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ABSTRACT: We provide new expressions for the reflection
amplitudes of a half space of randomly located identical spherical
particles that can be regarded as an extension of Fresnel’s
formulas when scattering is prominent. We derive them
rigorously from Maxwell’s equations by solving an integral
equation for the electric field within the effective-field
approximation. The integral equation is given in terms of the
nonlocal conductivity tensor of an isolated sphere. Approximate
expressions for the reflection amplitudes are also proposed and
their accuracy is analyzed, first for the case of a self-sustained
suspension of silver particles, and then for the more realistic
situation of silver particles in water. In this latter case the integral
equation is modified by introducing the half-space Green’s
function dyadic instead of the one in free-space, but the method of solution is analogous in both. This extension of Fresnel’s
formulas, together with the numerical comparison of the different approximations proposed here, is necessary for an accurate
interpretation of reflection-spectroscopy measurements in dilute colloidal suspensions of practical interest. The connection
between the nonlocal conductivity tensor and the T-matrix operator of scattering theory is also made manifest.

■ INTRODUCTION

Light-reflection spectroscopy and angle-resolved reflectance,
among other optical techniques, have become important and
widespread tools for the characterization of a broad variety of
materials.1−3 The use of effective optical parameters has paved
the way for the analysis of complex materials, particularly in
suspensions and colloids. Nevertheless, when the size of the
particles in the suspension is comparable to the wavelength of
the exciting electromagnetic field, turbidity appears due to the
scattering of light by the suspended particles. In this case, the
definition of the effective optical parameters is not straightfor-
ward and sometimes it is not even possible. The usefulness of
these effective parameters lies in the fact that, once they are
determined, it is then possible to use them in the usual
formulation of continuous electrodynamics as if they were
parameters associated with common materials. A typical
example is the effective refractive index, and one has to be
aware, in first place, that due to the random location of the
particles in the suspension, the scattered light has an average
component (coherent beam) and a random component
(diffuse field), and the effective refractive index is associated
only to the behavior of the coherent beam. Furthermore, its
imaginary part takes account of the attenuation of the coherent
beam due to both absorption and scattering, and it can be used,
for example, in Snell’s law to determine the angle refraction at
the flat interface of a suspension. Nevertheless, when one tries
to use Fresnel’s formulas to interpret reflection measurements

in, e.g., standard critical-angle refractometers, inconsistencies
might emerge.4−7

By extending the scope of what is known as effective-medium
theory (EMT), it has been already shown8 that the bulk
effective electromagnetic response in turbid colloids is spatially
dispersive (nonlocal), this means that it depends not only on
the frequency of the external field but also on its wave vector.
This means that Fresnel’s formulas are no longer valid because
they assume that the bulk electromagnetic response depends
only on the frequency and it is not modified when an interface
is introduced into the system; only then is the matching of
boundary conditions for the electric and magnetic fields at the
interface a valid procedure. Therefore, an accurate interpreta-
tion of optical spectroscopy in this type of system requires a
new formulation. In its more general form, the problem could
be posed as the calculation of the reflection amplitudes from a
half-space of a bulk material with a spatially dispersive
electromagnetic response. There have been attempts to solve
this problem for systems with special features;9−11 nevertheless,
it is rather simple to show12 that the bulk spatially dispersive
response has to be modified to take account of the particular
structure of the interface, and then a specific model for each
system and each interface is necessarily required.
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Here we choose, as a representative case, a system of
randomly located identical spherical particles immersed within
a nondissipative and homogeneous matrix constrained into a
half-space, and we define the interface as a plane such that the
probability of finding the center of randomly located colloidal
particle on one side, is zero, whereas on the other side is
constant. Then we calculate its electromagnetic response in the
presence of the interface. In dilute systems this response is
given in terms of the nonlocal conductivity tensor of an isolated
sphere. By nonlocal conductivity we mean that the current
induced by an exciting electromagnetic field at a given point
within the sphere depends not only on the value of the field at
that given point but also on the value of the field in its
neighborhood. Here we approach the problem by solving the
integral equation for the electromagnetic field in the effective-
field approximation as in refs 8, 13, and 14. The final result is
given in terms of the nonlocal conductivity tensor of an isolated
sphere, providing explicit expressions for the reflection
amplitudes that can be regarded as extensions of the Fresnel
reflection coefficients. We call them “extensions” because
Fresnel’s formulas with an effective refractive index are
recovered when scattering is negligible, that is, when the size
of the particles is small in relation to the wavelength of the
exciting electromagnetic field. The formulas we obtain are valid
for dilute systems, and within this restriction the validity of
rather simple expressions is also explored by performing a
detailed numerical analysis for a system of general interes, such
as silver particles in water.15

In this context our results could be important for solving, for
example, the inconsistencies that prevail or appear when the
effective index of refraction of a turbid colloid or suspension is
determined by reflectivity measurements with modern critical-
angle refractometers5 and using naively Fresnel’s formulas.16

Our rigorous treatment of the problem could also help to
understand the underlying physics. The need for an extension,
or corrections, of the Fresnel’s formulas for the optical
characterization of turbid systems has been recently addressed
in a rather heuristic way.17,18

An alternative approach to this same problem is to use
multiple-scattering theory (MST) in terms of the S or T matrix
of the isolated particles.19 This approach has been applied
successfully to problems of atmospheric physics,19 where the
matrix that supports the particles and the outside medium are
the same (as in clouds). However, to our knowledge, a formal
extension of MST to the case in which the matrix is a different
material than the one outside (as in suspensions), has not yet
been reported. Therefore, the expressions for the reflection
amplitudes derived here fill this omission, at least for the dilute
case where our theory is applicable. As a corollary of the
present paper, we also show that our approach and MST are
based, essentially, on the same integral equation after one
identifies the nonlocal conductivity tensor of the isolated
sphere as calculated in detail in ref 14 with its T matrix.
In this paper we first summarize the main results of the

extended EMT for the bulk of turbid colloids. We use a wide
definition of colloid as a two-phase system where a disperse
phase is immersed within a homogeneous one. Then we
introduce an interface between air and a half-space of self-
sustained colloidal particles, through an integral equation for
the average electric field. We solve this integral equation in the
effective-field approximation and derive expressions for the
reflection amplitudes of the coherent beam, together with
different kinds of approximations that will facilitate its use in

practical situations. Then we address the more realistic situation
of particles within a half-space of a nondissipative material
matrix. In this case, the integral equation is modified by
introducing the half-space Green’s function dyadic instead of
the one in free-space, and the we solve it in a similar way as in
the free-standing case. Finally, we show numerical results for
the full and approximate expressions with the purpose of setting
the limits of validity of the approximate expressions, and we do
this through a detailed analysis of the system of silver particles
in water.
We have already reported, in a conference paper,13

preliminary results of our approach to this problem. Here we
include a full account of the theory in as much detail as
possible, together with new analytical expressions for the
reflection amplitudes, as well as an ample numerical analysis
and a thorough discussion of our results.

■ FRESNEL’S REFLECTION AMPLITUDES
We start by recalling that in macroscopic electrodynamics of
continuous media, in the absence of spatial dispersion (local
optics), the reflection amplitudes for plane waves oscillating
with a frequency ω, at a flat interface between nonmagnetic
materials characterized with dielectric functions ϵi(ω) and
ϵf(ω), are given by Fresnel’s relations for nonmagnetic media.
These relations for s- and p-polarization can be written as
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incident, reflected, and transmitted wave vectors of the
corresponding plane waves, the hat ̂ denotes a unit vector
and the sub index ∥ denotes the component along the interface
whereas the z axis is perpendicular to it and points toward the
material with dielectric function ϵf. In s-polarization the electric
field is along the x axis and in p-polarization it lies in the yz
plane. Here it is assumed that ϵi is real and ϵf is, in general,
complex, thus k∥

i = (ω/c)ϵi sin θi is also real, where θi denotes
the angle of incidence. Finally, kz

f and kz
i are given by the

dispersion relation of the transverse electromagnetic modes in
each material at either side of the interface and given by kz

α =
[(ω/c)2ϵα (ω) − k∥

i 2]1/2, where ϵα(ω) is the local electric
permittivity of the material and α = i or f. It is also relevant to
point out that in case of systems with very small colloidal
particles (nonturbid colloids) that can be characterized with an
effective index of refraction neff(ω), Fresnel’s relations are also
valid, the only thing to do is to replace ϵf(ω) by neff

2(ω).
Although this form of writing rp (eq 2) is not the usual one
written in textbooks, it is convenient here because it will be
used later when we discuss the small-particle limit of our
results.

■ THE BULK
Before turning to the problem of the calculation of the
reflection amplitudes of a turbid colloidal system, we first
summarize the results obtained in ref 8 for the effective
electromagnetic response in the bulk. We start by considering
the current density Ji⃗nd induced within an isolated, nonmagnetic
sphere of radius a by an external electric field E⃗ext oscillating at
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frequency ω. If the sphere is located with its center at the origin
and is described by a local, in general, complex, dielectric
response ϵs(ω) ≡ ϵ0 + (i/ω) σloc

s (ω), where this relation defines
σloc
s (ω) as the local, in general, complex, conductivity, then the
current induced at any point r ⃗ (r < a) can be written as a local
Ohm’s law

ω σ ω ω⃗ ⃗ = ⃗ ⃗J r E r( ; ) ( ) ( ; )
ind

loc
s int

(3)

where E⃗int is the internal field, that is, the sum of the external
field plus the field generated by all the induced currents
themselves. But one could also write this same induced current
Ji⃗nd as the response not to the internal field E⃗int, but to the
external field E⃗ext exciting the sphere. In this case the response
is nonlocal and can be written as

