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ABSTRACT: We compare light reflectivity measurements as
a function of the angle of incidence for an interface between an
optical glass and a turbid suspension of small particles, with
theoretical predictions for the coherent reflectance calculated
with different available theoretical models. The comparisons
are made only in a small range of angles of incidence around
the critical angle of the interface between the glass and the
matrix of the colloidal suspensions. The experimental setup
and its calibration procedure are discussed. We considered two
Fresnel-based approximations and another two based on a
multiple-scattering approach, and we present results for
monodisperse latex colloidal suspensions of polymeric
spherical particles in water with particle diameters of 120
and 520 nm, polydisperse titanium dioxide (rutile) particles suspensions in water with a most probable diameter of 404 nm, and
suspensions of copper particles in water with diameters of 500 nm. The comparisons between experiment and theory are made
without fitting any parameters.

1. INTRODUCTION

The optical properties of colloidal systems have attracted the
attention of many researchers1,2 due to its use as a tool to
investigate, with light, the geometric structure and the
electromagnetic properties of a wide variety of colloids3−5

and also because its full understanding leads to the fundamental
and still open problem of the interaction of light with a many-
body system. Here, the term colloid is used to refer to any two-
phase system consisting of a disperse phase embedded within a
homogeneous one. The disperse phase will be called colloidal
particles, or simply particles or inclusions, while the
homogeneous one will be called the matrix. There have been
different approaches to formulate the interaction of light with a
colloidal system; one has been the straightforward use of
multiple-scattering theory,6 and another one, very fruitful
indeed, has been to regard the colloid as a homogeneous
effective medium while devising a theory to correlate its
effective properties with the set of parameters describing the
actual inhomogeneous system.7 These effective-medium
theories have proved to be extremely useful when the size of
the particles is very small in comparison with the wavelength of
the incident light, giving rise to an active field of research.7−9

The reason for their usefulness is quite immediate because after
having determined the properties of the effective medium, one
can deal with the colloidal system as a common homogeneous
system in the context of continuous electrodynamics. For
example, if one finds an expression for the effective index of

refraction, one can use it directly in Snell’s law to describe the
refractive properties of the actual system.
When the size of the colloidal particles becomes as large or

larger than the wavelength of the incident radiation, a new
phenomenon takes place; the colloid becomes turbid. This
happens because the electromagnetic field scattered by all of
the particles and traveling in all different directions is no longer
negligible and gives rise to what is known as the diffuse field,
and this diffuse field is the physical source of turbidity. If one
splits the total electromagnetic field within the colloid in two
components, an average component plus a fluctuating
component, the latter corresponds to the diffuse field while
the former is called the coherent beam or average field. The
coherent beam travels in well-defined directions because along
these directions, there is always constructive interference of the
scattered field, independent of the location of the colloidal
particles; in a system with a plane boundary, these directions
correspond to the refracted and specularly reflected fields.
Thus, by ignoring the presence of the diffuse field, one is able to
define an effective medium, related only to the behavior of the
coherent beam. Nevertheless, due to scattering, the coherent
beam will eventually loose its identity by transferring all of its
power to the diffuse field; therefore, the presence of the diffuse
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field can be taken into account within the framework of an
effective-medium theory as an additional “dissipative” process.
There have been attempts to extend the effective-medium

theories, so successful in the case of small particles, to larger
particles, but these attempts have encountered conceptual
problems that have delayed the construction of a rigorous
formulation, especially for the case of suspensions with a well-
defined flat boundary. First of all, it has been shown10 that in a
boundless system, the effective optical parameters, that is, the
effective electrical permittivity ϵeff and the effective magnetic
permeability μeff, have a spatial nonlocal character, or,
equivalently, they are spatially dispersive, that is, they depend
not only on the frequency ω but also on the wavevector k of
the incident radiation. As a consequence, the dispersion relation
k(ω) for transverse electromagnetic modes for an on-the-
average isotropic and homogeneous boundless suspension is

given by the solution of ω ω μ ω= ϵk k k( , ) ( , )eff eff . Then,

one can define a frequency-dependent index of refraction
neff(ω) as neff(ω) = [ck(ω)]/ω, where c is the speed of light. It
was also shown10 that neff(ω) obtained this way can be used
freely and rigorously in Snell’s law, giving rise to several
applications using only refraction measurements.11,12 Never-
theless, when neff(ω) was used to calculate reflection amplitudes
from a turbid suspension, using Fresnel’s formulas, incon-
sistencies were found.13,14 This is so because in this case, the
approximate validity of Fresnel’s formulas and effective optical
parameters deteriorate as the size and scattering efficiency of
the colloidal particles increases, and they eventually breakdown.
In such cases, a different approach going beyond effective-
medium theory has to be devised. This has been recently done
in refs 15−17. We will refer to formulas for the coherent
reflectance of light derived explicitly from the multiple-
scattering formalism15,16 as the coherent scattering model
(CSM), whereas the corresponding expressions derived in refs
18 and 19 are called extended Fresnel’s formulas. At a flat
interface with a colloidal suspension of particles, the
contribution to the specularly reflected coherent field coming
from the colloidal particles can be regarded as the field
produced by the constructive interference of the field scattered
by all of the particles at a scattering angle given, in the dilute
limit, by the angle between the refracted and the reflected beam
directions. Because this angle depends on the angle of incidence
and the scattering amplitudes of the particles have an angular
dependence related to their refractive index (RI), size, and
shape, one expects that the dependence of the reflected
coherent-field intensity on the angle of incidence will provide
information about the optical characteristics of the colloidal
particles.
It is not difficult to see that among the different possibilities

to measure the reflectance of light from a half-space, the highest
sensitivity to the presence of colloidal particles is achieved in an
internal reflection configuration, before and around the critical
angle as defined by the refractive indices of the incidence
medium and the matrix. In fact, some years ago, our research
group compared predictions of the CSM and the Fresnel
reflection coefficients with an effective RI (then referred to as
the isotropic effective medium theory) with experimental
reflectance data around the critical angle for a few colloids.16

The comparison consisted of fitting the theoretical predictions
to the experimental data, by adjusting a few parameters used in
the theoretical models, to see whether the theories tested were
consistent with the experimental results. It was found that the

