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Abstract First, we present a brief review of the theory of

the complex effective refractive index of a disordered

suspension of nanoparticles that take into account the

effects of scattering by the particles. We present numerical

examples of the dependence of the scattering losses in

nanocolloids with the concentration of non-absorbing and

weakly absorbing nanoparticles. Then, we explore a way to

reduce scattering losses in colloidal suspensions of non-

absorbing nanoparticles. Finally, we provide some physical

insight into the dependence of scattering losses with the

particle concentration.

1 Introduction

Metamaterials based on metallic resonating structures have

losses that undermine their performance in many interest-

ing applications [1]. All-dielectric metamaterials are being

investigated as a possible way to avoid absorption losses

while still offering the possibility of exotic optical prop-

erties such as optical magnetism [1–9]. Mainly, Mie type

resonances are been sought as the mechanism for inducing

large dielectric and magnetic responses [5–8]. Mie reso-

nances occur when the resonating element has dimensions

comparable or larger than the wavelength of radiation,

times its index of refraction. Therefore, these can be

achieved with elements small compared to the wavelength

of radiation if their refractive index is sufficiently high

[1, 2, 9]. Most metamaterials consist of ordered resonating

elements; however, in recent years, disordered systems of

photonic elements have been of interest for novel meta-

materials, essentially because they can be much simpler to

fabricate than ordered ones [10]. Among disordered sys-

tems, colloidal metamaterial or metafluids have attracted

the attention of several researchers [11–13].

The main intention to use non-absorbing dielectric

components for building metamaterials is to avoid losses.

Although absorption losses will in fact be avoided, these

are not the only kind of losses. In general, there are also

scattering losses, which are usually ignored. However, in

the presence of resonances, scattering losses may be as

important.

In this work, we address the concern of scattering losses

in disordered metamaterials by considering, as an illustra-

tion, a simple model of nanocolloid and analyzing its

scattering losses. Although the nanocolloids considered

here are not properly a metamaterial, we believe that our

analysis offers a useful physical insight into scattering

losses that will be relevant to metafluids and disordered

metamaterials. Here, we first revise the available analytical

theories to predict scattering losses on a light beam prop-

agating through a colloidal suspension. With these two

approximate theories, we study the so-called dependent

scattering effects [14–18], which are directly related to the

scattering losses, and thus understanding its behavior can

allow us to devise mechanisms to attain some degree of

control of these losses. To keep things simple, we limit our

analysis to colloids of particles very small compared to the

wavelength of radiation and then explore a simple way to

reduce scattering losses in this type of systems.
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2 Extinction of a collimated beam of light
in nanocolloids

The attenuation of an electromagnetic wave propagating

through a suspension of particles is exp �alð Þ where a is

called the extinction coefficient. In general, the extinction

coefficient can be related to the imaginary part of an

effective refractive index of the suspension of particles. This

effective refractive index describes the propagation of the

average electromagnetic field, also called the coherent field.

In colloidal systems, the effective refractive index is actually

obtained from a multiple-scattering formalism, but since the

exact solution to the multiple-scattering equations is not

accessible, approximations are usually used [14–24]. In

terms of an effective refractive index, we can write,

a ¼ 2k0Im neff
� � ð1Þ

In general, a has contributions from scattering and

absorption by the particles. From measurements of only the

extinction coefficient of a nanocolloid, scattering losses are

indistinguishable from absorption losses.

In non-absorbing suspensions of small particles, losses

arise from scattering. Scattering losses are unavoidable,

and their magnitude depends non-trivially on the particles’

size, shape, refractive index (RI). For very dilute suspen-

sions of particles, the extinction coefficient is proportional

to the particles’ concentration [22]. When this holds, some

researchers refer to being within the “independent scatter-

ing” regime. However, it is well known that the extinction

coefficient has a nonlinear relationship with the particles’

volume concentration at moderate densities of particles

[14–18]. In the absence of absorption, such nonlinearity is

often referred to as “dependent scattering.” At low particle

concentrations, a quadratic dependence on the particle’s

concentration of the extinction coefficient is observed

[15–17]. For particles whose size is very small compared to

the wavelength of light, this quadratic dependence reduces

the scattering losses compared to those predicted by the

independent scattering approximation.