∫ω σ ω ω⃗ ⃗ = ⃡ ⃗ ′⃗ · ⃗ ′⃗ ′J r r r E r r( ; ) ( , ; ) ( ; ) d
V

ind s ext 3

S (4)

where the integration volume VS is the volume of the sphere.
Because E⃗ext has no information at all about the presence of the
sphere, it is the kernel σ⃡(r,⃗r′;ω) that takes account of all the
geometric and electromagnetic properties of the sphere; and it
is called the generalized nonlocal conductivity tensor. It is
called generalized because the induced current Ji⃗nd is the total
induced current; that is, it includes also those currents usually
regarded as the source of the magnetic response of the sphere.
It is also called nonlocal, because the value of the induced
current at r ⃗ depends on the value of the external electric field in
the neighborhood of r.⃗ The induced currents also generate an
electromagnetic field outside the sphere that we will call the
scattered field. In case the external field has no appreciable
variations within the volume of the sphere (the sphere is small),
one can take E⃗ext, in eq 4, outside the integral, and the response
becomes local again.
In the case of a boundless system composed of a great

number of spheres, located randomly at fixed points in space,
and in the presence of an external electric field oscillating at a
frequency ω, the total induced current in the system will be the
sum of the currents induced within each sphere. The field
exciting each sphere (the exciting field) will be given by the
external field plus the field scattered by all other spheres.
Because this field is external to each sphere, the response of
each sphere to its corresponding exciting field will be
necessarily nonlocal, as in eq 4. Furthermore, the exciting
field, as well as the currents induced within the spheres, have a
stochastic nature due to the random location of the spheres;
thus one can split both of them into two components, an
average component plus a fluctuating one. The average is an
average over space that smooths out the sharp variations of the
field for lengths much less than the wavelength of the external
field. Here we will perform this spatial average through a
configuration (ensemble) average, although the precise choice
of the averaging procedure will depend on the measuring
device.
It is now right to ask whether it is possible to find a

generalized ef fective conductivity tensor σ⃡eff that relates linearly
the average induced current density in the colloidal system with
the corresponding average of the electric field. It has been
recently shown8 that this is indeed possible, but because the
response of each sphere to its corresponding exciting field is
nonlocal, the effective response turns out to be also nonlocal.
Because spatial nonlocality is equivalent to spatial dispersion in
Fourier k-⃗space, one can write

ω σ ω ω⟨ ⃗ ⟩ ⃗ = ⃡ ⃗ ·⟨ ⃗⟩ ⃗J k k E k( , ) ( , ) ( , )
ind

eff (5)

where ⟨...⟩ denotes the average. It has been also shown8 that in
the effective-field approximation (EFA), valid for dilute
systems, one simply gets

σ ω σ ω⃡ ⃗ = ⃡ ⃗ ′⃗= ⃗k n k k k( , ) ( , ; )eff 0
s

(6)

where n0 is the number density of spheres,

∫ ∫σ ω σ ω⃗ ′⃗ = ′ ⃡ ⃗ ′⃗− ·⃗ ⃗ ⃗′· ⃗′k k r r r r( , ; ) d d e ( , ; )e
V V

k r k rs 3 3 i s i

S S (7)

is the spatial Fourier transform of the generalized conductivity
tensor σ⃡(r,⃗r′;ω) of an isolated sphere. Here one assumes that
the colloidal system is, on the average, homogeneous and
isotropic, and for this type of system the generalized ef fective
conductivity tensor σ⃡eff can be written in terms of only two
scalar quantities, that is,

σ ω σ ω σ ω⃡ ⃗ = ̂ ̂ + ⃡ − ̂ ̂k kk k kk k( , ) ( , ) (1 ) ( , )eff eff
L

eff
T

(8)

where k ̂ ≡ k/⃗k denotes unit vector and the scalar functions σeff
L

and σeff
T are called longitudinal and transverse components of

σ⃡eff, which can also be related to the more common effective
electric permittivity ϵeff(k,ω) and effective magnetic perme-
ability μeff(k,ω).

8

One of the consequences of having a spatially dispersive
response is that, besides the transverse electromagnetic modes,
there are also longitudinal modes, as shown in detail in ref 8.
Also, the dispersion relation of the transverse modes can be
written as

ω
σ ω= +⎜ ⎟

⎛
⎝

⎞
⎠k k k1

i
( , )2

0
2

eff
T

(9)

and can be used to define, properly, a frequency dependent
effective index of refraction neff(ω) through kT(ω) = k0neff(ω),
where kT(ω) is the solution of eq 9. Here k0 = ω/c, where c is
the speed of light in vacuum. It is also appropriate to point out
that by taking in eq 9 σeff

T (k,ω) ≈ σeff
T (k0,ω), the corresponding

index of refraction can be written as8

γ= +n S1 i (0)eff (10)

where γ = (3/2)f/(k0a)
3, f is the volume filling fraction of the

spheres and S(0) is either one of the diagonal elements of the 2
× 2 scattering matrix in the forward direction (both elements
are equal for forward scattering). This expression is exactly the
same as the one proposed by van de Hulst long time ago,20 but
this derivation shows explicitly that it corresponds to a system
with spatially dispersive effective response σeff

T (k0,ω), and
therefore, neff in eq 10 cannot be used, for example, in Fresnel’s
relations once the particles are not very small compared to the
wavelength of the incident radiation.
Finally, it can be also shown8 that in the long-wavelength

limit σeff
T (k→0,ω) = −iωϵ0n0α(ω), where α denotes the

polarizability of the isolated sphere. Thus, by using this limiting
value in eq 9, one gets that in the low-density regime the
effective index of refraction is given by

α= +n n1eff
2

0 (11)

as expected for a collection of spheres with polarizability α.

■ THE INTERFACE
The problem now is how to treat properly the presence of an
interface in a system with a spatially dispersive electromagnetic
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response, and how to calculate its reflection and transmission
properties. First we recall that for common nonmagnetic
homogeneous materials, characterized by a complex local
electric permittivity, ϵ(ω), the dispersion relation for transverse
modes in the bulk, k2 = k∥

2 + kz
2 = (ω/c)2ϵ(ω), is modified by

the presence of a flat interface, because in this case k∥ = ki sin θi
should be real, and only kz is complex, and this gives rise to a
new type of mode called inhomogeneous waves. Here ki is the
wave vector of the incident plane wave and θi is the angle of
incidence. But when the electromagnetic response of the
system is spatially dispersive, not only the presence of a flat
interface requires k∥ = ki sin θi to be real but also the
electromagnetic response in the presence of the interface is
different from the one in the bulk. This is because the interface
breaks up the translational invariance of the boundless system,
thus the effective electromagnetic response depends now not
on r ⃗ − r′⃗ but rather on r ⃗ and r′⃗, separately, correspondingly in
Fourier k-space it should depend on both k ⃗ and k′⃗, separately;
that is, one requires σ⃡eff(k,⃗k′⃗;ω) instead of the bulk response
σ⃡eff(k,⃗ω). Nevertheless, because the translational invariance was
broken only in the z-direction, and k∥ = k∥′ = ki sin θi, what one
actually requires is to determine σ⃡eff(k∥⃗,kz;k∥⃗,kz′;ω), which we
succinctly write as σ⃡eff(k∥⃗,kz;kz′;ω). One can interpret this by
going back to r-space and finding from σ⃡eff(r∥⃗ − r∥⃗′;z,z′;ω) that
there is a region close to the interface, called the surface region,
where the electromagnetic response differs from the one in the
bulk. As a final comment we must point out that although the
effective bulk response σ⃡eff(k;⃗ω) has a definite counterpart in
macroscopic electrodynamics of continuous media, and more
specifically in the field of nonlocal optics, σ⃡eff(k∥⃗,kz;kz′;ω) has
not.
Therefore, because the construction of σ⃡eff(k∥⃗,kz;kz′;ω) would

not yield any particular advantage because there is no
macroscopic theory for this type of response, we will start by
calculating directly, in the presence of a plane interface, the
total induced current in the spheres in terms of the nonlocal
conductivity of the isolated sphere. In this case, the total
induced current Ji⃗nd will be given by the sum of the current
induced in each sphere when excited by E⃗exc, that is, by the
external electric field plus the field scattered by all other
spheres, and this scattered field depends obviously on the
location of all other spheres in the half space (HS). Thus, one
can write

∫∑ω σ ω

ω

⃗ ⃗ = ⃡ ⃗− ⃗ ′⃗− ⃗ ·
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s

exc 1 2 1 1
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3
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where the integral over d3r′ actually runs only over the volume
of the spheres located within the HS, simply because σ⃡s

vanishes whenever either r ⃗ or r′⃗ lies outside the volume of
the spheres. Now, with this induced current density we will
construct an integral equation for the electric field, which after
averaging together with some approximations, will serve to
calculate the reflection amplitude of the coherent (average)
beam.

■ THE INTEGRAL EQUATION

We start directly from Maxwell’s equations for the electric field
and write

∫ω ω ωμ ω ω⃗ ⃗ = ⃗ ⃗ + ′ ⃡ ⃗ ′⃗ · ⃗ ′⃗


E r E r r G r r J r( ; ) ( ; ) i d ( , ; ) ( ; )inc 0
3

0
ind

3

(13)

where E⃗inc is the incident (external) field,

ω
π
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1 e
4

k r r

0
0

2

i 0
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is the dyadic Green’s function for empty space (free
propagator), k0 = ω/c and in the integral its principal value
should be taken. If one now substitutes Ji⃗nd given in eq 12 into
eq 13, one uses the effective-field approximation (EFA), that is,
one sets E⃗exc ≈ ⟨E⃗⟩, and then takes the ensemble average of the
resulting equation, one gets an integral equation for the average
electric field ⟨E⃗⟩, which can be written as

∫

∫ ∫

ωμ

σ

⟨ ⃗⟩ ⃗ = ⃗ ⃗ + ⃗

× ′ ⃡ ⃗ ′⃗ · ″ ⃡ ′⃗− ⃗ ″⃗− ⃗ ·⟨ ⃗⟩ ″⃗
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z a
pinc 0

3
p 1

3
0

3 s
p p

p
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(15)

where rp⃗ denotes the position of the spheres and we have
simplified the notation by suppressing the explicit functional
dependence on ω. Here, the averaging procedure introduces
the quantity f1(rp⃗) d3rp, which is the probability to find the
center of a sphere within d3rp. We will consider that the
probability density f1(rp⃗) is equal to 1/V for zp > a, where V is
the integration volume (Figure 1).