CSM could be adjusted to all of the experimental curves,
whereas the Fresnel approximation could not.
The objective of this work is to design a handy experimental

setup and to perform reflectance measurements around the
critical angle for a few well-characterized colloids with most of
the parameters known to a good precision and then compare
the recently derived extended Fresnel formulas in ref 19 with
experimental data. Here, we also compare the CSM with the
experiment and the Fresnel formulas, including in the
comparison a simple variation of the Fresnel approximation
that takes into account a surface correction due to the finite size
of the particles. With these comparisons, we intend to test the
validity limits of Fresnel’s approximation, of the formulas
corresponding to the CSM in ref 15, and of the extended
Fresnel’s formulas in ref 19. We must emphasize that this work
tests the mentioned theories only in an internal reflection
configuration and in a limited range of angles of incidence
around the critical angle as defined by the matrix. Other ranges
of angles of incidence and experiments in an external reflection
configuration are left out for future work. We remind the reader
that in an external reflection configuration, the RI of the
incidence medium is lower than that of the transmission
medium, and there is neither a critical angle nor total internal
reflection, as can be the case in an internal reflection
configuration.
In section 2, we give a brief account of the theoretical

formalism, and we discuss also the problems that arise when
one tries to extend the concept of an effective nonlocal optical
response in the presence of an interface. In section 3, we
present the experimental setup describing all of the optical
components. In section 4, we explain way we calibrate the
system and validate the reflectivity measurements, which we
then compare with theoretical predictions in section 5. Finally,
in section 6, we present our conclusions.

2. THEORETICAL FORMALISM
In this section, we review briefly the main physical ideas used in
the derivation of the formulas for the reflection amplitudes of
turbid colloids, whose limits of validity are being tested in this
work. We do this so the reader can have an overall picture of
the complications that arise in dealing with this problem as well
as the precise nature of the approximations being tested. We
start by describing the model used in the derivations of the
reflection amplitude formulas. Then, we recall the formula for
the bulk effective RI of a dilute colloidal suspension and the
commonly used Fresnel’s approximation to the coherent
reflectance, based on this effective RI. Then, we summarize
the formulas for the coherent reflectance within the CSM
reported in ref 15 and then the ones for the so-called heuristic
approximation (HA) of the extended Fresnel’s formulas derived
in ref 19. We first present these approximations considering
that the incidence medium is the same as the matrix of the half-
space of randomly placed particles, as depicted in Figure 1.
Then, we show how to construct the corresponding
approximations in case the incidence medium has a different
RI than the matrix of the colloid by using a well-known
reflection amplitude composition formula. Finally, we show
how to extend the considered approximations to polydisperse
colloidal systems.

2.1. Monodisperse Model. We regard the bulk colloidal
system as a large collection of N ≫ 1 randomly located
identical spheres of radius a and electric permittivity ϵs(ω), all
immersed within a boundless homogeneous matrix with electric
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permittivity ϵm(ω). Here, ω is the (angular) frequency of an
electromagnetic plane wave that excites the colloidal system.
The system will be called homogeneous “on the average” if the
probability of finding the center of a sphere is the same at any
point in space. Now, in order to build an interface in this
system, there are many different ways to do it. Here, we choose
a plane, say the z = 0 plane in a Cartesian coordinate system,
such that the probability of finding the center of a sphere within
dV for z > a is constant and equal to dV/V and is zero for z < a,
where dV is the differential of volume and V is the total volume
of the system. The reason for this choice will be discussed later.
On one hand, the plane z = 0 is called the nominal surface
because although there is zero probability of finding the center
of a sphere for 0 < z < a, the edge of a sphere could actually
reach the plane z = 0. On the other hand, the plane z = a will be
called the probability interface. Note that in this model of the
interface, the index of refraction of the incidence medium (z <
0) is the same as the one of the colloidal matrix.
Now, to define the reflection amplitudes at the nominal

surface, one excites the system with an incident plane wave with
wavevector k ⃗ and frequency ω coming from z < 0, and the
reflection amplitudes r are defined as the quotient of the
amplitudes of the electric field of the reflected wave over the
amplitude of the incident one. They are denoted either rs or rp
depending on whether the polarization of the incident plane
wave is either perpendicular or parallel to the plane of
incidence. Finally, we recall that turbidity appears when the size
of the inclusions is on the order of the wavelength of the
incident radiation because then scattering is prominent.
2.2. Effective Refractive Index and Fresnel’s Approx-

imation. Using the model described above, the bulk effective
RI felt by the coherent wave as it travels through a boundless
colloidal medium has been derived by several authors over the
years (see, for instance, refs 15 and 20−22). One has, for
example, the rather simple expression given by Foldy−Lax20−22

γ= +n S1 2i (0)eff (1)

Here, γ = 3f/2x3, where x = konma, is called the size parameter,
nm is the RI of the medium, ko = 2π/λ is the wavenumber, λ is
the wavelength of the incident radiation, a and f denote the
radius and volume-filling fraction of the spherical particles,
respectively, while S(0) is the forward-scattering amplitude of
an isolated sphere, as defined in ref 8. If f≪ 1 (dilute limit), the
above formula, usually called the Foldy−Lax formula, simplifies
and yields the so-called van de Hulst’s effective RI,7 given by

γ= +n S1 i (0)eff (2)

Now, we introduce the simplest approximation for the
calculation of the reflection amplitudes that does not require
any assumption whatsoever about the structure of the interface.
One only assumes that the half-space (z > 0) where the colloids
resides is occupied by an effective medium with an effective
bulk RI neff given by either eq 1 or 2. Then, if one assumes that
there is no magnetic response of the colloid, one can use neff
directly in the Fresnel’s reflection formulas, given for s and p
polarization by

=
−
+

r
k k
k k

z z

z z
s
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i eff
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where ϵi = (ni)
1/2 and ϵeff = (neff)

1/2 are the electric permittivity
of the incidence and transmitted media, respectively, and kz

i and
kz
eff are the z-components of the incident and transmitted
wavevector. kz

eff can be expressed as

θ= −k k n n n sin ( )z
eff

o i eff
2

i
2 2

i (5)

where θi is the angle of incidence at the first medium. We will
call this approximation the two-media Fresnel’s approximation
(2MF), and it is the most straightforward and commonly used
approximation. One might wonder why we call this an
approximation. The reason is because one is assuming without
any justification (i) that the colloidal system with nonmagnetic
inclusions has no magnetic response and (ii) that in the
presence of an interface, it is still valid to use the bulk effective
index of refraction in Fresnel’s formulas. We will see below that
both of these assumptions become invalid as the size of the
inclusions becomes on the order of the wavelength of incidence
radiation.