To date, the general dependence and physical origin of

dependent scattering effects have remained somewhat

obscure. For particles with low RI contrast with their sur-

roundings, interference between the scattered fields by nearby

particles may be held responsible for dependent scattering

effects [18]. However, for highly scattering particles,

dependent scattering effects may have a qualitatively differ-

ent origin and the interference explanation is no longer

suitable [15–17]. When particles are small enough compared

to the wavelength of light, they can be regarded as radiating

dipoles, either electric or magnetic, and if one ignores scat-

tering losses, one can use Maxwell–Garnett’s type formulas

to obtain an effective refractive index [14, 19]. These

formulas can be used at moderate particles’ density, and for

absorbing particles with a complex refractive index, one

obtains an effective RI with a nonlinear dependence with

particles’ concentration. Scattering effects can be introduced

simply by including radiation corrections to the polarizability

of particles [14, 19]. However, these corrections are not

enough to take into account properly scattering effects at

moderately small particles’ concentration and denser sys-

tems. Outside the very dilute regime and when the imaginary

part of the effective RI is dominated by scattering losses, we

can use instead the small-particle limit of the so-called quasi-

crystalline approximation (QCA) [14, 23, 24] which includes

corrections to the scattering losses due to a local field and thus

incorporates dependent scattering effects.

Although the physical nature of the “dependent scat-

tering effects” is an interesting and relevant question, we

will not address it now. Here, we will limit our attention to

investigate a possible mechanism to reduce the light-scat-

tering losses in a disordered system of nanoparticles. But

first, for completeness of the present work, we present a

concise review of the basics of light extinction in small-

particle suspensions.

In order to obtain some insight into the dependence of

scattering losses in moderately dense nanocolloids, we need

to consider both, the independent- and dependent scattering

regimes. For simplicity, we will consider a system of iden-

tical non-magnetic spherical particles of radius a and

refractive index np embedded in a non-magnetic transparent

matrix of RI nm, and for the independent- and dependent

scattering approximations we will consider the formulas for

the effective refractive index obtained from the so-called

van de Hulst approximation and the small-particle limit of

the quasi-crystalline approximation (QCA), respectively.

2.1 Van de Hulst’s approximation

A widely used approximation for calculating the effective

propagation constant in a dilute and random system of

particles is the so-called Effective-Field Approximation

(EFA). This approximation is used to solve the multiple-

scattering equations in the dilute limit [20–24]. It assumes

that the field exciting any given particle is the average field.

The effective propagation constant obtained within the

EFA is also referred to as the Foldy–Lax effective propa-

gation constant [20, 21] and is given by,

keff ¼ km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ i3f

S 0ð Þ
x3m

s
ð2Þ

where S(0) is the forward scattering amplitude of an isolated

particle embedded in the matrix, xm ¼ kma is the size

parameter, km is the wave number in the medium surrounding

the particle, called the matrix, a is the radius of the particles,
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and f is the volumefilling fraction of the particles.An effective

refractive index can be obtained by dividing keff by the

wavenumber in vacuum, k0 ¼ 2p=k. The EFA is valid only

when the contribution of the particles to the effective propa-

gation constant is small and thus we may expand the square

root in Eq. (1) and keep only the first two terms. The resulting

effective refractive index is that referred to as the van deHulst

effective refractive index given by [22],

neff ¼ nm 1þ i
3

2
f
S 0ð Þ
x3m

� �
ð3Þ

Let us denote then the extinction coefficient under the “in-

dependent scattering” approximation as aind. It is given by,

aind ¼ 2k0Im neff
� � ¼ 3kmf

Re S 0ð Þ½ �
x3m

ð4Þ

Using f ¼ qð4p=3Þa3, where q is the number-density of

particles and ð4p=3Þa3 is the volume of one particle. We

can rewrite the latter equations as

aind ¼ 4pq
k2m

Re S 0ð Þ½ � ¼ qCext ð5Þ

where Cext ¼ 4p
k2m
Re S 0ð Þ½ � is the extinction cross section of

the particles.