Thus, in the limit V → HS, the quantity N/V → n0, where n0
is the number of particles per unit volume, the so-called
number density. In eq 15 the order of integration is important,
because depending on the order taken it will yield two different
results. On one hand, if the integration over d3rp is performed
first, it will correspond to taking first the average of the induced
current and then calculating the field it generates; this
procedure would try to preserve the quest for an effective
response. On the other hand, if one leaves the integration over
d3rp until the end, it will correspond to calculating first the
electric field generated by the whole induced current (average
plus fluctuating) and performing the average of the field,
afterward. Because the results of the two procedures are
different, and we have checked that the second one (the one
that accounts for the fluctuations of the induced current) yields
better results, we will describe only this one, and later we will
remark and comment about the final result of the first
procedure. Finally, in the kernel of eq 15 the integral over d3r″
runs only over the HS (z″ > 0), because σ⃡s is zero where there
are no spheres; therefore, we find it convenient to leave the
integration volume over all 3 but to take in the integral over

Figure 1. Schematic diagram of the colloidal system and coordinate
system used in our analysis.
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d3r″, ⟨E⃗⟩(r″⃗) equal to zero outside the HS. Thus, it is
convenient to split the average electric field as

⟨ ⃗⟩ = ⟨ ⃗⟩ + ⟨ ⃗⟩− +E E E

where ⟨E⃗⟩− = θ(−z)⟨E⃗⟩ and ⟨E⃗⟩+ = θ(z)⟨E⃗⟩.
The integral equation (eq 15), although apparently

complicated, has a plane wave solution when excited by an
incident transverse plane wave. To see this, we first introduce a
plane-wave representation for the dyadic Green’s function,
given by29

∫ ∫

δ

π
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where k+̂ = (kxex̂ + kyeŷ + kzeẑ)/k0, if z − z′ >0, k−̂ = (kxex̂ + kyeŷ
− kzeẑ)/k0, if z − z′ < 0, and kz = (k0

2 − kx
2 − ky

2)1/2.
Because the presence of the interface breaks the translational

invariance only in the z direction, it is also convenient to
introduce a mixed Fourier representation for the electric field in
the form E⃗(k,⃗z), and a full Fourier representation for σ⃡s(r,⃗r′⃗) in
the form σ⃡s(k,⃗k′⃗) = σ⃡s((k∥⃗,kz⃗),(k∥⃗,kz⃗′)) ≡ σ⃡s(k∥⃗;kz⃗,kz⃗′). After
doing this in eq 15, and performing the necessary integrations,
one is finally able to write the following.
For z > 0,
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For z < 0, what is obtained is a relation for the electric field
for z < 0 in terms of an integral over ⟨E⃗⟩+(k∥⃗,pz″) that is,

∫
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As mentioned above, this integral equation has a plane-wave
solution when the system is excited by an incident transverse
plane wave. Thus, we substitute in eq 17 a unit-amplitude
incident plane wave of the form

π δ⃗ ⃗ = ⃗ − ⃗ ̂E k z k k e( , ) (2 ) ( )e k z
inc

2 i i iz
i

(19)

where e ̂i denotes its polarization and being transverse ki⃗·e ̂i = 0.
Then we propose as a solution of the integral equation, the
following plane-wave ansatz

π δ θ⟨ ⃗⟩ ⃗ = ⃗ − ⃗ ̂+E k z k k t z e( , ) (2 ) ( ) ( )e k z2 i i fz
f

(20)

whose Fourier transform is

π δ⟨ ⃗⟩ ⃗ ″ = ⃗ − ⃗
″ −

̂+E k p k k
p k

te( , ) (2 ) ( )
1

i( )z
z z

2 i

f
f

(21)

where t, kz
f , and e ̂f denote amplitude, z-component of the wave

vector, and polarization, respectively, of the plane-wave ansatz
for the transmitted (z > 0) electric field. These parameters are
unknown and have to be determined by demanding consistency
when eqs 19 and 21 are substituted into eq 17. Notice that one
is assuming that the parallel component of the incident and
transmitted wave vectors are equal: k∥

f = k∥
i = k0 sin θi (Snell’s

law).
The substitution mentioned above yields the next two

consistency equations:
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and
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(23)

where kr⃗ = (k∥⃗
i ,−kz⃗i ) and kf⃗ = (k∥⃗

i ,kz⃗
f ) are the wave vectors of the

reflected and transmitted waves. These consistency equations
should determine t, kz

f , and e ̂f.
The first consistency equation (22), is a homogeneous

equation that has a solution different from zero if and only if its
determinant vanishes, that is,
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σ σ
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(24)

This is an implicit equation for kz
f (ω) that has to be solved

self-consistently, yielding the nonlocal dispersion relation of the
“effective” wave-vector kf⃗(ω) = (k∥⃗

i (ω),kz⃗
f (ω)) of the electro-

magnetic modes that are able to propagate in the system.
Because k∥⃗

i is real and kz
f is in general complex, these modes are

similar in structure to the so-called inhomogeneous waves of
continuous electrodynamics. It is called a nonlocal dispersion
relation, because kz

f also appears in the arguments of σ⃡s,
denoting the presence of spatial dispersion (nonlocality).
The second consistency relation (23) is analogous to the

extinction theorem in continuous electrodynamics and can be
solved for t after dot multiplying both sides of the equation by
e ̂i, yielding

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp5025558 | J. Phys. Chem. B 2014, 118, 6015−60316019



ωμ σ
=

−

̂ · ⃡ ⃗ ⃗ · ̂
− −t

k
n

k k

e k k e

2
i ( , )

ez z z a k k
i

0 0

f i

i s i f f

i ( )z z
f i

(25)

Now, one is able to calculate the electric field for z < 0, by
substituting, first, eq 21 into eq 18, and then integrating over
dpz″. One gets

ωμ

σ

⟨ ⃗⟩ ⃗ = ⃗ ⃗ − ⃡ − ̂ ̂ ·

⃡ ⃗ ⃗

+
· ̂

−
−

−

E k z E k z n
k

I k k

k k
k k

e t

( , ) ( , ) i
e
2

( )

( , )
e

i

k z

z

r

z z

a k k

( )
0 0

i

i
r

s r f

f i
f i ( )

z

z z

i

f i

(26)

where t is given by eq 25 that depends on the polarization e ̂i of
the incident field. Because E⃗i(k∥⃗,z) corresponds to the incident
field for z < 0, one can identify the second term in eq 26 as the
reflected electric field.

■ REFLECTION AMPLITUDES
By choosing in eq 26 e ̂i either perpendicular or parallel to the
plane of incidence, we will obtain the reflection amplitudes for
s- and p-polarization, respectively. The plane of incidence is the
plane generated by ki⃗ and a vector perpendicular to the
interface. To write closed-form expressions for these reflection
amplitudes, we will project σ⃡s(k,⃗k′⃗), the nonlocal conductivity
tensor of the isolated sphere, on a two definite vector basis.
One basis is chosen with unitary vectors {eX̂, eŶ, eẐ} lying along
the coordinate axes XYZ chosen as follows: the Z axis along ki⃗,
the X axis along k ⃗ × k′⃗, and Y axis along eẐ × eX̂ (Figure 2).

In the other vector basis {eX̂, er̂, eθ̂}, er̂ lies along k ⃗ and eθ̂ lies
along er̂ × eX̂r. By dot multiplying σ⃡s(k,⃗k′⃗) on the left by {eX̂, er̂,
eθ̂} and on the right by {eX̂, eŶ, eẐ}, one obtains a (3 × 3) matrix
representation of σ⃡s(k,⃗k′⃗), and we denote, for example,

σ σ= ̂ · ⃡ · ̂e eXX X X
s s

σ σ= ̂ · ⃡ · ̂θ θe eY Y
s s

and

σ σ= ̂ · ⃡ · ̂θ θe eZ Z
s s

(27)

Therefore, using this matrix representation for σ⃡s and
combining eqs 25 and 26, one can finally write the reflection
amplitudes for s- and p-polarization, as
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and

σ σ
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(29)

where s = (e ̂f·kf̂)/(e ̂f·k⊥̂f ) is a geometrical factor and k⊥̂
f is a unit

vector along k⊥̂
f × eX̂, and the phase factors arise from our

choice of origin. These formulas are the main result of our
work, they are valid in the dilute regime, and they give the
reflection amplitudes in terms of components of the generalized
nonlocal conductivity tensor of an isolated sphere: σXX

s , σθY
s , and

σθz
s . Notice, however, that besides the explicit dependence on kẑ

f

and e ̂f, the components of the conductivity tensor have to be
evaluated at (kr⃗, kf⃗) and (ki⃗, kf⃗); thus it is required to solve first
the dispersion relation for kf⃗(ω) and use eq 22 to determine e ̂f;
then use kz

f and e ̂f on the evaluation of eqs 28 and 29. It can also
be shown that these expressions for rs and rp, in the limiting
case of small spheres k0a ≪ 1, turn into Fresnel’s relations (eqs
1 and 2), as they should.

