiffiffiffi
aa

p� �
, independent of the

angle of incidence.We illustrate this and the other previously
stated properties in Figs. 2–4.

We now calculate, in a similar way, the refraction law for
the wavevector in the inverse case, that is when the wave is
incident from the anisotropic medium towards the isotropic
one, assuming that the wavevector, the normal to the
interface and the optical axis, lie all three on a plane, and
that the last two form an angle g with respect to each other.
Then we get
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðaa � 1Þ sin2 Qa

q
sin ur ¼ nsinðQa � gÞ: (14)
Again, Qa is the angle formed by the wavevector and the
optical axis, and ur is the angle of refraction.

3.2 Refraction of the Poynting vector The actual
angle of refraction that one detects and measures in the
laboratory is the refraction of the flux of electromagnetic
energy, that is the refraction of the Poynting vector. In
dealing with the refraction of the Poynting vector one has to
take into account the polarisation of the incident wave. It can
be easily shown that when the interface is perpendicular to
the optical axis, the polarisation of the incident wave is
preserved in the transmitted (refracted) wave when the
www.pss-b.com
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Figure 2 (onlinecolourat:www.pss-b.com)Anglebetweenkaand
the normal to the interface as a function of the angle of incidence,
for n2>0 and aa>0, for different values of n2 (in colors), and aa
(in line styles) relative to n2.
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Figure 4 (onlinecolourat:www.pss-b.com)Anglebetweenkaand
the normal to the interface as a function of the angle of incidence,
for n2<0 and aa<n2, for different values of n2 (in colors), and aa
(in line styles) relative to n2.
incident wave has either s or p polarisation. Let us recall
that the electric field in s polarisation, and the magnetic field
in p polarisation, are perpendicular to the plane of incidence
(xz plane). In s polarisation the m mode is excited while
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Figure 3 (onlinecolourat:www.pss-b.com)Anglebetweenkaand
the normal to the interface as a function of the angle of incidence,
for n2>0 and aa<0, for different values of n2 (in colors), and aa
(in line styles) relative to n2.

www.pss-b.com
in p polarisation is the e mode the one excited, but in both
cases the Poynting vector of the refracted wave lies in the xz
plane, and is given by
Sa ¼
A2
0a

2v

kx
a?

; 0;
kaz
ak

� �
; (15)
where Se corresponds to p-polarisation, Se � Sp, while Sm to
s-polarisation, Sm � Ss. The angle of refraction is the angle
between the Poynting vector and the z axis, and it can be
written, in a single expression, as
sin ua ¼ Sax
Sa

¼ kx

a?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x
a2?

þ k2az
a2k

r : (16)
Here um corresponds to the angle of refraction for s
polarisation, while ue corresponds to the one for p
polarisation. Note that there will be negative refraction
for m?<0 in s polarisation and for e? < 0 in p polarisation,
as has been already stated in Ref. [5]. This can also be seen
in a more general way by writing the Poynting vector as
Ss ¼ Ek �H? þ Ek �Hk (17)
and
Sp ¼ E? �Hk þ Ek �Hk; (18)
where the sub-index k and ? in vectors E and H denote
parallel and perpendicular components to the interface.
The first term in these expressions corresponds to Sk,
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 (online colour at:www.pss-b.com)Angle of refraction as
a function of the incidence angle, with the same material properties
as in Fig. 2.
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Figure 7 (online colour at:www.pss-b.com)Angle of refraction as
a function of the incidence angle, with the same material properties
as in Fig. 4.
the parallel component of the Poynting vector; the second
term corresponds to its perpendicular component, which is
continuous at the interface, because the boundary conditions
for the fields demand continuity of Ek and Hk. Therefore,
negative refraction will be possible if and only if Sk changes
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Figure 6 (online colour at:www.pss-b.com)Angle of refraction as
a function of the incidence angle, with the same material properties
as in Fig. 3.

� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
of sign at the interface, and this requires that either H? or
E? change sign. Since B? and D? are continuous at the
interface,H? andE? can change sign if and only ifm?<0 or
e?<0, respectively, and this becomes a necessary and
sufficient condition for negative refraction. In contrast to the
isotropic case, note that here negative refraction does not
require a left-handed wave; furthermore, it requires only one
response function to be negative, eitherm? or e?. This might
become advantageous in the design of new metamaterials
with negative refraction, as it has been pointed out, for
example, in Ref. [6].

Now we use Eqs. (9)–(12) and (15) to write
sin ua ¼
jakjsin ui

a?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aaðaa � 1Þ sin2 ui þ n2

q : (19)
Here we see that there is also a critical angle, given by the
same expression as in Eq. (13). One can also see that
the angle changes only in sign when a?<0. In Figs. 5–7 we
show the refraction angle as a function of the incidence
angle, including curves where the angle of refraction
remains practically constant.