In the van de Hulst approximation, the extinction coeffi-

cient grows linearly with the density of particles, and the

exponential attenuation of the intensity, in the form, I lð Þ ¼
I0 exp �qCextlð Þ is known as the Beer–Lambert Law. How-

ever, as alreadymentioned,when the density of particles is not

small, and depending on the size and refractive index of the

particles, the extinction coefficient has a nonlinear depen-

dence on the density of the particles. This nonlinear

dependence is also referred to as “dependent scattering”

effects, implying that the particles do not scatter light as iso-

lated particles, but that their effective scattering efficiency is

affected by the presence of the surrounding particles. In fact,

the deviation of the scattering efficiency of particles from a

linear relationship arises from the fact that the field exciting

any of the particles is no longer well approximated by the

average field, and one has to include a local-field correction.

The average local field for a given particle differs from the

average field at a given position in space in that it does not

include the field scattered by the particle itself. The first cor-

rection to the EFA is the so-called quasi-crystalline

approximation (QCA)whichwewill briefly review in the next

section.

2.2 The quasi-crystalline approximation

The so-called quasi-crystalline approximation (QCA) is a

second-order approximation for the local field, when

solving the multiple-scattering equations obeyed by light’s

electromagnetic fields in a moderately dense system of

particles. It consists on formulating and solving a self-

consistent integral equation for the average exciting field to

any of the particles, and then using this exciting field to

calculate the average field scattered by all the particles

[23, 24]. A correlation function for the position of any two

particles appears when the average interaction between two

particles is calculated.

The small-particle limit of the QCA was calculated by

Tsang and Kong some time ago [14, 23, 24]. They obtained,

n2eff ¼ n2m þ 3fn2mC 1þ i
2

3
x3mC 1þ 4pq r

1

0

r2 g rð Þ � 1ð Þdr
� �	 


ð6Þ
where nm is the refractive index of the medium surrounding

the particles (the matrix), f is the volume fraction occupied

by the particles, q is the number volume-density of parti-

cles, g rð Þ is the two-particle correlation function and

C ¼ v
1� f v

where v is the normalized polarizability of a particle, and

for spherical particles it is given by v ¼
n2p=n

2
m � 1

� �
= n2p=n

2
m þ 2

� �
. For simplicity, we will

approximate the two-particle correlation function by the

so-called hole correction. That is, we assume that for any

two given particles, the probability of finding their centers

a distance r apart from each other is constant whenever

they are separated by more than one diameter and zero

otherwise. In other words, we suppose that the position of

any given particle is completely random except that it

cannot penetrate any other particle. Although this is a

coarse approximation for dense colloids, and more elabo-

rate ones can be found in the literature to take into account

correlations among particles, for dilute and moderately

dense systems of particles up to about 10% is commonly

considered a good approximation [16, 25]. We have,

g rð Þ ¼ 1 if r� 2a
0 if r\2a

	
; ð7Þ

where a is the radius of the particles. In this case, the

integral in Eq. (1) can be easily performed. We get,

Z2a
0

r2 �1ð Þdr ¼ � 8a3

3

Then Eq. (6) yields,

n2eff ¼ n2m þ 3fn2mC 1þ i
2

3
x3mC 1� 8f½ �

	 

ð8Þ

where we used, f ¼ qð4p=3Þa3. Since a ¼ 2k0Im neff
� �

one

gets,
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aQCA ¼ 2k0Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2m þ 3fn2mC 1þ i

2

3
x3mC 1� 8f½ �

	 
s !
ð9Þ

In Fig. 1, we plot the imaginary part of neff for a vacuum

wavelength of 420 nm in the independent and quasi-crys-

talline approximations as a function of the particles’

volume fraction f for a nanocolloid of non-absorbing par-

ticles of radius a = 5 nm and refractive index np ¼ 1:6

dispersed in a medium of RI nm ¼ 1:33:

We can see in Fig. 1 that the curve of the imaginary part of

the effective refractive index in theQCAbends away from the

independent scattering approximation to smaller values. In

this example, the imaginary part of neff has amaximum for f of
about 6.5% and is somewhat less than half of the value for the

independent scattering approximation. This means that as the

particles’ volume fraction increases beyond 6.5%, there is a

decrease in the scattering losses. The extinction coefficient in

this example can be readily calculated in cm−1 as

a ¼ 3:00� 105Im neff
� �

cm�1. The maximum value pre-

dicted by the QCA in Fig. 1 is about Im neff
� � ¼ 6� 10�7

which gives a ¼ 0.18 cm−1. In general, this can be considered

a low turbidity, but is not negligible for many applications.

