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Abstract 

Significant progress has been achieved during the last decade in our knowledge and understanding of the optical 
potential between two light heavy-ions. This has mostly been a consequence of the measurement of accurate and extensive 
elastic differential cross sections. Some of these data, covering over eight orders of magnitude in cross section, extend 
to sufficiently large scattering angles that they show remarkable refractive effects which remind one of features of the 
scattering of alpha particles by nuclei that have been known since the work of Goldberg some twenty years ago. Refractive 
effects, particularly nuclear rainbows, are evident in i2C + ‘*C and I60 + I60 angular distributions at bombarding energies 
between 6 and 100 MeV per nucleon. Their angular location and cross section have led to the determination of the 
gross features of the local optical potentials and in many cases have removed ambiguities in the depths of the real 
parts of the potentials. The resulting phenomenological potentials are strongly attractive (“deep”), with relatively weak 
absorption, and depend upon the bombarding energy. The optical model potential for such heavy-ions is no longer simply 
a way to parameterize scattering data (or perhaps just one of many ways). Ambiguities have been resolved, and a good 
understanding of the theoreticaf basis of its features has been attained. The folding model is central to this understanding, 
coupled with increased insight into the nature of realistic effective nucleon-nucleon interactions. This Report reviews the 
experimental evidence, its interpretation, and what we have learnt from it. Much of the interpretation becomes especially 
transparent when couched in the language of semiclassical scattering theory. We summarize this language, as well as the 
basic features of the theory of the optical model. 

PACS: 25.70.B~; 24.10.Ht; 21.65.tf; 25.60.B~ 

Keywords: Elastic scattering; Heavy ions; Interaction potentials; Absorption; Nuclear equation of state; Rainbows 
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1. Introduction 

Elastic scattering is the simplest nuclear reaction between a projectile and a target that can be 
induced by a hadronic interaction. Yet, despite this simplicity, elastic scattering has been an important 
source of information on nuclear properties. This information has been gleaned primarily through 
studies of the potential of interaction (“optical potential”) that is found to reproduce measurements 
of the elastic scattering cross sections. 

Usually, the first step in the description of the collision of two nuclei is the introduction of a 
simple one-body potential (mean field or optical potential) that describes some average features of 
the collision, namely, the elastic scattering and the gross absorption of the incident flux into other, 
nonelastic channels (the reaction cross section). This provides a basis upon which a more detailed 
description of the collision may be built. The distorted waves Born approximation (DWBA) ap- 
proach to nonelastic transitions, which treats them as perturbations on the elastic scattering, is a 
well-known example, as is the coupled-channels (CC) approach to more strongly coupled reactions 
where feedback on the elastic channel needs to be considered explicitly [ 1821. Another example 
is that almost all models of the fusion of two nuclei into a compound system introduce an in- 
teraction potential which, together with the repulsive Coulomb field, provides a potential barrier 
which must be at least partially penetrated [ 1871. In these various ways elastic scattering is treated 
as a doorway through which the system must go before other processes are manifest. Nucleus- 
nucleus potentials play important roles in other phenomena also, such as quasi-molecular resonances 
[86,92,115]. 

As it is common with other complicated many-body problems, it is seldom possible to construct 
such potentials from first principles, so we proceed by introducing models which become more 
sophisticated and more microscopic as our understanding advances. Naturally, we try to incorporate 
into such model potentials as much of the known physics as is possible. This includes choosing 
them to reflect the overall sizes of the colliding nuclei, and making them complex so that they 
accommodate the loss of flux (absorption) into other, nonelastic channels. A very convenient way 
of incorporating (and identifying) gross nuclear properties is through the use of the folding models 
discussed below. In this approach the potential is generated by folding an effective nucleon-nucleon 
interaction over the ground-state density distributions of the two nuclei [ 18 1,182]. In addition, there 
are complex contributions to the potential, sometimes referred to as constituting the dynamical 
polarization potential (DPP), which arise from the couplings to the nonelastic channels, both open 
and closed. In particular, the open channels furnish the absorptive, imaginary part of the potential, 
while both can contribute to the real part. Virtual excitations to the closed channels are an important 

source of the threshold anomaly [ 1871. 
The theoretical understanding of the general properties and microscopic basis of the optical 

potential for nucleon-nucleus scattering has advanced considerably in recent years [ 136,138,45]. No 
truly microscopic theory of the mean field for nucleus-nucleus collisions is available. Rather, one usu- 
ally appeals to the coupled reaction channels theory of Feshbach [68]. Despite difficulties with anti- 
symmetrization under exchange of nucleons between the two nuclei, this approach often facilitates 

transparent physical interpretations. 
The theoretical understanding of phenomena encountered in measurements of elastic scattering 

has also developed considerably over the last two decades. This understanding is often phrased in 
semiclassical language so that we encounter terms like refractive and dzfiactive, or rainbows and 
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nearside, furside scattering [88]. Such an approach plays an important role in the work we report 
here, and has enabled us to clarify questions about the optical potentials such as “Are they deep or 
shallow?‘, or “Are they strongly or weakly absorbent?” 