3.3 The sign of S � k and negative refraction
Here we want to point out that, in contrast to the isotropic
metamaterials negative refraction is not related with the sign
of S � k. Looking at Eq. (15) and realizing that Saz should be
positive, for the energy to flow from the isotropic material
towards the metamaterial, kaz and a? should have the same
sign. This sign is not determined by the dispersion relation of
www.pss-b.com
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the modes given in Eq. (6), because this yields only the value
of k2az , thus we conclude that the sign of akwill determine the
sign of kaz . Now, being Sa � ka ¼ k20n

2
k=ak this projection has

the sign of ak. But negative refraction, as it was mentioned
above, is determined not by the sign of Sa � ka, but rather by
the sign of Sax , and this, as we have discussed, is determined
by the sign of a?.

4 Reflection In this section we calculate the reflection
and transmission amplitudes of the electric and magnetic
fields upon the same flat interface as the one described in
the treatment of refraction above. We also use the same
coordinate system, thus the half space z<0 is occupied by an
isotropic material with index of refraction n1>0, while the
half space z>0 is occupied by the anisotropic metamaterial.
We define the reflection and transmission amplitudes, for
s polarisation as rs ¼ Er

s=E
i
s and ts ¼ Et

s=E
i
s, and for p

polarisation as rp ¼ Hr
p=H

i
p, and tp ¼ Ht

p=H
i
p. Here the

subscript s and p denote the polarisation while the super-
scripts i, r and t denote incident, reflected and transmitted
field, respectively, and the quantities in the quotients mean
amplitudes. Since in our case polarisation is preserved upon
reflection and transmission, one can write
Z

www
rs ¼
Zs � Z1s
Zs þ Z1s

and ts ¼
2Zs

Zs þ Z1s
; (20)
rp ¼
Z1p � Zp

Z1p þ Zp
and tp ¼

2Z1p
Z1p þ Zp

; (21)
3
4

1
n

1/2
1
2

aα/n2

1/4
1
4

where Zs (Zp) denotes the surface impedance of the
anisotropic metamaterial for s (p) polarisation, while Z1s
Z1p
� �

denotes the corresponding quantity of the isotropic
material. Here we have taken the convention that in s (p)
polarisation a þ sign in rs (rp) means that Ei (Hi) does
not change phase upon reflection. The surface impedance
for s (p) polarisation, in either material, is defined as
ZsðpÞ ¼ EksðpÞ

.
HksðpÞ .

For the isotropic material, Z1s ¼ cm1=n1cos ui and
Z1p ¼ cm1cos ui=n1, where c ¼ ffiffiffiffiffiffiffiffiffi

e0m0

p
. For the anisotropic

metamaterial, one gets
1
2R

α

s ¼ c
jmkj

n1NmðuiÞcosQm
and Zp ¼

1

c

n1NeðuiÞcosQe

jekj
;

(22)
0

1
4
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π
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4
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π
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θi

Figure 8 (online colour at: www.pss-b.com) Reflectance of the a
mode as a function of the incidence angle for the same material
properties as in Fig. 2, with ak¼ 1.
where, as mentioned above, the sign of kaz has been taken as
the sign of ak.

At normal incidence (ui¼ 0), Qm ¼ Qe ¼ 0, and

Zs ¼ Zp ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
~mk=~ek

q
, so the impedance matching condition

to suppress reflection at normal incidence, will be given by
~mk ¼ ~ek, where the tilde above denotes a value relative to the
one in the isotropic material, i.e. ~mk ¼ mk=m1, ~ek ¼ ek=e1.
But for aa ¼ n2 (i.e. uca ¼ p=2), which means ~m? ¼ 1=~ek
for a¼m and ~mk ¼ 1=~e? for a¼ e, one gets

Zs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mk=ek

q
=cos ui ¼ Zp. Thus the reflection amplitude
.pss-b.com
for both polarisations becomes
r ¼
ffiffiffiffiffiffi
~mk

p
�

ffiffiffiffi
~ek

p
ffiffiffiffiffiffi
~mk

p
þ

ffiffiffiffi
~ek

p ; (23)
independent of the angle of incidence. Furthermore, in
the particular case in which we set ~mk ¼ ~ek and
~m? ¼ ~e? ¼ 1=~mk, there will be no reflection at any angle
of incidence for either polarisation. This is what is
called: perfect impedance matching condition, and a slab
made of a material fulfilling these conditions would be
non-reflective [7].

We now turn to the calculation of the reflectance and
transmittance. The reflectance has the usual form
Ra ¼ r2a; (24)
while the transmittance can be written in the form
Ta ¼ t2a
NaðuiÞ
jakj

cosQa

cos ui
(25)
and they obey Ra þ Ta ¼ 1. From these expressions it can
be readily seen that this material has a Brewster angle given
by
uBa
¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ~a2k

aa � ~a2k

vuut ; (26)
where ~ak is ak=e1 if a¼ e and ak=m1 if a¼m. In particular,
this implies that propagating modes with n2<0 always have
a Brewster angle. In Figs. 8–10 we plot the reflectance as a
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 9 (online colour at: www.pss-b.com) Reflectance of the a
mode as a function of the incidence angle for the same material
properties as in Fig. 3, with ak¼ 1.
function of several parameters. In Fig. 8 we can see, in
particular, constant-reflectance curves (including one with
zero reflectance) as well as total reflection after the critical
angle. In Fig. 9 the critical angle does not exist, since the
values of aa where switched to their negatives with respect
to the ones in Fig. 8. In Fig. 10 we can appreciate that all
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Figure 10 (online colour at: www.pss-b.com)Reflectance of thea
mode as a function of the incidence angle for the same material
properties as in Fig. 4, with ak¼ 1.
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curves have a Brewster angle, as it can be seen from
Eq. (26), and total reflection is obtained before the critical
angle, which always exists. In all graphics, the reflectance at
normal incidence depends only on n and ak.