The intensity of light beam propagating through this medium

would decay to 37% is initial value after 5 cm.

3 The effective extinction factor

It is useful to define an Effective Extinction Factor (EEF)

as the ratio between the actual extinction coefficient and

the independent scattering approximation [6]. We will

denote it as c. The EEF under the QCA is given by,

cQCA ¼ aQCA
aind

ð10Þ

When particles are small compared to the wavelength, the

EEF in the QCA is always less than one. In Fig. 2, we plot

the EEF in the independent scattering approximation (van

de Hulst) and the QCA versus f for a nanocolloid of par-

ticles of radius a = 5 nm and refractive index of np ¼ 1:6

dispersed in a medium of refractive index nm ¼ 1:33 and a

vacuum wavelength of 420 nm. We have found that the

EEF is rather insensitive to particles’ radius. For a between

1 nm and 10 nm, the EEF curves shown are practically

indistinguishable for np ¼ 1:6 and nm ¼ 1:33.

Also, the EEF is a rather insensitive function of the

particle’s refractive index. To illustrate this, we also plot in

Fig. 2 the EEF in the QCA for particles of refractive index

10 times larger, that is for np ¼ 16. A refractive index with

such a large value and without an imaginary part may be

unrealistic at optical frequencies. However, at smaller

frequencies it may be possible. We can appreciate that the

difference in the EEFs for particles of RI of 1.6 and 16 is

very small. In fact, for particles of the same radius and of

RI of unity (e.g., nanobubbles) the EEF is practically

undistinguishable from that for particles with RI up to

about 5. Of course, even though the EEF is not very sen-

sitive to neither np nor a, the effective RI, neff , does depend
noticeably on the particles’ RI.

3.1 Effect of the nanoparticles’ absorption
on the extinction coefficient and the EEF

Up to this point, we have assumed the nanoparticles are

non-absorbing and have a real RI. When the particle’s RI

has an imaginary component, the extinction will be due to

Fig. 1 Plot of the imaginary part of the effective refractive index of a

nanocolloid of particles of 5 nm radius dispersed in a medium of RI

nm = 1.33 at a wavelength of 420 nm in the van de Hulst

approximation (full blue line) and in the quasi-crystalline approxi-

mation (dashed red line) for np = 1.6. Note the scale for the y-axis is
times 10�6

Fig. 2 Plots of the EEF for a nanocolloid of particles of 5 nm radius

dispersed in a medium of RI nm = 1.33 at a wavelength of 420 nm in

the van de Hulst approximation (full blue line), quasi-crystalline

approximation (dashed red line) for np = 1.6 and quasi-crystalline

approximation (black symbols) for np = 16
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scattering and absorption as well. In the next two figures,

Figs. 3 and 4, we plot the imaginary part of neff and the

corresponding EEF versus the particles volume fraction f
for particles of radii of a = 10 nm and complex RI given by

neff ¼ 1:6þ iy. We show plots for values of y of 1� 10�6,

1� 10�5, 5� 10�5, 1� 10�4 and 5� 10�4

We can appreciate in Fig. 3 that as the imaginary part of

the particles’ RI increases, the curve for the imaginary part

of neff versus f is steeper, meaning that the absorption

rapidly dominates over the scattering losses. The curves

also get straighter, meaning that the independent scattering

approximation becomes more appropriate as the extinction

of light is dominated by absorption instead of scattering. As

a consequence, the EEF versus f curves move toward a

horizontal line as it can be seen in Fig. 4.

3.2 Controlled reduction of scattering losses
in random-nanoparticle media

Here, we will consider again only non-absorbing

nanocolloids. As already mentioned in the introduction, it

is of interest to modify the real part of the effective RI of a

medium but without introducing appreciable turbidity.