■ DISPERSION RELATION
As mentioned above, to calculate the reflection amplitudes
using the expressions in eqs 28 and 29, one is required first to
determine kf⃗ = (k∥⃗

i , kz⃗
f ) from the general expression for the

dispersion relation given by eq 24. But before doing this, we
will derive an approximate expression for kz

f (ω) by considering
that the conductivity tensor σ⃡s that appears in eq 24 with
different arguments, has a bulk character, that is, σ⃡s(kr⃗,kf⃗) =
σ⃡s(kr⃗,kf⃗) = σ⃡s(kf⃗,kf⃗). Then one uses the following identity
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to write eq 24, as

ωμ σ⃡ −
−
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We proceed to solve this equation by first choosing a vector
basis {eX̂, k⊥̂

f , kf̂} where k⊥̂
f = kf̂ × eX̂. In this basis

σ σ σ σ⃡ ⃗ ⃗ = ̂ ̂ + ̂ ̂ + ̂ ̂
⊥ ⊥k k k e e k k k k k k( , ) ( ) ( ) ( )X X

s f f T f T f f f L f f f
(32)

becomes a diagonal dyadic that can be written in terms of its
transverse σT and longitudinal σL components. By substituting
eq 32 into eq 31, one obtains the equation for the dispersion
relation as two independent equations, one for transverse
modes

ωμ σ−
−

=n
k

k k
1 i

( )
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T f

f
2
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2
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and the other for longitudinal modes
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2
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Figure 2. Unit vector basis used in our analysis. The Cartesian unit
vectors are oriented as shown with the incident wave vector k′⃗,
whereas the spherical-coordinates unit vectors refer to the scatter wave
vector k.⃗
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For the transverse modes, one can further approximate in eq 33
σT(kf) ≈ σT(k0) = 4πS(0)/(−ik0),20 where S(0) is either of the
diagonal elements of the scattering matrix of the sphere, in the
forward direction. The dispersion relation for transverse modes
can then be written as

π= +
⎛
⎝⎜

⎞
⎠⎟k k n

k
S( ) 1

4 i
(0)f 2

0
2

0
0

3
(35)

which is known as the Foldy−Lax dispersion relation.21 We
now introduce the presence of the interface by demanding k∥⃗

f =
k∥⃗
i , where ki⃗ is the wave vector of the incident wave and one
writes

π= +k k n
k

S
4 i

(0)z z
f i 2

0
0 (36)

Now we will show that the Foldy−Lax dispersion relation given
in eq 36 is a rather good approximation to the full solution of
eq 24. To solve eq 24, we first project the dyadic σ⃡s(kr⃗,kf⃗) into
components by using the vector basis {eX̂, k⊥̂

f , kf̂} to the right
and {eX̂, k⊥̂

i , kî} to the left and realizing that these vector basis
sets correspond to {eX̂, eŶ, eẐ} and {eX̂, er̂, eθ̂} used above. Then
one writes the vectors k⊥̂

i and kî in the basis {eX̂, k⊥̂
f , kf̂} and by

doing the corresponding operations with σ⃡s(kr⃗,kf⃗), one can
finally write eq 24 as

⃡ =Mdet 0 (37)

where the dyadic M⃡ in the basis {eX̂, k⊥̂
f , kf̂} is displayed

explicitly in Appendix A in terms of the components of σ⃡s, σXX,
σθY, and σθZ with arguments (ki⃗, kf⃗) and (kr⃗, kf⃗), and also in
terms of σ⃡s(kf⃗,kf⃗) written in terms of its transverse σT(kf) and
longitudinal σL(kf) components. Let us recall that kr⃗ = (k∥⃗

i , −kzi )
and kf⃗ = (k∥⃗

i , kz
f ). The first thing one notices is that besides the

diagonal components of M⃡, M⃡ has also nondiagonal
components in k⊥̂

f kf̂ and kf̂k⊥̂
f . This means that the roots of

det M⃡ = 0 will yield modes with a mixed transverse-longitudinal
character. The roots of eq 37 were found numerically using an
iteration procedure, whose starting value kz

f [0] was taken to be
the Foldy−Lax expression, given in eq 36.
In Figures 3 and 4, we show the results for Re(kz

f [i]) and
Im(kz

f [i]) up to 4 iterations, i = 1, 2, 3, 4, as a function of the
volume filling fraction of the spheres, for spheres made of silver
and radius a = 0.1 μm, in a vacuum, and excited with an
external field oscillating with a wavelength of 635 nm. One can
immediately see in this case that, for filling fractions less than

about 6%, the dispersion relation given by the Foldy−Lax
expression is an extremely good approximation. This iteration
procedure was repeated (not shown here) for the same
parameters, the same number of iterations, but with a = 0.2 μm,
and we observed that the convergence was even faster and the
validity of the Foldy−Lax expression was good even at higher
filling fractions, up to around 10%. This also shows that the
dispersion relation in the bulk is not very sensitive to the effects
introduced by the presence of the interface. We must add that
in the numerical procedure of finding the roots of eq 37, we
kept only one propagating solution, Re(kz

f [i]) > 0 and Im(kz
f [i])

> 0, whose rapid convergence meant that it was “close” to the
Foldy−Lax solution; we did not explore for other roots that
might also have yield information about the optical properties
of the system. Actually, the fact that the real part of the z
component of the “exact” effective wave vector bends away
from the Foldy−Lax approximation means that the magnitude
of the effective wave vector does not depend linearly on the
volume fraction of the particles. This in turn reveals that
dependent scattering effects are being taken into account by the
exact solution to the dispersion relation.22

In relation to the polarization of the wave transmitted into
the colloid, once the roots of eq 37 are found, one can
determine the polarization e ̂f of the corresponding modes. It is
clear that for s-polarization e ̂f = ex̂ one has a pure transverse
mode; but for p-polarization one finds

̂ =
+

̂ + ̂
⊥e

s
k sk

1

1
( )f

2

f f

(38)

where the factor s = (e ̂f·kf̂)/(e ̂f·k⊥̂f ) is also displayed explicitly in
Appendix A, and it is given in terms of the components of σ⃡s, as
well as the components of all the relevant wave vectors. One
can see that this mode has a mixed transverse-longitudinal
character; in case s is small, it will be mainly a transverse mode
with a small longitudinal component; this seems to be the case,
at least for the system of silver spheres explored in this work.

■ APPROXIMATIONS
Here we explore some plausible approximations to the
expressions derived above (eqs 28 and 29) that will help us
to have a further insight into their physical meaning and could
be also useful in specific applications.

(i) Nonlongitudinal-Coupling Approximation (NLC).
Let us recall that for an (“n the average”) isotropic colloidal
system, in the dilute regime, the bulk electromagnetic modes

Figure 3. Real part of wavenumber kz
f as a function of the filling

fraction obtained after 0, 1, 2, 3, and 4 iterations in the “exact”
dispersion relation at a frequency of 0.63 μm for silver particles of
radius a = 0.1 μm.

Figure 4. Imaginary part of wavenumber kz
f as a function of the filling

fraction obtained after 0, 1, 2, 3, and 4 iterations in the “exact”
dispersion relation at a frequency of 0.63 μm for silver particles of
radius a = 0.10 μm.
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are determined only by σ⃡s(k,⃗k)⃗ see eq 6) and, as mentioned
above, it can sustain modes with either transverse or
longitudinal character.8 Thus, the presence of the z component
in σθz and the geometric factor s = (e ̂f·kf̂)/(e ̂f·k⊥̂f ) in the formula
for rp, can be understood as coming from the coupling through
the interface of transverse and longitudinal bulk modes.
Therefore, either to neglect σθz or to take s ≈ 0 in eq 29,
will mean that the longitudinal character of the modes in the
colloidal system is rather weak, and the transmitted wave will
have, essentially, a transverse character. Therefore, within this
approximation one writes

σ

σ
=

⃗ ⃗

⃗ ⃗
−
+

r
k k

k k

k k
k k

( , )

( , )
eXX

XX

z z

z z

ak
s

s r f

s i f

i f

i f
i2 z

i

(39)

σ

σ
=

⃗ ⃗

⃗ ⃗
−
+

θ

θ

r
k k

k k

k k
k k

( , )

( , )
eY

Y

z z

z z

ak
p

s r f

s i f

i f

i f
i2 z

i

(40)

where kf⃗(ω) has to be determined from the dispersion relation
given in eq 24, with the same kind of approximations (no
longitudinal coupling), although, as mentioned above, for low
enough volume filling fractions of spheres, the dispersion
relation given by the Foldy−Lax expression (eq 36) could be
adequate to be used, not only in this derivation but also in the
expressions derived below.
(ii) Light-Cone Approximation (LCA). The determination

of the induced current density Ji⃗nd within the spheres generates
an induced electric field, both inside and outside the spheres.
The electric field outside is usually referred to as the scattered
field E⃗s, so there should be a relationship between the
generalized conductivity tensor σ⃡s of the isolated sphere, and
its scattering properties. To see this, we start by writing the
scattered field of an isolated sphere as

∫⃗ ⃗ = ⃡ ⃗ ′⃗ · ⃗ ′⃗ ′E r G r r J r r( ) ( , ) ( ) d
s

0
ind 3

(41)

where r ⃗ lies outside the sphere. We then calculate the electric
field in the far-field region (r ≫ 2π/k0) by expanding G⃡0 to
lowest order in 1/r, introducing σ⃡s through eq 4, and exciting
the sphere with an external transverse plane wave, given by

E⃗ext(r′⃗) = E0
i eik

i⃗·r′⃗e ̂i. One gets
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where ks⃗ = k0er̂, k
i⃗ = k0k

î, and kŝ = ks⃗/ks. Here one can identify kî

as the wavevector of the incident wave whereas kŝ corresponds
to the direction of observation. One can immediately see that
because (1⃡ − kŝkŝ) is a transverse operator, the scattered field is
perpendicular (transverse) to kŝ and, therefore, the transverse
components of σ⃡ can be identified with the diagonal
components of the scattering matrix. Let us recall that the
scattering matrix relates the transverse components of the
scattered field with the corresponding ones of the incident field,
and is defined as23

θ

θ
=

−⊥ ⊥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

E

E k r

S

S

E

E

e
i

( ) 0

0 ( )

k rs

s

i

0

2

1

i

i

0

(43)

where the subindex ∥ and ⊥ denote parallel and perpendicular
to the scattering plane, which is the plane spanned by the

vectors kî and kŝ, and θ is the angle between them; also S1(0) =
S2(0) = S(0). If we now use eq 42 to calculate EX

s for e ̂i = eX̂, and
Eθ
s for e ̂i = eŶ, and compare them with the relations between E⊥

s

and E⊥
i and between E∥

s and E∥
i , given in eq 43 we obtain
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Now we will use these relations to define what we call the
light-cone approximation. Within this approximation one first
assumes that the transmitted wave in the colloidal system is
transverse s ≈ 0, and also that σXX

s (kr⃗,kf⃗) ≈ σXX
s (kr⃗,ki⃗), and

σXX
s (ki⃗,kf⃗) ≈ σXX

s (ki⃗,ki⃗) and that σθY
s (kr⃗,kf⃗) ≈ σθY

s (kr⃗,ki⃗) and
σθY
s (ki⃗,kf⃗) ≈ σθY

s (ki⃗,ki⃗). These latter assumptions mean that in
relation to the scattering process described by σ⃡s, one assumes
kf⃗ ≈ ki⃗, thus the exciting field is not the transmitted (refracted)
field but it is rather the incident field with wave-vector ki⃗ and
magnitude k0. Now, because the magnitude of the wave-vector
ki⃗, of the incident field, and of the scattered fields, either kr⃗ or ki⃗