2.3. Coherent Scattering Model. In the CSM, it becomes
necessary to use the probabilistic model of the interface
described above. One starts by dividing the half-space occupied
by the colloid into equally spaced slabs of width d, each one
containing a given number of (centers of) spherical particles,15

as shown in Figure 2. The calculation procedure relies on first
obtaining the coherent reflection and transmission amplitudes
of a single layer. This is done by exciting the layer with an
incident plane wave and then calculating the scattered electric
field of all of the particles in the slab on a plane-wave basis.

Figure 1. Illustration of a half-space of randomly placed particles,
considering that the incidence medium is the same as the one where
the particles are immersed. Here ki⃗ and kr⃗ are the wavevectors of the
incidence and the reflected plane waves, respectively, and θi is the
angle of incidence.

Figure 2. Illustration of a half-space of a random distribution of
particles divided in equally spaced slabs. The incidence medium and
the matrix are the same medium.
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Because one is interested only in the coherent component of
the scattered field, one performs a configurational average of
the scattered electric field over a slab of width d. In the
averaging procedure, one further assumes that the centers of
the particles are uncorrelated and that the probability of finding
a particle with its center within d3r is uniform and equal to
d r V/3 , where V is the volume of the slab. As a consequence,
one gets explicit expressions for the reflection and transmission
amplitudes in terms of the forward-scattering amplitude S(0)
and the elements of the scattering matrix Sj(π − 2θi), where j =
1 corresponds to s polarization while j = 2 corresponds to p
polarization. Here, θi is the angle of incidence, π − 2θi is the
direction of the reflected wave, and S(0) = S1(0) = S2(0). Now,
the coherent reflection from a half-space can be obtained by
calculating the reflection amplitude of a semi-infinite pile of

thin slabs of width d. If the slabs are thin enough (kid ≪ 1),
each slab may be regarded as an equivalent 2D sheet. Then, the
half-space becomes an infinite stack of equally separated 2D
sheets extending to the right of its nominal surface, and this
multiple-scattering problem can be solved exactly.15 We can
now recall that the “probability interface” restricts the centers of
all of the particles to be on one side of it and places the first of
the semi-infinite pile of 2D sheets on this probability interface.
Thus, the nominal surface of the colloidal half-space turns out
to be located at one particle radius (a) away from the
probability interface, as indicated in Figure 2. In this way, we
ensure that all of the particles are completely embedded in one
half-space starting at the nominal surface.
This calculation yields the following expressions of the

reflection amplitudes

γ
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=
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Here, the value of j is 1 for s polarization (TE) and 2 for p
polarization (TM); the value of γ is the same as that in eq 1.

Note the phase factor e2iakz
i

in the numerator. This factor arises
from placing the first 2D sheet one radius away from the
nominal surface for which the reflection coefficient is calculated.
This factor was not included in the half-space reflection
coefficients derived in ref 15 and later used in ref 16 because in
those works, the nominal surface was taken to be the first 2D
sheet and the phase factor was introduced later when
considering an incident medium different from the matrix
medium.
2.4. Extended Fresnel’s Formulas: Heuristic Approx-

imations. In this section, we review briefly the theoretical
formalism used to calculate the reflection amplitudes from a
turbid colloid, using the model described in section 2.1. Here,
we do not divide the space occupied by the colloid into a
periodic collection of slabs; we rather perform the averaging
procedure in the whole half-space, and then discuss the
complications that arise when one tries to extend effective-
medium concepts to the reflection problem. We start by
accepting the conclusions reached in ref 10, in relation to the
nonlocal nature (spatial dispersion) of the bulk effective optical
parameters of the colloid. Let us recall that spatial dispersion
means that the optical response depends not only on the
frequency of the incident plane wave but also on its wavevector.
In ref 10, the effective optical response of the colloidal system is
derived in terms of an effective nonlocal conductivity tensor

σ ω̿ ⃗k( , )eff , which can be defined only within the effective-field
approximation. This approximation assumes that the electro-
magnetic field exciting any of the particles is equal to the
average field and is valid in general only in the dilute regime.

The tensor σ ω̿ ⃗k( , )eff relates linearly the (ensemble) average of
the total current ⟨Ji⃗nd⟩ induced in the spheres to the average of
the electric field ⟨E⃗⟩ within the system, that is

ω σ ω ω⟨ ⃗ ⟩ ⃗ = ⃗ ·⟨ ⃗⟩ ⃗J k k E k( , ) ( , ) ( , )ind eff (7)

Thus, it is some kind of generalized Ohm’s law, where ⟨Ji⃗nd⟩(k,⃗
ω) and ⟨E⃗⟩(k,⃗ ω) are the Fourier transforms of ⟨Ji⃗nd⟩(r,⃗ t) and
⟨E⃗⟩(r,⃗ t) and (k,⃗ ω) space. Here, ⟨...⟩ denotes an average, while

(r,⃗ t) denotes the position vector and time, respectively. In the
mixed (r;⃗ ω) space, eq 7 can be written as a convolution,

∫ω σ ω ω⟨ ⃗ ⟩ ⃗ = ̿ | ⃗ − ′⃗| ·⟨ ⃗⟩ ′⃗J r r r E r r( , ) ( ; ) ( ; ) dind eff
3

(8)

that displays explicitly the spatial nonlocal nature of the
response, as well as the on-the-average translational invariance
and isotropy of the system. In (k,⃗ ω) space, these properties
imply that σe̿ff can be written as,

