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Abstract. An application of artificial neural networks, ANN, has been performed to determine elemental concentrations 
in atmospheric aerosol samples. A feed-forward ANN was used in the learning phase. The network was trained with a 
back propagation algorithm in order to obtain the elemental concentrations in these samples. The inputs to the ANN 
analysis were experimental data obtained from the PIXE irradiations plus one from each element in the spectrum 
obtained directly in real time. The ANN output was the elemental concentration.  A set of thirty seven PIXE spectra 
from aerosols collected in Santiago, Chile, provided the raw data which were used in the ANN application. Following a 
random selection, thirty spectra were used in the training phase, while the rest was used to test the ANN capability in the 
determination of unknown concentrations.  Several networks of similar topology were independently trained for each 
one of the five elements considered in this study, Al, Si, S, K, and Fe.  These networks operated in parallel, thus 
allowing a simultaneous determination of the elemental concentrations.  The results were in good agreement with those 
obtained by standard PIXE analysis. This ANN application to the study of atmospheric aerosols has proved to be reliable 
and easy to extend to a large number of samples of similar characteristics.    
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INTRODUCTION 

Application of PIXE (Proton Induced X-ray 
Emission) analysis to determine elemental 
concentration has probed to provide valuable data for 
environmental studies. These determinations relay 
heavily in the analysis of characteristic X-ray 
spectra, which is usually performed by the use of 
computational codes.  In this work we present an 
application of artificial neural network (ANN) to 
obtain elemental concentrations from the spectra and 
experimental parameters. 

The major motivation of this work is to get 
benefits from the ANN capability to give similar 
answers in shorter times than those obtained by 
common PIXE analysis.  In fact, the experience of 
the authors has shown that the analysis of one PIXE 
spectrum with a code like AXIL [1], takes about 5 
minutes to an analyst. Instead a trained ANN can 
perform the same analysis in milliseconds using the 
same computer hardware. Other ANN advantage is 
the possibility of manage a large number of samples. 

The fundamentals of the ANN technique have 
been described elsewhere [2,3] and several 
commercial and free codes are accessible nowadays. 
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The uses of new information technologies around 
artificial intelligence, such as ANN, applied to 
atomic and nuclear physics has been developed and 
incremented during the last two decades [4]. Some 
applications of ANN to analyze alpha, gamma and 
X-ray spectra have been published in the last fifteen 
years [5,6,7].  

PIXE is a nuclear accelerator based technique 
whose X-ray spectral analysis demands expert 
knowledge and significant calculation time to obtain 
the elemental concentrations of the samples [8, 9]. 
Although PIXE analysis has reached certain degree 
of automation, ANN technique could simplify and 
accelerate the process to get final results. 

In this work ANN, has been applied to determine 
elemental concentrations in atmospheric aerosol 
samples. A set of thirty seven PIXE spectra from 
aerosols collected in Santiago, Chile, provided the 
raw data used in the ANN application. Following a 
random selection, thirty spectra were used in the 
training phase, while the rest was used to test the 
ANN capability to determine unknown 
concentrations.   

ANALYSIS 

The complete analysis of a sample implies two 
steps: PIXE and ANN.  

 

PIXE Analysis 

PIXE analyses were performed at the Center for 
Experimental Physics, Faculty of Science, University 
of Chile. Proton beams of   2 MeV were provided by 
a Van der Graaff accelerator. Details of the PIXE 
line setup has been given elsewhere [10].  

Aerosols were obtained in downtown Santiago in 
spring and winter periods in year 2004. Thirty seven 
Teflon filters containing atmospheric aerosols were 
irradiated for 15 minutes with beam currents of 5 
nano amperes. 

 Spectra were obtained with a Canberra Si(Li) 
detector having a resolution of 200 eV approximately 
and standard pulse electronic units and MCA. 
Thirteen elements were detected in most of the filters 
(Al, Si, S, K, Fe, P, Cl, Ca, Ti, Cr, Mn, Cu, and Zn). 
Figure 1 illustrates a typical spectrum. These X-ray 
spectra were analyzed using AXIL  code provided by 
IAEA, which determines the number of counts in 
each peak. 

The relative elemental concentration, CZ,
expressed by the ratio of the elemental surface mass 
density and the total mass per unit area of the sample, 
was obtained by the equation: 
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where IZ( )αKE is the number of counts in the 
Kα peak from the Z-element, M [g/cm2] is the total 
mass surface density of the target, Q [C] is the 
integrated charge in the Faraday cup, and J(ΕΚα) [g-1 
cm2 C-1] is the value of the sensitivity function at the 
peak energy obtained from experimental data [11].  
 

FIGURE 1. Aerosol PIXE spectrum 
 
Figure 2 illustrates a flux diagram that shows the 

PIXE route and the experimental parameters used as 
inputs for the ANS analysis. Concentrations 
determined by PIXE analysis are only used in the 
ANS training phase.  