From Fig. 1, it is clear that for a random system of non-

absorbing particles small compared to the wavelength of

light, the so-called dependent scattering lessens the scat-

tering losses below what it would be if every particle

scatters independently (of the presence of others). This

effect can be enhanced noticeably if the particles are not

allowed to approach each other to the point where their

surfaces touch each other. Let us suppose the centers of any

two particles can approach each other a distance 2b[ 2a,
where a is the radii of the nanoparticles. In practice, this

could be achieved by covering the particles with a material

of the same RI of the matrix, for instance by encapsulating

the particles within a larger spherical particle of radius b
and concentrically. In this way, we can introduce a “par-

ticle-free distance” around all of the colloidal particles

determined by the ratio, x ¼ b=a.
To keep things simple, let us assume that the hole cor-

rection is still a valid approximation to the pair correlation

function. Thus, we have,

g rð Þ ¼ 1 if r� 2b
0 if r\2b

	
ð11Þ

In this case, Eq. (4) yields,

n2eff ¼ n2m þ 3fn2mC 1þ i
2

3
x3mC 1� 8f

b3

a3

� �	 

ð12Þ

It is clear from Eq. (12) that the increase in “effective-

contact” radius will result in a reduction of the imaginary

part of the square of the effective RI.

In Fig. 5, we plot the imaginary part of the effective RI

versus the particles’ volume concentration, f, for a

nanocolloid of particles of 5 nm radius and RI np ¼ 1:6

dispersed in a medium of RI nm = 1.33 and a vacuum

wavelength of 420 nm. We plot curves for the independent

scattering approximation and for the QCA with a contact

radius given by b ¼ xa with x varying from 1.0 (nude

particles) to 1.4 in steps of 0.05 (covered particles). In

Fig. 6, we plot the EEF for the curves shown in Fig. 5, but

we only plot the EEF for values of x varying from 1.0 to 1.4

in steps of 0.1.

We can appreciate from Figs. 5 and 6 that the imaginary

part of the effective RI and thus the extinction coefficient

decrease noticeably as the effective-contact radius b
increases. In Fig. 5, we also see that the maximum of

turbidity shifts to smaller values of the particles’ volume

fraction f as b increases. For instance, for a value of

Fig. 3 Plots of Im(neff) for a nanocolloid of particles of 10 nm radius

and np = 1.6 + iy, dispersed in a medium of RI nm = 1.33 at a

wavelength of 420 nm for a few values of the imaginary part of the

particles’ RI, y (values indicated in the legends). Note the scale for the
y-axis is times 10�5

Fig. 4 Plots of the EEF versus the particles’ volume fraction for the

corresponding curves shown in Fig. 5. In addition, here the

independent scattering approximation curve is included (horizontal
dashed curve)
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b = 1.4a the turbidity predicted by the QCA at f = 2% is

about 60% less than that predicted by the independent

scattering approximation whereas at f = 4% it is 88% less.

Of course the QCA must loose accuracy as the predicted

value of the imaginary part of neff approaches zero and is,

of course, mistaken when it predicts negative values.

Clearly, Im neff
� �

cannot take negative values in the current

scenario. A more complete theory for the extinction of

nanocolloids able to deal with higher densities is still to be

developed.

4 Physical understanding of extinction
dependence on the inter-particle distance

Here, we provide an explanation on physical grounds, of

the reduction of the scattering losses as the minimum inter-

particle distance is restricted. We must recall that the

attenuation of a collimated beam of light corresponds to the

attenuation of the average wave, averaged over all per-

mitted configurations. When there is no interaction

between particles, any two particles may be found at any

distance between each other with equal density of proba-

bility, except that they cannot overlap each other. Thus, in

any given configuration we will find some particles very

close to each other, forming for instance, an equivalent

dimer, as depicted in Fig. 7. These subset of particles,

which are very close to each other, scatter light as an

“effective particle” of larger radius. For particles very

small compared to the wavelength, we have that a larger

particle scatters more light per unit volume than a smaller

particle. Indeed, for very small non-absorbing particles we

have that Re S 0ð Þ½ � � 2
3
v2x6m, and thus, Eq. (4) yields

aind=f ¼ 2kmv2x3m, which clearly increases as the particle

radius increases (recall that xm ¼ kma). Upon averaging

over all permitted configuration, we include scattering by

such effective larger particles. So, if we restrict the mini-

mum distance that any two particles can approach each

other, we avoid these “effective larger particles” and the

scattering efficiency per unit volume of particles decreases.