σ ω σ ω σ ω̿ ⃗ = ̂ ̂ + ̿ − ̂ ̂k( , ) (k, )kk (k, )( 1 kk)eff eff
L

eff
T

(9)

that is, in terms of only two scalar components, σeff
L and σeff

T ,
called the longitudinal and transverse components of σe̿ff . In ref
10, how the two more traditional scalar optical responses ϵeff(k,⃗
ω) and μeff(k,⃗ ω) can be written in terms of σeff

L (k,⃗ ω) and σeff
T (k,⃗

ω) is also shown. This indicates that the colloidal system can
have a magnetic response even if the inclusions are intrinsically
nonmagnetic.
It is now quite immediate to see that the presence of an

interface destroys the translational invariance of the system;
thus, ϵeff(k,⃗ ω) and μeff(k,⃗ ω) cannot describe the optical
response of the colloidal system with an interface. One way out
is the use ϵeff(k,⃗ ω) and μeff(k,⃗ ω) together with the so-called
additional boundary conditions (ABCs).23 Unfortunately, this
method works only in case the system has specific symmetry
properties. In general, the presence of the interface modifies the
optical response itself, that is, σ ω̿ | ⃗ − ′⃗|r r( ; )eff → σ ω̿ ⃗ ′⃗r r( , ; )eff ,
being the modification stronger in a region close to the
interface and depending also on its specific geometrical
structure. Correspondingly, in (k ⃗, ω) space, one has

σ ω̿ ⃗k( , )eff → σ ω̿ ⃗ ′⃗k k( , ; )eff , and one chooses an interface as
the one described in section 2.1.
At this point, one finds no advantage in calculating

σ ω̿ ⃗ ′⃗k k( , ; )eff because there are no expressions in continuum
electrodynamics26 that link the reflection amplitudes to a

quantity like σ ω̿ ⃗ ′⃗k k( , ; )eff . Therefore, one has to go back to
Maxwell’s equations and tackle the problem right from the start
without looking for an effective medium. This has been already
done18,19 by expressing the induced current in the system as the
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sum of the currents induced at each sphere by an exciting field;
the exciting field at each sphere is the field scattered by all other
spheres but the one under consideration. The induced current
at each sphere is expressed in terms of the nonlocal
conductivity tensor of an isolated sphere, denoted by

σ ω̿ ⃗ ′⃗r r( , ; )s in (r;⃗ ω) space or σ ω̿ ⃗ ′⃗k k( , ; )s in (k;⃗ ω) space,
and the solution of Maxwell’s equations leads to an integral
equation that is solved using the effective-field approximation.
In this approximation, one assumes that the exciting field at
each sphere is given by the average field at that sphere; thus, it
is valid only in the dilute regime. A plane-wave solution of the
integral equation is found, and expressions for the reflection
amplitudes for s- and p-polarization are also found, in terms of
the components of σs̿(k

i⃗, kr⃗; ω) and σs̿(k
i⃗, kt⃗; ω). Here, ki⃗, kr⃗, and

kt⃗ denote the wavevector of the incident, reflected, and
transmitted plane wave, respectively. It was also pointed out19

that σ ω̿ ⃗ ′⃗k k( , ; )s is actually proportional to the T matrix of an
isolated sphere, that is, the one used in scattering theory to
describe the scattering properties of a sphere;24 thus, this
approach is indeed a multiple-scattering approach. Because the

calculation of σ ω̿ ⃗ ′⃗k k( , ; )s is quite cumbersome, different
approximations have been proposed19 in terms of the scattering
matrix of the isolated sphere.
Here, we will consider only the so-called HA,19 where the

reflection amplitudes are readily given by
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where, as mentioned above, S1 and S2 are the diagonal elements
of the scattering matrix, as defined in ref 8. Also note that in the
numerators, the angle in the arguments of S1 and S2 is the angle
between the direction of refraction and the direction of
reflection, that is, the direction where the interference of the
scattered field is always constructive. The phases in rs and rp
come from the fact that the configurational average over the
uncorrelated positions of the centers of the spheres covers a
region of space that leaves out a slab of width a on the right-
hand side of the nominal surface of the half-space. Here, kz

t(ω)
is obtained from the dispersion relation of the transverse modes
given in terms of σs̿(k

t⃗, kt⃗; ω); nevertheless, it was also shown19

that a rather good approximation for kz
t(ω) is given by kz

eff(ω)
as obtained from the Foldy−Lax dispersion relation,20−22 that is

θ= +k n
f

k n a
Scos

3i
( )

(0)z
t

m
2 2

t
o m

3
(12)

and this is the value that will be used in our calculations. Here,
nm is the RI of the matrix of the colloid, and θt is the angle of
refraction, and we recall that in deriving eqs 10 and 11, it is
assumed that the incidence medium is the same as the matrix.
Finally, the name heuristic comes because in performing an
approximation for the components of σs̿(k

t⃗, kt⃗; ω) and σs̿(k
i⃗, kt⃗;

ω), involved in the derived amplitude reflection coefficients,19

in terms of the elements of the scattering matrix, the angles in
the arguments did yield the correct small-particle limit only in
the dilute regime, and they were modified “heuristically” in
order to obtain the correct limit for denser systems.

2.5. Composition Formula for the Reflection Ampli-
tudes. As will be seen below, our experimental arrangement
measures the reflectivity from an interface between a glass
prism and the colloidal suspension, explaining why we choose
to model the interface as described in section 2.1, the glass
being the nominal surface, but this requires also formulas for
the reflection amplitudes for this interface. As mentioned
earlier, the formulas for the CSM and the HA written above
consider that the incidence medium and the matrix of the
colloidal suspension are the same. Therefore, one still needs to
find the corresponding formulas for the glass−colloid interface.
For doing this, we use the well-known composition formula
that relates the reflection amplitude at the interface between
media 1 and 3 with the reflection amplitudes at the interfaces
between media 1 and 2 and media 2 and 3, and it is given by25

=
+

+
r

r r
r r113

12 23

12 23 (13)

In our case, medium 1 is glass, medium 2 is water, and
medium 3 is the suspension of colloidal particles immersed in
water (see Figure 3). Therefore, the formulas above for the