(forward scattering), is the same and is equal to k0, we say that
they stay in the light cone and we call this approximation the
light-cone approximation (LCA). Therefore, using the
approximation of transversality mentioned above as well as
the relations given in eqs 44 and 45, one can write the reflection
amplitudes within the light-cone approximation as
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where kz
f has to be determined from the dispersion relation (eq

24). Nevertheless, this approximation suffers from an
inconsistency problem; if one takes the small particle limit ka
→ 0 one should get Fresnel’s relations as given by eqs 1 and 2,
and one does not. In this limit23 S1(θ) → (3/2)a1 and S2(θ) →
(3/2)a1 cos θ, where a1 = −i(2/3)(ka)3(ϵf − ϵ0)/(ϵf + 2ϵ0).
Therefore, one can readily see from eq 47 that although rs tends
to the correct limit, rp is not, because
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The reason is very clear: In the limit, ka → 0, the difference
between these two expressions is precisely in the first factor, the
one that comes from the assumption kf⃗ ≈ ki⃗ in the scattering
process. Because this replacement is the core of LCA, and it is
preserved in the small particle limit, as explicitly shown in eq
48, one cannot expect to obtain the correct small particle limit.

(iii) Heuristic Approximation (HA). In trying to heal the
inconsistency problem in LCA mentioned above, we have
devised a similar approximation, with essentially the same
assumptions as LCA, but with the correct small-particle limit.
We simply assume that the effective wave vector of the plane
wave that excites the sphere has magnitude k0 but lies along the
direction of the transmitted wave kf̂, whose direction can be
obtained when one solves for kz

f in the dispersion relation with
an equivalent degree of approximation. Therefore, we simply
change the angular arguments of the scattering matrix that
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appear in the expressions for rs and rp, by replacing (π − 2θi)→
π − (θi + θf) and 0 → θi − θf, where θf is the angle between the
z axis and the wave-vector kf⃗, in this way LCA is recovered by
setting back θf = θi. We call this approximation the heuristic
approximation, because it is not obtained from a rigorous
mathematical derivation, but rather from an ad hoc modification
for the correct fulfillment of a limiting value. We then write, in
the heuristic approximation,

π θ θ
θ θ
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− +
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Note that here θf is in general complex because the transmitted
wave is inhomogeneous and k ⃗f is in general complex;
nevertheless, these expressions will still remain valid in this
case; the complex arguments of S1 and S2 can be evaluated by
using, for example, cos(π − (θi − θf)) = kr̂·kf̂ and cos(θi + θf) =
kî·kf̂. Again, the phase factors arise from our choice origin.
(iv) Fresnel Approximation (FA). The Fresnel approx-

imation consists of assuming that the turbid colloid can be
treated as a common material characterized with an effective
index of refraction neff. In this respect, the reflection amplitudes
will be given by Fresnel’s relations, as given by eqs 1 and 2,
using kz

f = k0(neff
2 − sin2 θi)

1/2, where neff can be taken, for
example, as the effective refractive index proposed by van de
Hulst (eq 10) or the one derived from the Foldy−Lax
dispersion relation. Although we have shown already that this
procedure is not correct, here it will be used only for
comparison purposes, and it will be regarded as a different
approximation. Thus, in the Fresnel approximation we write
again

=
−
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r
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(51)
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where kz
f is determined by the dispersion relation and it will be,

in general, complex.
As a final comment, we recall that in the process above of

taking an ensemble average while solving the integral equation,
we mentioned that an alternative procedure was first to average
(integrate) over particle positions and then to calculate and
solve the equation for the electric field. Well, if one follows that
procedure in an analogous way as we have done it above, we
end up with what we are calling here the Fresnel
approximation.
Some of the approximations presented above do not require

the calculation of the components of σ⃡s, and for that reason
they are very attractive. Thus, to check their accuracy, we will
compare the numerical results obtained using the expressions
corresponding to the different approximations, with the “exact”
result given by eqs 28 and 29.

■ GENERALIZED NONLOCAL CONDUCTIVITY
We have derived above explicit expressions for the reflection
amplitudes in the dilute regime (eqs 28 and 29), together with
closed expressions for different kinds of approximations.

Therefore, to calculate them and to establish the accuracy of
these approximations, one requires the tensor components of
σ⃡s(k,⃗k′⃗), a calculation that will be displayed in this section. We
start by recalling that, in real space, the generalized nonlocal
conductivity tensor σ⃡s for an isolated sphere in vacuum,
centered at the origin, obeys the following integral equation,8

∫
σ ω σ ω δ

ωμ ω σ ω

⃡ ⃗ ′⃗ = ⃗ ⃗ − ′⃗ ⃡

+ ⃗ ″⃗ · ⃡ ″⃗ ′⃗ ″

r r r r r

G r r r r r

( , ; ) ( ; )[ ( )1

i ( , ; ) ( , ; ) d ]
V

s

s
loc
s

0 0
3

s

(53)
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σloc
s (ω) is the local conductivity of the sphere defined in eq 3,
and Vs is its volume. It was also pointed out in ref 8 that this
integral equation is identical to the one obeyed by the
transition operator T⃡(r,⃗r′⃗) used in scattering theory (T matrix),
when one identifies T⃡(r,⃗r′⃗) with iωμ0σ⃡

s(r,⃗r′⃗). Then it would be
possible to use this integral equation to calculate σ⃡s(k,⃗k′⃗), as
was already reported in refs 14 and 24. Here, we will use instead
an alternative novel method grounded on the physical
significance of eq 4, which will yield closed expressions for
the components of σ⃡s through a Mie-type of scattering
calculation.
We start by using eq 4 to calculate the current density

induced within a sphere by the electric field of a plane wave of
unit amplitude oscillating at frequency ω, with polarization
along eβ̂ and a wave-vector k′⃗. One readily writes

∫ω σ ω⃗ ⃗ ′⃗ ̂ = ⃡ ⃗ ′⃗ · ̂ ′β β
⃗′· ⃗′J r k e r r e r( ; , ; ) ( , ; ) e d

V

k rind s i 3
(55)

If one now takes the k-Fourier transform of the above
equation and then its α Cartesian component, one gets

ω σ ω σ ω⃗ ′⃗ ̂ = ̂ · ⃡ ⃗ ′⃗ · ̂ ≡ ⃗ ′⃗α β β αβJ k k e e k k e k k( , ; ; ) ( , ; ) ( , ; )a
ind s s

(56)

where we have used the definition of the Fourier transform
σ⃡s(k,⃗k′⃗;ω) given in eq 7. Therefore, the physical interpretation
of σαβ

s (k,⃗k′⃗;ω) is the α Cartesian component of the k ⃗ Fourier
transform of the current density induced within the sphere
when excited by the electric field of a plane wave of unit
amplitude oscillating with frequency ω, wave-vector k′⃗, and
polarization along eβ̂. But according to eq 3 the field inside the
sphere, the internal field E⃗int, is proportional to Ji⃗nd, that is, E⃗int

= (1/σloc
s )Ji⃗nd; therefore the problem is to calculate the electric

field inside the sphere when excited by an incident plane wave.
Because for a given oscillation frequency ω one requires the
response of the system to any possible k′⃗, this problem is
similar to the usual Mie-scattering problem with the difference
that, here, the wave-vector k′⃗ of the incident plane wave has to
be arbitrary, that is, independent of ω. In other words, the
incident field is not a self-propagating wave, it is rather a plane
wave with an arbitrary wave-vector k′⃗ and arbitrary polarization
eβ̂ that has to be generated, necessarily, by external currents. To
generate this kind of plane waves traveling along the z-axis, the
external currents should be given by

ω
ωμ

⃗ ⃗ ′⃗ ̂ = ′ − ̂′J r k e k k e( ; , ; )
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(57)
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where k′⃗ and eβ̂ (β = x, y, z) denote the wave vector and
polarization of the plane waves generated by them. One can see
that for k′ = k0 the incident plane wave with (transverse)
polarization along ex̂ and eŷ would be self-propagating in
vacuum, thus there would be no need for external currents and
Je⃗xt(r;⃗k0⃗;ex̂;ω) = Je⃗xt(r;⃗k0⃗;eŷ;ω) = 0. But a plane wave with
polarization eẑ is a longitudinal wave that cannot self-propagate
in vacuum; thus, in this case it has to be generated by an
external current and Je⃗xt(r;⃗k′⃗;eẑ;ω) ≠ 0, always.
Now, the calculation of the internal field in the presence of

Je⃗xt is performed in a similar way as in the (Mie) problem in
which the incident plane wave is self-propagating. This means
one expands all the fields, external and induced, in a vector-
spherical-harmonics basis and the expansion coefficient are
determined by the boundary conditions at infinity and at the
surface of the sphere, including also the excitation by
longitudinal plane waves. In Appendix B we display the results
of this calculation and, choosing the vector basis {eX̂, er̂, eθ̂} and
{eX̂, eŶ, eẐ} described above, we write the explicit expressions for
the components σXX

s , σθY
s , and σθz

s . Here one assumes that the
material the sphere is made of, is completely described by a
complex local conductivity σloc

s . The details of the calculation, as
well as the case in which the sphere has a magnetic response,
are reported in ref 14.