As mentioned above, one possibility to increase the

average distance between particles in a colloidal suspen-

sion, without changing their scattering properties, could be

to coat them with a solid material of refractive index clo-

sely matching that of the surrounding fluid. If the coat

radius is b, then the distance between the center of any two

particles cannot be smaller than 2b[ 2a. Another possi-
bility could be adding electrical charge of the same sign to

Fig. 5 Graphs of Im(neff) for a nanocolloid of particles of 5 nm radius

and np = 1.6, dispersed in a medium of RI nm = 1.33 at a wavelength

of 420 nm in the independent scattering approximation (van de Hulst

approximation, full blue line) and the quasi-crystalline approximation

with different values of the contact radius b. Note the scale for the y-
axis is times 10�6

Fig. 6 Plots of the EEF for a nanocolloid of particles of 5 nm radius

and np = 1.6 dispersed in medium of RI nm = 1.33 at a wavelength of

420 nm in the independent scattering approximation (van de Hulst

approximation, full blue line) and quasi-crystalline approximation for

different values of the contact radius b

p  Effective articles

Fig. 7 Illustration of a system of impenetrable particles where the

inter-particle distance is unrestricted (left) and a systems of particles

where it is restricted to a distance larger than the particles’ diameter

(right)
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all particles so that they repel each other, hence increasing

the average inter-particle distance, as illustrated in Fig. 7.

5 Summary and conclusions

We studied theoretically the dependence of neff with f in a

disordered system of very small particles compared to the

wavelength of radiation. The examples chosen in this work

correspond to non-absorbing and weakly absorbing

nanocolloids at visible wavelengths with the concentration

of particles less than 10%. Our conclusions can be relevant

on other analogous systems at other wavelengths for par-

ticles of similar size parameters and RI. We used two

established approximations: the so-called van de Hulst

approximation and the quasi-crystalline approximation in

the limit of small particles. For simplicity, we considered

the QCA with a pair correlation function consisting of a

“hole correction” of radius equal to particles’ radius.

We concentrated on the case of non-absorbing particles

suspended in a transparent matrix. The van de Hulst

approximation yields a contribution of the particles to the

effective RI proportional to the particles’ volume concen-

tration, f. Thus, in this approximation, the extinction

coefficient, which is proportional to Im(neff), varies linearly
with f. The QCA includes nonlinear terms on the depen-

dence of neff on f. Some researchers refer to the range of

values of f where there is a linear dependence of Im(neff)
with f, as the “independent scattering” regime. Outside the

linear range, one may refer to a “dependent scattering”

regime.

Both approximations considered predict a linear

dependence of the real part of the effective RI with f up to

10%. However, for the imaginary part of neff, the QCA

yields a quadratic dependence on f, and Im(neff) bends away
from the independent scattering approximation toward

smaller values. The effective extinction factor, EEF,

defined as the ratio of the extinction coefficient divided by

that one calculated with the independent scattering

approximation, predicted by the QCA is basically a straight

line up to f = 10% and insensitive to the particles’ RI, np
when this is a real quantity.

Next, we explored a simple idea to reduce the scattering

losses (that is, reduce the extinction coefficient). Basically,

we proposed to increase the minimum distance that any

two particles can approach each other. This can be

achieved by, for example, encapsulating the particles

within a spherical particle of larger radius and a RI that

matches that of the matrix. We showed that the imaginary

part of neff bends faster as the minimum distance between

particles is increased. A noticeable reduction of the maxi-

mum turbidity of the system can be achieved in this way.

Then, we briefly considered a system of absorbing

particles, showing that as the imaginary part of the parti-

cles’ RI increases, the curve of Im(neff) versus f straightens,
meaning that as absorption by the particles dominates over

scattering, the independent scattering regime widens

noticeably.
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