CSM and HA corresponds to r23, while r12 is the reflection
amplitude between glass and water, given by the standard
Fresnel’s formulas devised only in terms of the index of
refraction of water and glass. If we now take as r23 eq 6 for CSM
or eqs 10 and 11 for the HA and separate the phase explicitly
by writing them as r23 = r2̃3e

2iak2z and then combine them with
eq 12, one gets
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where k2z is the z component of the wavevector in water. One
can readily see that this formula is the well-known formula for

Figure 3. Sketches of the different cases being considered. (a) The
incidence medium is different than the matrix. In this system, we have
a glass−water interface. (b) The incidence medium is the same as the
matrix medium, and the half-space of particles is thought of as an
effective medium with an effective RI. (c) Half-space of randomly
placed particles considering the that incidence medium is different
than the matrix medium. The nominal surface and probability
interfaces are indicated.
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the reflection amplitude for a three-layered system.15 In other
words, one can think that the reflection amplitude in our
system, the glass-colloidal suspension, can be regarded as the
reflection in a system composed of glass (medium 1), a small
layer of water (medium 2), and the colloidal water suspension
(medium 3). It is evident that the reflectivity will be dominated
by the reflection at the glass−water interface, and this will show
a critical angle whenever the index of refraction of the glass is
larger than that of water. In this case, the reflectivity as a
function of the angle of incidence shows a very sizable change
before the critical angle, going to 1 at the critical angle. Now, if
the water medium becomes a thin layer between the glass and
the water suspension, the reflectivity, as a function of the angle
of incidence, will lie between the one corresponding to the
glass−water interface (layer of infinite length) and the one with
a layer of size 0. This latter one corresponds to the simple 2MF
approximation described in section 2.2. In our formalism, the
size of the layer is equal to a, the radius of the spheres.

̃ = −r r e ak
23 23

2i z2 (15)

2.6. Approximations. In sections 2.2−2.5, we explained
three approximations that we can readily compare with
experiments involving a monodisperse colloidal suspension.
However, eq 15 allows us to construct one more approximation
that is of interest here, namely, the 3-media Fresnel (3MF)
approximation. Such an approximation follows naturally after

noticing that the phase factor e2iakz
m

appearing in the reflection
amplitudes corresponding to CSM (eq 6) and HA (eqs 10 and
11) comes from placing the nominal surface (for which the
reflection coefficients are calculated) one radius away from the
probability interface. This ensures that all particles are
completely embedded in the matrix medium and do not
penetrate the incidence medium. Similarly, we can improve the
commonly used 2MF approximation by incorporating the

phase factor e2iakz
m

to Fresnel’s approximation given in eqs 3 and
4 above. In this way, the 3MF approximation takes into account
the finite size of the particles, ensuring that they do not
penetrate the incidence medium. Now, we can apply eq 13 to
construct the reflection coefficient for the case when the
incidence medium is different from the matrix. We get

=
+

+
r
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r r

e
1 e
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2i
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2i

z

z

2
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where r2MF is given either by eq 3 or 4, depending on the
polarization of light, and of course, it yields r3MF for that same
polarization.
Summarizing, we will compare four approximations with the

experimental data obtained in this work: (i) the 2MF
approximation, (ii) the CSM, (iii) the HA, and (iv) the 3MF
approximation. However, many colloids of practical interest are
not monodisperse, and a particle size distribution must be taken
into consideration. In the next section, we explain how to
extend these four models to calculate the coherent reflectance
from a polydisperse colloid.
2.7. Polydisperse Models. Many colloids of interest are

polydisperse, meaning that particles have different radii a.
Commonly, one can define a size distribution function n(a)
that is related to the probability density of finding a particle
with radius between a and a + da. To be more specific, here let
us assume that the particle size distribution is a log-normal

distribution, commonly present in many samples of practical
interest and given by

π σ
= σ−n a

a
( )

1
2 ln( )

e a alog( / ) /2log( )o
2 2

(17)

where ao is the most probable particle radius and σ is the width
of the log-normal distribution. To take into account particle
size polydispersity in the formulas given above, it is better to
write them first in terms of the number density of particles, ρ,
and not in terms of the volume fraction f.
For instance, considering the CSM in the case of a

monodisperse system of particles of radius a with a particle
number density of ρ, we can write eq 6 as
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where
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If we now consider a polydisperse system of particles, we must
average the scattering coefficients β and α over the number
density probability density function, ρ(a). We have
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∫α π
θ

ρ= −
∞

k
a S a

2
cos( )

( ) (0) da
m
2

m 0 (23)

Notice that km = konm and ρ(a) using eq 17 is
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In the HA and both Fresnel approximations (2MF and
3MF), we should use the effective RI for a polydisperse colloid,
given by

∫π ρ̃ = +
∞⎡
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Additionally, the reflection amplitudes in the HA (eqs 10 and
11), where the ratio Sj[π − (θi + θt)]/Sj[θi − θt] appears,
should be replaced by
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where
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where j takes values 1 or 2 for s or p polarization, respectively.
However, there is an additional complication to construct the

half-space reflection coefficient for polydisperse colloids.
Because particles cannot penetrate the incidence medium, it
is no longer possible to define a probability interface in the way
that we did for a monodisperse system of particles because the
centers of smaller particles can approach closer the nominal
surface than the centers of larger particles. It is possible to
subdivide a region of finite width near the nominal surface into
thin slabs with the corresponding particle size distribution for
each slab and then solve for the reflectance of the system using
an iterative procedure. This was explored in ref 27 using the
CSM. It was found that for log-normal size distributions with a
width parameter σ smaller than 2, in the case of latex particles
in water, one can use a simple approximation referred to as the
“sharp-surface approximation”, with negligible error. For TiO2
particles in water, the differences between the sharp-surface
approximation and the iterative procedure were clearly
noticeable only for σ = 1.6. The sharp-surface approximation
consists of replacing the particle radius, appearing in the phase

factor e2iakz
m

in the formulas for the monodisperse case, with the
most probable radius. That is, for a polydisperse colloid, we
substitute

→k a k aexp(2i ) exp(2i )z z
m m

o (31)

in the half-space reflection coefficients given in eqs 6, 10, and
11 and then use the resulting reflection coefficient in eq 15.
The same replacement is done in eq 16 for the 3MF
approximation with a polydisperse colloid.