5 Diffuse light collimator Here we take advantage,
as noted in Section 3, of the near-constant refraction angle
behaviour of the anisotropic metamaterial, in the limit
aa ! �1, to propose a design of a diffuse-light collimator.

Let us consider an arrangement like the one in Fig. 11.
The device to the left is made of an anisotropic metamaterial
with e

$ ¼ m
$
and aa � 0. Light, incident from the left in the

xz plane, gets refracted to an angle close to p/2, and has a
wavevector with an angle, relative to the optical axis, close
to arcsin n

� ffiffiffiffiffi
aa

p� �
. The device has an angle such that the

wavevector is closely aligned to the normal to the second
surface, and therefore suffers little deviation from it. After
this, light gets to a second, isotropic device, with an index of
refraction n0 relative to the surrounding medium, which
straightens it towards the z direction.

Rotating this arrangement over the z axis, we get two
cones, one anisotropic with its optical axis coinciding with
the cone axis, and one isotropic. When light strikes the left
surface of such device in arbitrary direction, the incidence
plane always contains the optical axis, as we have supposed
in all this study, so all refracted rays will behave in the same
way. Therefore, diffuse light incident on this device would
be collimated.

To estimate how much light gets collimated, we
established the following criterion: we set a desired angular
tolerance Du for collimation. Assuming that the intensity of
incident light is uniformly distributed over all angles, we
calculate the fraction of power that gets collimated up to aDu
degree with respect to the z axis, relative to the incident
power.We call this fractionF. Numerical calculations of this
number can be seen in Fig. 12, plotted as a function of aa for
different values of n and n0. We can see that for certain
modest values of n, n0 and aa, we get fractions of power close
γ

γ

γ − Θ2
Θ2 n

γ

Figure 11 (online colour at: www.pss-b.com) Schematic view of
the collimator. To the left, an anisotropicmetamaterialwithaa � 0.
To the right, an isotropicmaterial with index of refraction n0 relative
to the surrounding medium.
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Figure 12 (online colour at: www.pss-b.com) Fraction of power
collimated to 18, for different values of n and n0, with ak¼�1, as
a function of aa, assuming equal permittivity and permeability
tensors.

Figure 14 (online colour at: www.pss-b.com) The analogous dia-
gram of previous figure when using the values aa¼�7, n¼ 0.5,
n0 ¼ 21.4, ak¼�1 for which we get F� 0.19.
to 0.4 collimated to 18. In Figs. 13 and 14 we can see ray
diagrams of the collimator, for two particular cases, showing
the intensity of rays and distinguishing the collimated
rays from the non-collimated ones. We may even relax the
condition e

$ ¼ m
$
: it would be sufficient to have ae¼ am for
Figure 13 (online colour at: www.pss-b.com) Ray diagram of the
collimator for aa¼�41, n¼ 0.70, n0 ¼ 2.5,ak¼�1. Green denotes
therayscollimated toaprecisionof18, andyellowallother rays.Here
F� 0.39. Rays are traced with their respective intensities.

www.pss-b.com
the angles to behave this way, although different intensities
would be transmitted for each polarisation. Even if we do
not have ae¼ am, the analysis would be true, on the average,
for half of the light, assuming that the incident light is
polarised half s and half p.

Do the properties imposed over the anisotropic material,
as required by this study, can be obtained in practice?
For instance, relatively simple metamaterials like layered
structures [8], or metallic nanowires [9] have been
proposed, and extreme values of anisotropies have been
reported [9–11], including natural materials [12]. Some of
them even have the extreme important condition of having
low dissipation [13]. All of them exhibit negative effective
components of e

$
and m

$
for certain frequency ranges that

even reach the THz range [10].

6 Conclusions We derived the dispersion relations of
the two self-propagating modes in arbitrary anisotropic
uniaxial metamaterial and studied the light refraction and
reflection characteristics of a flat interface between this
anisotropicmetamaterial and an isotropic one.We confirmed
that having a negative perpendicular component of the
tensorial optical response e

$
andm

$
, is an equivalent condition

of having negative refraction of the corresponding mode.
We also, (i) show that there exists a limit in the optical
parameters of the metamaterial at which refraction angles
are approximately independent of the angle of incidence,
(ii) found that there can be propagating waves with a reverse
critical angle behaviour when the signs of the parallel
components of the response tensors are opposite, (iii) found
the conditions for the existence of this angle, as well as
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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the Brewster angle and (iv) found conditions for constructing
materials with constant reflectance, which can be in
particular non-reflective. Finally, we used these results to
propose the design of a diffuse-light collimator with a high
efficiency and simple geometry.
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