 

FIGURE 2. Flux diagram showing the relationship 
between PIXE experimental steps and ANN inputs 
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ANN Analysis 

For each analyzed element in the sample, an ANS 
is designed. Each Artificial Neural System (ANS) 
has been constructed to determine the elemental 
concentrations in the analyzed aerosol samples. ANS 
is composed with five feed-forward ANN of similar 
topology (Figure 3), which operate in parallel inside 
the ANS. Each ANN was trained with well know 
back propagation algorithm in an independent 
process in order to learn first, and reproduce after, 
the process to obtain the concentrations of elements 
present in the samples. The input and output 
parameters in the training phase are the same for all 
ANN. The output value given by the ANS is 
obtained by combining the ANN outputs. 

 

FIGURE 3. ANS spectral analysis schema for aerosol 
samples. 

An ANN with three layers was used to generate 
the mapping of 4-input parameter values to produce 
1-output value. The output is the concentration of the 
considered element present in the sample, while the 
inputs are: proton beam intensity impinging the 
sample (Q), total mass of the sample (m), area of the 
sample (S), and the element peak information 
obtained from the spectra (n). The mapping is carried 
out using the weights of the neuron connections, 
computed in the supervised training process. The 
structure of the employed ANS and the topology of 
the AAN are shown in Figure 4.  
 

FIGURE 4.  The topology of the ANN. 

In the training phase, the least square error 
method was used in the back propagation algorithm.  

The experience in ANN advises that the number 
of training cases must be much greater than the 
number of connections in order to guarantee the 
ANN learning [2]. In the architecture of this ANN, 
20 connections were defined and their values were 
determined in the training process using 30 samples.
After the training phase has been accomplished, a 
test procedure was performed verifying that the 
neural net effectively has learned 

RESULTS AND CONCLUSIONS 

Elemental concentrations were calculated by 
standard PIXE methodology in the way described 
above.  

In this ANN application only the major elements, 
Al, Si, S, K and Fe observed in the spectra were 
considered. Even though in some samples trace 
elements were observed, the number of cases was so 
few that did not sustained the training of the network 
to obtain reliable concentrations. In order to 
determine trace element concentrations, more cases 
are required.   

In ANN applications, detection limits depend on 
the range of experimental PIXE concentrations used 
in the training phase. Detection limits determined by 
PIXE can be included in ANN calculations in order 
to avoid eventual meaningless concentration values. 
Concerning uncertainties associated to ANN 
applications, in general these are determined by an 
overall comparison between experimental and ANN 
values used during the training and test processes. 
Here, results from PIXE, named as “expected 
concentrations”, Cexp. and from ANN, denoted by Cnn, 
both from the training phase, were compared 
obtaining a linear correlation factor r2 = 0.96 as is 
illustrated in Figure 5. Similarly, for the test phase a 
linear correlation factor r2 = 0.88 was obtained and 
shown in figure 6.  

In both cases, it is observed that the best results 
are obtained for high concentrations while the 
dispersion is rather large for low concentrations, as 
would be expected from statistical uncertainties in 
the corresponding peaks. Cnn and Cexp  results for the 
test phase are given in table I.    

According to these results ANN has been 
successfully applied to the analysis of major 
elements in aerosols samples. This ANN application 
has proved to be reliable and easily could be 
extended to a large number of samples of similar 
characteristics 
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FIGURE 5. Predicted concentrations from ANS (Cnn)
and expected concentration (Cexp) obtained from the 
training set  

 

FIGURE 6. The predicted concentrations from ANS(Cnn)
and expected concentrations (Cexp) in the test set. 
 

TABLE  I.  Predicted concentrations (Cnn) from ANS analysis and expected concentrations(Cexp) in the test  set 
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Aluminum - Al Silicon - Si Sulfur- S Potassium- K Iron - Fe
Cnn C exp Cnn C exp Cnn C exp Cnn C exp Cnn C exp

% % % % % % % % % %
4.2E-02 4.9E-02 2.8E-01 2.5E-01 3.0E-02 3.3E-02 1.0E-02 8.0E-03 4.6E-02 3.8E-02
4.3E-02 3.8E-02 2.9E-01 1.7E-01 1.9E-02 1.9E-02 1.0E-02 6.0E-03 2.9E-02 2.5E-02
3.9E-02 2.5E-02 1.3E-01 1.4E-01 1.3E-02 1.6E-02 9.5E-03 9.0E-03 4.1E-02 4.7E-02
1.6E-02 2.9E-02 1.1E-01 1.7E-01 1.1E-02 1.3E-02 7.4E-03 1.1E-02 5.1E-02 7.8E-02
1.3E-03 1.8E-03 7.6E-02 6.9E-02 7.0E-04 1.0E-03 6.0E-04 5.0E-04 2.2E-03 1.7E-03
6.0E-04 7.0E-04 1.5E-03 1.3E-03 5.0E-04 3.0E-04 5.0E-04 6.0E-04 1.4E-03 1.3E-03
8.0E-04 1.2E-03 1.5E-03 1.2E-03 4.0E-04 4.0E-04 2.1E-03 2.0E-03 4.5E-03 7.7E-03
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