3. EXPERIMENTAL SETUP
As already mentioned, the highest sensitivity to the presence of
the colloidal particles in reflectance measurements from a
colloidal half-space is for angles of incidence around the critical
angle in an internal reflection configuration. Our objective here
is to estimate the validity limits of the available theoretical
models presented in section 2 around the critical angle for
common colloidal suspensions. Thus, we devised a fast and
versatile experimental setup to measure the reflectivity as a
function of incidence angle in a small-angle range around the
critical angle.
Our experimental device is illustrated in Figure 4 and is based

in the experimental setup developed in ref 28. It consists of a
semicircular prism made of BK7 glass of 3 cm of radius, a
concave-plane prism also of BK7 glass, a dynamic diffuser, a
polarizer, two convex lenses, and a CCD camera (Thorlabs
DCC1545M model). The two lenses have focal lengths of 6
(lens 1) and 3.5 cm (lens 2). We use two diodes lasers with 405
and 638 nm wavelengths. The container is made of two pieces;
one is a short iron cylinder glued to the base of the prism with
its external surface threaded, and the second one is a Teflon lid
that screws around the iron piece, forming a sealed container
that can hold liquids in contact with the base of the optical

prism. The laser beam is scattered by the diffuser, and the first
lens (lens 1 in the Figure 4) collects and focuses the scattered
light at the base of the prism and in the center of the interface
with the container. The optical axis of the focused light makes
an angle of incidence at the base of the prism equal to the
critical angle of a BK7 glass−water interface. The optical axis of
the reflected light exits the semicircular prism and passes
through the centers of the concave-plane prism and lens 2. The
concave-plane prism is used to reduce the defocusing of the
reflected beam due to the curved surface of the semicircular
prism, and the convex lens 2 is used to map the angular
distribution of coherent reflected light to a spatial distribution
at the focal plane of lens 2. The CCD camera is placed at the
focal distance from lens 2 to register the spatial distribution on
the intensity of reflected light.
The polarizer is rotated to choose the polarization of the

incident light (s or p). The diffuser used to scatter light
previous to being focused is rotated at constant speed to
average out the speckle on the CCD image. Also, the image at
the CCD is integrated in the direction perpendicular to the
plane of incidence (the plane of the drawing in Figure 4) to
reduce further speckle noise. The resulting one-dimensional
intensity map gives the angular intensity profile of light exiting
the prism simply by translating a linear step toward the center
of the CCD along the plane of incidence to steps in the angle of
travel of light inside of the semicircular prism. This is done
using simple geometrical optics.28 The angular range captured
by the CCD corresponds to a 6° angle of travel inside of the
semicircular prism.
When the sample chamber is filled with a turbid sample, in

addition to light reflected from the prism−sample interface,
some diffuse light scattered with the turbid sample will reach
the detection plane of the CCD. However, the amount of
diffuse light reaching the CCD is negligible compared to the
coherently reflected light at the interface and is simply ignored.

4. EXPERIMENTAL PROCEDURE
The angular intensity profile measured at the focal plane of lens
2 for a given liquid sample is converted to a reflectivity curve
dividing the sample intensity profile by the one obtained with
the container empty (actually, filled with air). The latter profile
corresponds when there is total internal reflection at the base of
the prism for all angles of incidence captured by the CCD and
thus to a unit reflectance at all angles of incidence. For instance,
the reflectivity curve for water is obtained as

Figure 4. Experimental setup to measure the coherent reflectance of
light as a function of the angle of incidence in an internal reflection
configuration around the critical angle of the glass−water interfaces.
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= −

−
R

I

Iwater
glass water

glass air (32)

where Iglass−air and Iglass−water are the intensity profiles measured
with the container filled with water and air, respectively.
In addition to the angular step size in the reflectivity profiles

obtained with the CCD, which as already said is obtained from
geometrical considerations, to calibrate the angular scale of the
reflectivity curves, we need to identify the exact value of one
angle of incidence in the angular scale of the intensity profiles.
To do this, we obtain the reflectivity curve for tridistilled water,
identify the critical angle from the intensity profile, and assign
to it the value calculated from Snell’s law and tabulated values
of the refractive indices of tridistilled water and BK7 glass at the
corresponding wavelength.29,30 We identify the critical angle as
the inflection point of the reflectivity curve.
In Figure 5, we plot the reflectivity profile obtained by our

system for tridistilled water and the theoretical curve of the

plane-wave reflectance at a BK7 glass−tridistilled water
interface. The calibrated angular scale is already shown.
We can appreciate that there is a smoothing of the

experimental profile just around the critical angle in comparison
with the theoretical curve. The reason is that the experimental

curve is not for a plane wave. It is not difficult to see that each
point in the experimental curve actually corresponds to an
average of the plane-wave reflectance over a small angular range
due to the finite lateral extent of the CCD pixels.
We prepared turbid colloidal suspensions of nanoparticles of

poly(methyl methacrylate) (PMMA) particles of diameters 120
and 520 nm, TiO2 (rutile) with a 404 nm most probable
diameter, and copper particles of 500 nm average diameter in
tridistilled water. The latex and copper particles were spherical
according to the manufacturers, whereas the TiO2 particles
were irregular shapes but spheroidal on average, as seen by
transmission electron micrographs. The polydispersity index of
the PMMA particles around 1.02 (measured by dynamic light
scattering) and can be considered monodisperse. The TiO2
particles are polydisperse with a log-normal size distribution
with an estimated width parameter of about 1.3.31 The copper
nanoparticles are polydisperse, but the manufacturer did not
provide information about their size distribution. Thus, we
consider them here as monodisperse with the average diameter
reported by the manufacturer.
For the numerical calculations, we need the RI of each type

of particle. The RI of the particles was obtained from
tables.32−34 For PMMA particles, the RI that we used was
1.51 for the 405 nm wavelength and 1.49 for the 638 nm
wavelength. The RI of TiO2 (rutile) particles that we used was
3.37 + 0.097i for the 405 nm wavelength and 2.58 for 638 nm,
and for particles of copper, the RI for the 638 nm wavelength
that we used was 0.29 + 3.49i. We prepared colloidal
suspensions of PMMA particles of 120 nm diameter with the
following filling fractions: 3.0, 15.4, 18.5, and 24.1%. For latex
suspensions of 520 nm in diameter, we used the following
filling fractions: 1.7, 1.9, 4.0, and 6.0%. The suspensions of
TiO2 had volume concentrations of 0.1, 0.2, 0.8, and 1.1%, and
the colloidal suspensions of copper were prepared at only two
volume concentrations, 0.1 and 0.2%.
The stability of the colloidal suspensions is an important

prerequisite for our study; therefore, we monitored the
reflectivity over time of all of the prepared suspensions, prior
to measuring the nominal curve for its comparison with
theory.35 Before measuring any sample, this was sonicated for

Figure 5. Experimental reflectance as a function of the angle of
incidence around the critical and the theoretical plane-wave reflectance
of the BK7 glass−water interface, using a wavelength of 405 nm.