■ REFLECTION AMPLITUDES: SILVER
SPHERES/VACUUM

Here we calculate the absolute value of the reflection
amplitudes using the expressions given in eqs 28 and 29,
which we will call “exact”, as well as the expressions for all the
proposed approximations given by eq 39 and 40 called
nonlongitudinal coupling (NLC), eq 47 called light-cone
approximation (LCA), eq 50 called heuristic approximation
(HA) and eq 52 called Fresnel approximation (FA). We will
present numerical results for the case of free-standing spheres
made of silver for different radii and different (volume) filling
fractions. The sizes we consider in the examples below
correspond to particles that absorb and scatter efficiently light
at the chosen wavelength.15 We will use in all these calculations
the Foldy−Lax dispersion relation kz

f (ω) given by eq 36, and as
discussed above, it will be accurate enough in the limit of low-
filling fractions (less than around 6%). This does not represent
any additional limitation because at higher filling fractions the
effective-field approximation itself will eventually cease to be
valid.
In Figures 5−7 we show the case of a colloid of free-standing

silver spheres, where the wavelength of the incident radiation is
0.630 μm and the filling fraction is 5%. At this wavelength the
relative dielectric function of silver is ϵs/ϵ0 = −18.0958 +
0.484224i, as taken from ref 25. The amplitudes of the
reflection amplitudes for p-polarization were calculated as a
function of the angle of incidence θi, for spheres with radii a =
0.1, 0.15, and 0.2 μm, and for s-polarization for spheres with
radii a = 0.1 and 0.2 μm in Figures 8 and 9.
We also display in Figure 10, as an illustration, the s-

reflection amplitude of a colloid of free-standing TiO2 spheres,
as a function of the angle of incidence, log |rs(θi)|

2, using the

same parameters as before but for spheres of radius a = 0.2 μm
and where the relative dielectric function of TiO corresponding
to the incident wavelength of 0.630 μm is ϵs/ϵ0 = 2.84.26

In Figure 5 we plot log|rp(θi)|
2 when the radius of the spheres

is taken as 0.1 μm, and one can see that in Fresnel’s
approximation (FA), that is, when the colloid is characterized
simply by a complex effective index of refraction, log|rp(θi)|

2 has
the behavior typical of an absorbing material in continuum

Figure 5. Logarithm of the amplitude square of the reflection
coefficient as a function of the incidence angle for a colloidal system
composed of silver particles of radius a = 0.10 μm in vacuum at a
frequency of 0.63 μm, for p-polarization and assuming ϵs/ϵ0 = 18.0958
+ 0.484224i, and a volume fraction of f = 5%.

Figure 6. Logarithm of the amplitude square of the reflection
coefficient as a function of the incidence angle for a colloidal system
composed of silver particles of radius a = 0.15 μm in vacuum at a
frequency of 0.63 μm, for p-polarization and assuming ϵs/ϵ0 = 18.0958
+ 0.484224i, and a volume fraction of f = 5%.

Figure 7. Logarithm of the amplitude square of the reflection
coefficient as a function of the incidence angle for a colloidal system
composed of silver particles of radius a = 0.20 μm in vacuum at a
frequency of 0.63 μm, for p-polarization and assuming ϵs/ϵ0 = 18.0958
+ 0.484224i and a volume fraction of f = 5%.
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electrodynamics, that is, it has a characteristic dip, reminiscence
of the Brewster angle, and then it has a monotonic approach to
the value 1 for θi = π/2. Note here that all other
approximations, except LCA, coincide among themselves and
with the “exact” result but differ appreciably from FA, in
particular in the region around the dip. This behavior remains
when the radius of the spheres is increased to a = 0.2 μm, as
seen in Figure 7, although in this case the difference between

the “exact” result and the FA is even more notorious. In the
“exact” result the dip is not as acute as in FA and is shifted to
smaller angles in relation to FA. Also the approach to the value
rp = 1 for θi = π/2 is not as monotonic as in FA and it has a
shoulder at angles of incidence where the FA has its dip. But
what remains is that all other approximations, except the LCA,
coincide to a quite reasonable degree of accuracy, among
themselves and with the “exact” result. The behavior of the
LCA is a bit different, and this difference might be a
consequence of the inherent inconsistency of the LCA, in the
sense that it does not have the correct small-particle limit.
Therefore, one might conclude from looking at the plots shown
in Figures 5−7 that at least for the parameters used in these
calculations, the FA is by no means a good approximation, but
the other approximations that can also be readily evaluated, like
the heuristic approximation, are quite accurate. In Figure 8 we
plot log|rp(θi)|

2 for self-standing silver spheres with radii a = 0.1
μm using eqs 28, 47, 50, and 52, and one can see that the
“exact” result and all other approximations, even the FA, lie
very close to each other, in particular for θi larger and around
60°. Also, starting at θi = 0, log|rp(θi)|

2 has the characteristic
slow monotonic increase toward the value 1 at θi = π/2. But for
a = 0.2 μm, this coincidence between FA, the other
approximations and the “exact” result is no longer so, as
shown in Figure 9. Here, although FA keeps the same overall
behavior as in the case a = 0.1 μm, now the “exact” result and
the other approximations (LCA and HA), although close to
each other, differ distinctly from FA. First, the values of log|
rp(θi)|

2 for the “exact” result and the other approximations
(LCA and HA), besides lying always below the ones of FA, they
do not show a monotonic increase, they have rather a wide
minimum, resembling more the behavior with θi of the absolute
value of the reflection amplitude in p-polarization. Let us recall
that in continuum electrodynamics, there is a Brewster angle for
s-polarization in case the material has a magnetic response.
Because for optical frequencies ordinary materials have no
magnetic response, one does not expect a minimum in log|
rp(θi)|

2. Nevertheless, as was argued in ref 8, the bulk effective
nonlocal response of a turbid colloid has an effective magnetic
response at optical frequencies, due to the effect of the closed
currents induced within the spheres. Therefore, the presence of
the minimum in log|rp(θi)|

2, in Figure 9, might be interpreted as
a manifestation of that effective magnetic response, although in
our formalism it comes from the angular dependence of the
element S1 of the scattering matrix of the isolated particles, as
can be readily seen from eqs 47 and 50 corresponding to
approximations LCA and HA, respectively. To make this more
evident, we show in Figure 10 a plot of log|rp(θi)|

2 for the case
of self-standing spheres of TiO2 of radius a = 0.2 μm, whose
scattering matrix has a stronger angular dependence. One can
see that, in this case, there is not just one minimum, but actually
three minima.
It is evident that a system of self-standing spheres is not

appropriate for the performance of accurate measurements.
Thinking in a system like a colloidal suspension, one would
require in the formalism the presence of a matrix occupying the
half-space together with the spheres.

■ THE MATRIX
Here we extend the calculation of the reflection amplitudes
discussed above, by considering the more realistic case when
the spheres are not free-standing but they are instead immersed
within a matrix made of a homogeneous material. The matrix

Figure 8. Logarithm of the amplitude square of the reflection
coefficient as a function of the incidence angle for a colloidal system
composed of silver particles of radius a = 0.10 μm in vacuum at a
frequency of 0.63 μm, for s-polarization and assuming ϵs/ϵ0 =
−18.0958 + 0.484224i, and a volume fraction of f = 5%.

Figure 9. Logarithm of the amplitude square of the reflection
coefficient as a function of the incidence angle for a colloidal system
composed of silver particles of radius a = 0.20 μm in vacuum at a
frequency of 0.63 μm, for s-polarization and assuming ϵs/ϵ0 =
−18.0958 + 0.484224i, and a volume fraction of f = 5%.

Figure 10. Logarithm of the amplitude square of the reflection
coefficient as a function of the incidence angle for a colloidal system
composed of titanium dioxide particles of radius a = 0.20 μm in
vacuum at a frequency of 0.63 μm, for s-polarization and assuming ϵs/
ϵ0 = 7.84 and a volume fraction of f = 5%.
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occupies the same half-space as the randomly located spheres,
with a flat interface at z = 0, and is described by a real local
dielectric function ϵ1(ω). But now, the currents J ⃗ induced by
the external field, in the presence of a matrix with a sharp
interface, polarize the matrix by driving charges toward the
interface, with the net result of leaving there induced surface-
charge and surface-current densities. These are called “image
charges” and “image currents” in analogy with the term used in
the electrostatic case where this problem is solved through the
method of images. To calculate the effect in the reflection
amplitudes due to the “images”, we proceed in exactly the same
way as in the case of the self-standing spheres: we simply
replace in the integral equation, eq 15, the free-space Green’s
function G⃡0, by the half-space Green’s function G⃡HS. This
Green’s function was calculated from the expressions for the
electric field produced by a point dipole in front of a material
half-space, given in the so-called exact image theory.27 One can
show that G⃡HS can be written, for z > 0, as

∫
π
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and for z < 0, as

∫
π

⃡ ⃗ ′⃗ = ⃡ ⃗− ⃗ · ⃗− ′⃗ − + ′


G r r k R k

k
( , )

1
(2 )

d ( )
i

2
e e

z

k r r k z ik z
HS 2

2
I 1

i ( ) i z z
2

0 1

(61)

where the first term G⃡1(r,⃗r′⃗) in eq 60, is the free propagator in
the matrix, which has the same form as G⃡0 in eq 14, but
replacing k0 = ω/c by k1 = ω(ϵ1(ω))

1/2/c. The second term
could be interpreted as an “image” term. Here we have defined
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These two last expressions (eqs 69 and 70) correspond to the
Fresnel’s reflection amplitudes for the air−matrix interface,
where the superindex TM denotes p-polarization and TE
denotes s-polarization.