Figure 6. Experimental reflectance as a function of the angle of incidence around the critical angle at different times. (a) Reflectance of a colloidal
suspension of 120 nm diameter PMMA particles at a wavelength of 405 nm. (b) Reflectance of a colloidal suspension of 520 nm diameter PMMA
particles at a wavelength of 405 nm. (c) Reflectance of a colloidal suspension of 404 nm diameter TiO2 particles at a wavelength of 638 nm. (d)
Reflectance of a colloidal suspension of 500 nm diameter copper particles at a wavelength of 638 nm.
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about 5 min in an ultrasonic bath (Branson 200) in order to
break any aggregates that might have formed and then
introduced in the container. In Figure 6, we present reflectance
curves around the critical angle taken at different times during a
period of 15 or 20 min. We can appreciate in the plots of Figure
6 that these remain constant during the lapse of time in which
they were observed. This indicated that the particles were well-
dispersed and stable in suspension, at least for that lapse of
time. Only in Figure 6c can we appreciate a slight difference
between the initial measurements and those after 15 min.
However, the difference is less than 0.1%. On the other hand,
obtaining a reflectivity curve for any sample after it had been
sonicated took less than 2 min.
We measured the reflectance curves around the critical angle

for s and p polarization for all of the suspensions prepared at

the two available wavelengths, 638 and 405 nm, and compared
with theoretical predictions.

5. THEORY−EXPERIMENT COMPARISON AROUND
THE CRITICAL ANGLE

In this section, we compare the theoretical predictions by the
models presented in section 2 with experimental reflectivity
curves around the critical angle obtained for the different turbid
colloidal suspensions that we prepared and described in section
4. In Figures 7−9, we present the results for the 120 and 520
nm diameter PMMA (latex) samples and for different
concentrations prepared and either s- or p-polarized light
(indicated in the subscript on the label for the ordinate axis).
In Figure 7a, there are no appreciable differences between

any of the theoretical predictions and the experiment. Even the
2MF approximation reproduces very well the experimental

Figure 7. Experimental reflectance as a function of the angle of incidence around the critical angle and theoretical predictions for colloidal
suspensions of 120 nm diameter PMMA particles, using 405 nm laser light wavelength and different volume filling fractions: (a) 3.0, (b) 15.4, (c)
18.5, and (d) 24.1%. The green dashed curve is the reflectance curve for pure water. The polarization of light is indicated by the subscript on the
ordinate axis label (s polarization).

Figure 8. Experimental reflectance as a function of the angle of incidence around the critical angle and theoretical predictions for colloidal
suspensions of 520 nm diameter PMMA particles, using laser light of 638 nm wavelength and different volume filling fractions: (a) 1.7, (b) 1.9, (c)
4.0, and (d) 6.0%. The green dashed curve is the reflectance curve for pure water. The polarization of light is indicated by the subscript on the
ordinate axis label (s polarization).
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data. In Figure 7b−d, the HA and 3MF approximation follow
closely the experimental curve, whereas the CSM deviates
slightly, and the 2MF deviates noticeably. Thus, we conclude
that for small particles (less than 120 nm of diameter) and
small concentrations (less than about f = 3%), any of the four
models can be used around the critical angle with very good
precision. For small particles and higher concentration, the HA
and 3MF remain very good approximations up to 24% of the
particles’ volume concentration.
In Figure 8, we can see that the HA, 3MF, and the CSM

reproduce well the experimental data, whereas the predictions
by the 2MF approximation differ noticeably in all cases (more
for the higher concentration). For 6.0% of the particles’ volume
fraction, the difference between the experiment and the 2MF is
about 20% and higher for all angles of incidence shown. The

same results were obtained for p polarization, as shown in
Figure 9.
In Figure 10, we present the results for polydisperse

suspensions of titanium dioxide particles. We show results for
s-polarized light of 405 nm vacuum wavelength only. The
theoretical predictions were calculated assuming a log-normal
size distribution with a most probable diameter of 404 nm and
a width parameter of σ = 1.3.31 In these cases, we can
appreciate that the HA and 3MF nearly coincide with each
other and deviate somewhat from the experimental curves (5%
or less). The difference is more noticeable for angles of
incidence close to and larger than the critical angle for water,
whereas the CSM reproduces the experimental data better for
all of the particles’ volume fractions considered. The 2MF
approximation differs significantly from the experimental
curves. The difference is larger for higher particle concen-

Figure 9. Experimental reflectance as a function of the angle of incidence around the critical angle. Comparing the theoretical models with the
experiments. Colloidal suspensions of 520 nm diameter latex (PMMA), using a light source of 638 nm wavelength at different filling fractions: (a)
1.7, (b) 4.0, and (c) 6.0%. The green dashed curve is the reference of the prism−water interface.