Now, the integral equation for z > 0, analogous to eq 17, can
be written as

⟨ ⃗⟩ ⃗ = ⃗ ⃗ + ⟨ ⃗⟩ ⃗ + ⟨ ⃗⟩ ⃗+ + +E k z E k z E k z E k z( , ) ( , ) ( , ) ( , )i I Img (71)

where ⟨E⃗⟩I
+(k∥⃗,z) is given by eq 17 with the replacement k0 →

k1 and
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For z < 0, we have the integral relation,

⟨ ⃗⟩ ⃗ = ⃗ ⃗ + ⟨ ⃗⟩ ⃗ + ⟨ ⃗⟩ ⃗− − −E k z E k z E k z E k z( , ) ( , ) ( , ) ( , )i I Img (73)

where ⟨E⃗⟩I
−(k∥⃗,z) is given by eq 18 with the replacement k0 →

k1, and
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On one hand, in eq 71, the incident electric field will be taken
as

π δ θ⃗ ⃗ = ⃗ − ⃗ ̂E k z t k k e z( , ) (2 ) ( ) e ( )t k z
i F

2 i i z
1

(75)

where tF is the Fresnel’s transmission coefficient of the air−
matrix interface, and e ̂t is the polarization of the transmitted
wave across this interface. On the other hand, in the integral
relation in eq 73, for z < 0, the incident electric field has to take
account also of the reflected field at the air−matrix interface,
and will be given by

π δ θ⃗ ⃗ = ⃗ − ⃗ ̂ + ̂ −−E k z k k e r e z( , ) (2 ) ( )( e e ) ( )i
i k z r k z2 i i

F
iz z

0 0

(76)

where e ̂i is the polarization of the incident field and rF is the
Fresnel’s reflection coefficient of the air−matrix interface.
As solution of the integral equation we now propose the

following ansatz:

π δ⟨ ⃗⟩ ⃗ ″ = ⃗ − ⃗
″ −

̂E k p k k
p k

te( , ) (2 ) ( )
1

i( )z
z z

2 i

f
f

(77)

where t and e ̂f are parameters that have to be determined by
demanding consistency of eq 77 as solution of the integral
equation (eq 71). When this is done, one obtains two
consistency equations that are similar to the ones obtained in
the free-standing case (eqs 24 and 25). One of them
corresponds to the dispersion relation, and it turns out to be
the same as eq 24 with the replacement of k0 by k1. The other
one is analogous to eq 25 and can be written as
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We now evaluate the expression for the average electric field
⟨E⃗⟩(k∥⃗,z) for z < 0 (eq 73), by substituting, first, the ansatz (eq
77) into eq 74 for ⟨E⃗⟩img

− , and then substituting this expression
for ⟨E⃗⟩img

− into eq 73 together with the expression for the
incident electric field E⃗i given by eq 76. One gets
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where t is given by eq 78. From this integral relation for
⟨E⃗⟩−(k∥⃗,z), after setting the polarization of the incident beam
and after a bit of algebra,14 one can extract closed-form
expressions for the reflection amplitudes for s- and p-
polarization, which one can write in a very attractive form, as

̲ =
+

−
r

R r

R r

e

1 e

ak

aks
01
TE

cohs
i2

10
TE

cohs
i2

z

z

1

1

(80)

and
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(81)

where the underline below the r denotes the total reflection
amplitude in the presence of the matrix. It is interesting to note
that these expressions for the reflection amplitudes have a
structure very similar to the the ones used in continuum
electrodynamics for the reflection amplitudes from a layer of
finite width between two semi-infinite media.28 Here the layer
corresponds to a layer of width 2a, bounded by the planes z = 0
and z = 2a, and with the dielectric response ϵ1 of the matrix.
We will call these expressions the three-media formulas, with
medium 0 being the incidence medium (z < 0), medium 1
being the finite layer of the matrix material (0 < z < a), and
medium 2 being the colloidal system. R01

TE and R01
TM are the

Fresnel’s reflection amplitudes for the air−matrix interface,

whereas rcohs = rse
−i2akz

1

and rcohp = rpe
−i2akz

1

and rs and rp are the
reflection amplitudes for s- and p-polarization given by eqs 28
and 29 evaluated at k1 instead of k0. This means that medium 3
can be regarded as the matrix occupying the whole space while
the centers of the spheres randomly located in the half-space z
> a. Obviously, this interpretation cannot correspond to the
actual geometry of the system, but what the expressions above
(eqs 80 and 81) tell us is that one can imagine it in this way
when calculating its reflection amplitudes. With this in mind, it
is clear that the calculation of total reflection amplitudes for a
half space of spherical particles immersed in a matrix (rs and rp)
is given only in terms of the reflection amplitudes between
media 1 and 2 and between media 2 and 3. Let us add that one
can also generate a series of approximations for rs and rp, as the
ones discussed above for the free-standing case, by inserting in
eqs 80 and 81 the corresponding approximations for rcohs and

rcohp. We will call them with the same name, except for the one
denoted as Fresnel approximation (FA), which we will call here
Fresnel 3 media (F3M). In this approximation one regards the
reflection amplitude between media 2 and 3 simply as the
Fresnel reflection amplitude between the matrix and the colloid
characterized with an effective index of refraction coming from,
e.g., the Foldy−Lax dispersion relation for particles immersed
within the matrix. We should also mention that one could have
obtained this same approximation (F3M) by employing the
alternative procedure discussed above while handling now the
integral equation for the electric field (eq 71), consisting of
averaging (integrate) first over particle positions, and perform-
ing later the other space integrals, which amounts to a different
order of integration. Finally, we point out that the three-media
formula rigorously derived here has been intuitively proposed
earlier5 for solving the same type of problem.

■ REFLECTION AMPLITUDES: SILVER
SPHERES/WATER

Here we perform a numerical evaluation of the reflection
amplitudes for s- and p-polarization using the expressions given
in eqs 80 and 81 for silver spheres in water bounded not by air,
but by glass. We do this because we want to simulate an
attractive experimental setup in which the colloidal suspension
is set in contact with a prism with a high index of refraction,
and light is introduced to the colloidal system through the
prism. Because the index of refraction of the prism is higher
than the one of water, there is a critical angle for total internal
reflection even in the absence of the colloidal particles. As one
adds the colloidal particles to the suspension, the sharp
transition to total internal reflectance is smoothed out, and total
reflectance is attained only up to θi = π/2. Nevertheless,
although there is not a sharp transition to total reflectance,
there are still strong variations of the reflectance with the angle
of incidence, in a region of angles around the critical angle of
the water−prism system, and experimentalists can take
advantage of these strong variations to perform accurate
measurements of the reflectance in this region. For this
experimental setup, one has to be aware that in the formulas
above for rs and rp one has to replace ϵ0 (air) by ϵP (prism).
Here we evaluate eqs 80 and 81 by replacing rcohs and rcohp by

rcohs = rse
−i2akz

1

and rcohp = rpe
−i2akz

1

and taking rp and rs as given
by expressions 28 and 29 but replacing k0 by k1; this evaluation
will be called “exact”. We also evaluate the approximations
generated by using in eqs 80 and 81 the different approximate
formulas for rcohs and rcohp, as discussed above, while preserving
the same names: NLC (nonlongitudinal coupling), LCA (light-
cone approximation), and HA (heuristic approximation), with
the exception of the one labeled Fresnel approximation (FA),
which in the present context will be called Fresnel 3 media
(F3M) when the Fresnel approximation for rcohs and rcohp is
used in eqs 80 and 81, and Fresnel 2 media (F2M) when the
Fresnel relations given in eqs 69 and 70 are used for the prism-
colloid interface, and the colloid being described by an effective
index of refraction coming from the dispersion relation for kz

1.
In Figures 11 and 12, we choose λ0 = 0.55 μm and a filling

fraction of f = 0.05, and plot the reflectance |rp|
2 as a function of

the angle of incidence θi for silver spheres of radius a = 0.10
μm, in Figure 11, and radius a = 0.20 μm, in Figure 12. For
silver and water we use the values of the relative bulk dielectric
functions corresponding to λ0 = 0.55 μm, as reported in refs 25
and 26, respectively, and for the prism we take ϵP/ϵ0 = 2.9.
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Also, the value of kz
1 was obtained from the dispersion relation.

We use the Foldy−Lax expression (eq 36) for silver particles in
water, which was checked to yield, for f = 0.05, an accurate
solution of the general equation given by eq 37. One can see, in
Figure 11, that the reflectance has a minimum related to the
Brewster angle and then a sharp but smooth monotonic
increase, with a “shoulder” when approaching the value 1 at θi =
π/2. For comparison we also plot the reflectance for the
prism−water interface that displays a well-characterized sharp
transition to total internal reflectance at the critical angle. In
Figure 11 one can see that the results from the approximations
denoted by NLC and the HA lie very close to the ones from the
“exact” expression in the whole range of angles θi, whereas on
one hand, the F2M is very much off in this same whole range,
although the difference becomes even larger for angles θi after
the minimum and up to θi = π/2. On the other hand, the
approximation denoted LCA represents a good approximation
for θi before the minimum but starts to deviate from the “exact”
results after the minimum, reaching deviations of about one or
two percent for angles around θi ≈ 60°. Also, the

approximation denoted F3M although it has positive and
negative deviations from the “exact” one at angles θi before the
minimum, after the minimum it becomes a rather good
approximation. In conclusion, one can ensure that in this case,
an approximation that works quite well at all angles and that is,
at the same time easy to calculate, is the HA. One can also see,
in Figure 12, a similar behavior of |rp|

2 for a system of silver
spheres with the same parameters as before, but for spheres of a
larger radius, that is, a = 0.20 μm. One observes that although
the curves here follow the same trend as in Figure 11, the
deviations are smaller. This might be due, for example, to
specific Mie-type resonances in the scattering matrix for λ0 =
0.55 μm and a = 0.10 μm, when looking at these results
through HA. One also reaches similar conclusions looking at
the reflectance in s-polarization, not shown here. In contrast to
what happens in p-polarization, the behavior of the s-reflectance
as a function of θi is rather monotonic with a “shoulder” before
reaching the value 1 at θi = π/2, and the minima that appear at
small angles θi in the s-reflectance, for the case of self-standing
silver spheres, not shown here.
It is clear that with this single example it is difficult to reach a

general conclusion about the validity of the different
approximations presented here, and the display of numerous
examples might become rather cumbersome. Therefore, we
proceed instead to generate a spectrum of the p-reflectance to
check the validity of the approximations as a function of the
incident wavelength. To do this, we choose first an angle of
incidence close to the “shoulder”, where the difference between
the different calculations is larger, e.g., θi ≈ 60°. Then we
choose a definite volume filling fraction, f = 0.05, and a definite
radius of the spheres, a = 0.10 μm, to generate a spectrum by
scanning the values of |rp|

2 at different incident wavelengths. We
display the results of this calculation in Figure 13 and then
repeat the calculation in Figure 14 for a = 0.20 μm.