Figure 10. Experimental reflectance as a function of the angle of incidence around the critical angle for s-polarized laser light of 638 nm vacuum
wavelength (a,d) and laser light of 405 nm vacuum wavelength (b,c) and theoretical predictions for suspensions of titanium dioxide (rutile) particles.
The most probable particle diameter is 404 nm, and the width parameter was assumed to be 1.3. The particles’ volume filling fractions are (a) 0.1,
(b) 0.2, (c) 0.8, and (d) 1.1%. The green dashed curve is the reflectance curve for pure water.
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trations, reaching the highest difference of 15% for the most
concentrated sample with f = 1.1% and for the highest angle of
incidence of about 65°. These results suggest that for highly
scattering particles, the CSM is the most precise model among
those considered in this paper.
The results for suspensions of copper particles with p-

polarized light and an incident wavelength of 638 nm are
displayed in Figure 11. Both cases shown are for very dilute
samples (0.1 and 0.2%). As said before, to compute the
theoretical predictions, we assumed that the particles were
monodisperse with a diameter equal to that stated by the
manufacturer (500 nm). We can appreciate that the HA, the
3MF, and the CSM agree well with the experimental curves.
The 2MF differs noticeably for angles of incidence near the
glass−water critical angle and larger angles of incidence (up to a
3% difference).
The comparisons of the theoretical predictions by the four

models considered in this work and the experimental data
obtained for both light polarization (p or s) and the wavelength
of light (405 or 638 nm), which are not shown in Figures 7−11,
revealed the same trends observed in these figures.

6. SUMMARY AND CONCLUSIONS
Our objective in this work was to compare available theoretical
models for the coherent reflectance from a colloidal half-space
with experimental results without performing any fit of the
parameters involved in order to obtain a reliable idea about
their validity.
We obtained plots of the reflectivity measurements versus

the angle of incidence with laser light having wavelengths of
638 and 405 nm for a set of colloidal suspensions in an internal
reflection configuration around the critical angle. Then, we
compared the experimental results with predictions by four
different models. The samples consisted of latex spherical
particles made of PMMA with a RI of 1.49 and 1.51 (at 638 and
405 nm wavelengths, respectively) and TiO2 (rutile) particles
with a RI of 2.58 and 3.37 + 0.097i (at 638 and 405 nm
wavelengths, respectively). We also included two curves for
very dilute suspensions of copper particles with a RI of 0.29 +

3.49i (at a 638 nm wavelength), for which we only knew the
most probable radius. The incidence medium was a BK7 optical
glass, and the reflectivity measurements spanned 6° in angles of
incidence around the critical angle. The latex colloids were
monodisperse of two different diameters, 120 and 520 nm,
whereas the suspensions of TiO2 were polydisperse with a log-
normal size distribution, with a most probable radius of 202 nm
and a width parameter of about 1.3. For each type of colloidal
suspension, we obtained reflectivity measurements for four
different volume concentrations of particles. For the latex
particles 120 and 520 nm in diameter, the maximum
concentrations were 24.1 and 6.0%, respectively. For the
suspensions of TiO2, the maximum concentration was 1.1%.
The suspensions of copper were of particles with an average
diameter of 500 nm suspended in water and with
concentrations of 0.1 and 0.2%.
The models considered for their comparison with the

experimental data were briefly described and discussed in the
text, and they were labeled as 2MF, 3MF, HA, and CSM.
The experiment−theory comparison showed that for the 120

nm particle diameter latex colloids, all models considered
approximated well the experimental curves for the most diluted
sample with a 3% volume concentration. For denser colloids,
the curves predicted by the 2MF model deviated noticeably
from the experimental data in all cases. The deviations of the
2MF predictions from the experimental curves are larger the
higher the particle volume concentration, size, and RI.
The other three models reproduce quite well the

experimental curves in all cases considered. The results
presented in section 5 propose that the HA is slightly better
for smaller particles (less strongly scattering particles) and can
go to higher particle volume densities than the CSM, whereas
the CSM is somewhat better for highly scattering particles and
can reproduce well curves where the presence of the particles
drops the reflectance by as much as 50% down from total
reflectance (by this, we mean that the reflectance would have
been unity in the absence of the particles). We must note that
the CSM had already been tested against experimental data in
ref 16, finding similar results.

Figure 11. Experimental reflectance as a function of the angle of incidence around the critical angle at different filling fractions of colloidal
suspensions of copper particles with 500 nm diameter and theoretical predictions. The wavelength of light is 638 nm. The polarization of light and
the volume filling fractions are s polarization and f = 0.1 and 0.2% for (a) and (b) respectively and p polarization and f = 0.1% for part (c). The green
dashed curve is the reference of the prism−water interface.
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It is surprising that the 3MF approximation is very close to
the HA in all cases considered in the experiments, performing
well in all cases although better for smaller particles. Notice that
both approximations, 3MF and 2MF, are indeed effective-
medium theories because both of them regard the colloid as
homogeneous with an effective index of refraction. The only
difference between them is that 3MF considers that there is a
small gap of water between the glass and the colloid, while for
2MF, this gap is absent. The fact that for large particles and
moderate filling fractions 2MF deviates pronouncedly from the
experimental data while 3MF follows closely the HA clearly
means that for angles of incidence in the neighborhood of the
critical angle, the presence of the gap of water plays a very
prominent role. This close resemblance between 3MF and the
HA does not hold in general at lower angles of incidence.19

It is also startling the fact that the 3MF approximation
performs very well for the smaller latex particles of 120 nm
diameter even at concentrations as high as 24%. The reason this
might be unanticipated is that we used the 3MF with the
effective RI given in eq 1, while it is known that even for small
particles and moderate filling fractions, the imaginary part of
the effective RI does not follow eq 1 (ref 36 and references
therein). This means that the real part of the effective RI plays a
crucial role in how light reflects around the critical angle,
whereas the sensitivity of the reflectance to the imaginary part
of the effective RI around the critical angle is very much
reduced. This conclusion supports the idea that the real part of
the effective RI can in fact be determined accurately from
measurements of reflectance in the neighborhood of the critical
angle, as has been proposed in the past.11,14,37

We must point out however that numerical evaluation of the
models considered in this paper shows that the relative
differences between them can be much larger at smaller angles
of incidence for particles of sizes comparable with the
wavelength of radiation, and this means that the Fresnel
coefficients can be worse than a simple rough approximation.
The reason is that in Fresnel’s approximations, only the
forward-scattering amplitude of the particles, S(0), is involved,
whereas in the HA and CSM models, also the coefficients of the
amplitude scattering matrix S1 or S2 evaluated in the specular
direction (π − 2θi) are involved. These latter coefficients may
differ strongly from S(0) for small angles of incidence.
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