In this way we are be able to spot the frequency region for
which the differences between the ”exact” result and the results
corresponding to the different approximations become more
evident. As one can see in these figures, this frequency region
corresponds to λ0 ≈ 0.50 μm, but in general, the NLC, HA, and
LCA are close to the exact solution in the whole range of
wavelengths. In the case a = 0.2 μm, only the region of λ > 0.55
μm was displayed. This was done so because the iterative
procedure employed to find the roots of the dispersion relation

Figure 11. Absolute value square of the reflection amplitude as a
function of the incidence angle for a colloidal system of silver spheres
in water for a wavelength of 0.55 μm, a particle radius a = 0.1 μm, ϵs/
ϵ0 = 13.09314 + 0.42564i, f = 0.05, and p-polarization. The incident
medium is glass (prism) with ϵP/ϵ0 = 2.9.

Figure 12. Absolute value square of the reflection amplitude as a
function of the incidence angle for a colloidal system of silver spheres
in water for a wavelength of 0.55 μm, a particle radius a = 0.2 μm, ϵs/
ϵ0 = 13.09314 + 0.42564i, f = 0.05, and p-polarization. The incident
medium is glass (prism) with ϵP/ϵ0 = 2.9.

Figure 13. Spectrum of the absolute value square of the reflection
amplitude for p-polarization, for silver particles immersed in water,
with radius a = 0.1 μm, filling fraction f = 0.05, and an angle of
incidence of 60°. The incident medium is glass (prism) with ϵP/ϵ0 =
2.9.
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did not converge to a physical root at several wavelengths
below λ = 0.55 μm. Possibly an alternative method for finding
roots of nonlinear equations, must be employed for frequencies
less than 0.55 μm.

■ CONCLUSIONS
As mentioned above, the relationship between the present
approach and the results of multiple-scattering theory (MST)
reported in refs 24 and 29 is the identification of the T-matrix
operator used in MST with the generalized-nonlocal con-
ductivity tensor used here. After this identification is made, the
integral equations for the electric field in both approaches
should be equivalent. Although in the present approach we
solve this integral equation in the effective-field approximation,
valid for dilute colloidal systems, in MST, more elaborated
approximation schemes have been developed, which should be
valid for denser colloidal systems. An example of these is the
quasi-crystalline approximation.19 Nevertheless, in most of the
work done in MST the T-matrix operator is usually
approximated and identified with the S matrix that describes
the scattering of only transverse waves. The role played by the
longitudinal modes, like the ones dealt in our approach, would
require going beyond the S matrix by taking full account of the
solution of the integral equation obeyed by the T-matrix
operator. Here, instead of solving the corresponding integral
equation obeyed by the generalized-nonlocal conductivity
tensor, we took advantage of the physical interpretation of
this conductivity tensor to calculate, in a rather simple way,
closed expressions for all its components, including the
coupling with the longitudinal modes. In our approach we
obtain an equation for the dispersion relation in terms of the
conductivity tensor evaluated within an effective medium where
the incident wave and the waves scattered by the colloidal
particles have wave vectors of different magnitudes and also
different from the magnitude corresponding to the self-
propagating modes in the matrix. In this way our approach
incorporates dependent-scattering effects that are revealed by
the prediction of a nonlinear dependence of the effective
wavevector with the volume-density of particles. Furthermore,
in the most widely known applications of MST19 the randomly
located colloidal particles are embedded in the same medium as
the one outside, like in many applications to atmospheric
problems. In contrast, we developed here a rigorous solution of
the integral equation for the electric field that takes account of

the “image” currents induced by the half-space matrix where the
particles are immersed, and that can be applied to problems of
colloidal suspensions in contact with any material different than
the matrix. This was done by using the half-space Green
function in the integral equation for the average electric field
and proving that the reflection amplitudes can be calculated
using a formula which is equivalent to the classical three-media-
reflection formula of continuum electrodynamics. This
extension to the theory is crucial for modeling light reflection
from colloidal suspensions (or composite materials) in most
real situations encountered in the laboratory. In addition to the
“exact” solution within the effective-field approximation we
proposed several simpler approximations that could be used for
analyzing practical applications. We explored the accuracy of
these approximations by comparing the coherent reflectance
predicted by them with that predicted by the “exact” solution.
The examples chosen for illustrating the accuracy of different
approximations corresponded to an exceptionally sensitive
experimental setup, consisting of a suspension of particles in
contact with a prism of higher index of refraction. We chose for
our numerical examples water suspensions of silver particles
that present strong resonant absorption at certain wavelengths
while being good scatterers of visible light at other wavelengths.

■ APENDIX A: DYADIC M⃡
Here we display the elements of the dyadic M⃡ that appears in
eq 37, in the vector basis {eX̂, e⊥̂

f , e ̂f}. In this basis M⃡ is written as
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and

Figure 14. Spectrum of the absolute value square of the reflection
amplitude for p-polarization, for silver particles immersed in water,
with radius a = 0.2 μm, filling fraction f = 0.05, and an angle of
incidence of 60°. The incident medium is glass (prism) with ϵP/ϵ0 =
2.9.
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= +k k kzf
2 i2 f 2

(87)

Here we display also the expression for the factor S = e ̂f·kf̂/e ̂f·k⊥̂f
that appears in eq 38, and write s = a/b, where

ωμ σ γ
σ

γ
σ

= −
⃗ ⃗

−

+
⃗ ⃗

+

θ

θ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

a n
k k

k k k
k k

k k k

k k
k k k

i
1

( )
( , )

2 ( )

( , )
2 ( )

z
Y

z z z

Y

z z z

0 0
0

2
f

2
i f T

f
i

i f

i f i

r
r f

i f i
(88)

ωμ σ γ
σ

γ
σ

= − − −
⃗ ⃗

−

+
⃗ ⃗

+

θ

θ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

b n
k k

k k
k k

k k k

k k
k k k

1 i
1

( )
( , )

2 ( )

( , )
2 ( )

z
Z

z z z

Z

z z z

0 0
0

2
f

2
f 2 L

f
i

i f

i f i

r
r f

i f i
(89)

■ APPENDIX B: COMPONENTS σαβ
S

Here we write down the expressions for the components of the
non-local conductivity tensor of the isolated sphere: σXX

s (k,⃗k′⃗),
σθY
s (k,⃗k′⃗), and σθz

s (k,⃗k′⃗), for the case k ⃗ = (k∥⃗, kz⃗) and k′⃗ = (k∥⃗,
kz⃗′). We denote (k,⃗ k′⃗) as (k∥⃗; kz, kz′), k = |k|⃗ and k′ = |k′⃗|. Thus,
we write
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where

= −k k kz
2 2

and

′ = ′ −k k kz
2 2

(93)

ωμ σ= +k k is
2

0
2

0 loc
s

(94)

and

ω=k
c0

2
2

2 (95)

θ = ·̂ ′̂ ≡
⃗· ′⃗

′
k k

k k
kk

cos
(96)

and

′ =
′

′
J n k a k a

j ak

ak

j ak

ak
( , , )

( ) ( )n n
1 s

s

s (97)

′ =
′ − ′

′
′

J n k a k a
i

k a k a k a
a k a k a
d k a k a

( , , )
(( ) ( ) )

( , )
( , )

n

n
2 s

s
2 2

s

s (98)

=
−

−− −

I x x

x x
x j x j x x j x j x

( , ,2)
1

( ( ) ( ) ( ) ( ))

n n

n n n n

, 1 2

1
2

2
2 2 1 1 2 1 1 1 2

(99)

=a ka k a k a
k
k

j k a

h k a
d ka( , , )

( )

( )
( )n

n

n
n

L
0 s

s

0

s

0

L

(100)

=
−

* − *

ϵ
ϵ( )

a ka k a k a
h k a

J k a h k a j k a H k a
( , , )

1 ( )

( ) ( ) ( ) ( )
n

j ka

ka n

n n
k
k n n

L
0 s

( )
0

s 0 s 0

n0

s

s

0

(101)

α α
=

− * − − *
* − *

a ka k a k a

J ka k j k a kj ka J k a

H k a k j k a k h k a J k a

( , , )

(1 ) ( ) ( ) (1 ) ( ) ( )

( ) ( ) ( ) ( )

n

n n n n

n n n n

0 s

s s s

0 s s 0 0 s

(102)

α α
=

− * − − *
* − *

b ka k a k a

j ka k J k a kJ ka j k a

h k a k J k a k H k a j k a

( , , )

(1 ) ( ) ( ) (1 ) ( ) ( )

( ) ( ) ( ) ( )

n

n n n n

n n n n

0 s

s s s

0 s s 0 0 s

(103)

α α
=

− * − * −
* − *

c ka k a k a

h k a kJ ka k H k a j ka

h k a k J k a k H k a j k a

( , , )

( )(1 ) ( ) ( )(1 ) ( )

( ) ( ) ( ) ( )

n

n n n n

n n n n

0 s

0 0 0

0 s s 0 0 s

(104)

α α
=

* − − − *
* − *

d ka k a k a

H k a kj ka k h k a J ka

H k a k j k a k h k a J k a

( , , )

( )(1 ) ( ) ( )(1 ) ( )

( ) ( ) ( ) ( )

n

n n n n

n n s n n

0 s

0 0 0

0 s 0 0 s

(105)

ρ
ρ ρ

ρ ρ* =J j( )
1 d

d
( ( ))n n (106)

ρ
ρ ρ

ρ ρ* =H h( )
1 d

d
( ( ))n n

(107)

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp5025558 | J. Phys. Chem. B 2014, 118, 6015−60316030



α =
−
−

k k
k ks

2
0

2

2 2
(108)

Here jn and hn are the spherical Bessel and spherical Hankel
functions as defined by ref 30 and ϵs = ϵ0 + iσloc

s /ω.
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