In this paper we review the progress made in understanding the elastic scattering of heavy-ions, 
especially of light heavy-ion systems such as 12C + 12C, 12C + 160 and I60 + 160, and what this has 
revealed about general nuclear properties. Much of this understanding has been obtained by building 
upon the concepts introduced [76] to elucidate the scattering of the alpha particle (which, despite 
the official definition, might be regarded as the lightest of the heavy-ions!). While a review of this 
nature involves a large number of references, we have not tried to make the list exhaustive but 
rather aimed to present papers and reviews which themselves behave as guides to further reading if 
it is desired. 

2. Why light heavy-ions? 

2.1. Strong absorption 

In a general sense, collisions between two complex nuclei are associated with strong absorption; 
i.e., intimate contact almost inevitably leads to nonelastic events and loss from the elastic channel. 
Consequently, the scattering is dominated by conditions at the surface and this information is carried 
by systems traveling on peripheral trajectories. Here, “surface” means the region where the nuclear 
forces begin to act strongly. The location of this region can be represented by a strong absorption 

radius, RSA, defined in various but similar ways. One such is to identify it with the apsidal distance on 
a Rutherford orbit with the same angular momentum as that for which the optical model transmission 
coefficient is one-half. 

The values of RSA that are found in practice can be parameterized as 

RSA = r. (At’3 + A:‘3) + A , (2.1) 

where RSA is the distance between the centres of two nuclei with mass numbers A, and AZ. Since 

TO M 1.1 fm, the first term represents the sum of the radii of the density distributions of the two 
nuclei and the second term A is the separation of their surfaces. Values of A between 2 and 3 fm 
are typical separations at bombarding energies with E/A = lo-20MeV; see Fig. 2.1 for an example. 
The radius RsA, and hence the separation A, decreases slowly as the energy increases [ 176,177]; A 
has reduced to between 1 and 2 fm by E/A = 100 MeV. 

Thus strong absorption has become established before there is any substantial overlap of the two 
nuclear matter distributions (Fig. 2.1). This apparently paradoxical statement is possible because 
the nucleon-nucleon forces have a finite range which bridges the gap between the two ions. The 
interaction potential between the two nuclei at r = R SA, obtained for example by folding the nucleon- 
nucleon interaction over the two matter distributions, receives contributions from the whole surface 
region of both nuclei [ 1811. Nonetheless, the presence of the strong absorption makes it difficult or 
impossible to gain any knowledge of the potential at closer distances where the nuclei do begin to 
overlap appreciably. It is well known that under these circumstances about all we can hope to learn 
from elastic measurements is the (complex) value of the potential in the vicinity of RSA and perhaps 
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Fig. 2.1. The density distributions of the nuclei I60 and 20*Pb when their centres are separated by the strong absorption 
radius appropriate for scattering at energies between about 100 and 200 MeV (from [ 1811). 

some information about its slope [ 1821. This is the situation pertaining to much of heavy-ion elastic 
scattering, especially that involving medium to heavy nuclei. 

The magnitudes of the partial-wave S-matrix elements, ]S,l, provide a measure of the degree 
of absorption. Of course, IS/l = 1 for large I, but it decreases rapidly for 1 around the value 1, for 
grazing trajectories. When we approach, say, ]SIl 5 lop4 for small 1 < I,, we are justified in speaking 
of “strong absorption”. Then the transmission coefficient r, = 1 - ]Sll* is unity, representing complete 
absorption, to within one part in 10’. 

2.2. “Incomplete” absorption 

Fortunately, one does not require much penetration into the inner regions (small I< 1,) of the 
potential in order to see some signal of the conditions there, provided one is prepared to measure 
very small cross sections. A scattered amplitude from this region of a few per cent or less is 
sufficient to carry this signal to large scattering angles, although in other respects this would still 
represent strong absorption. For example, a partial-wave S-matrix element with magnitude IS,] = 0.03 
corresponds to a transmission coefficient T, = 0.999, or a departure from total absorption of this partial 
wave of only one-tenth of one percent. Yet this can be enough to produce recognizable rainbow 
phenomena. 

The possibility of seeing such refractive effects was first realized in the scattering of alpha particles 
[76]; a more recent example is illustrated in Fig. 2.2. A few years later hints were emerging that 
similar, but weaker, effects were being seen in the scattering of the light heavy-ions 6Li [58,192] 
and ‘*C [17,23,41]. By now, many examples of refractive phenomena in light heavy-ion systems 
have been collected, culminating in the most spectacular example of an Airy pattern exhibited in 
I60 + 160 scattering at E = 350 MeV [198] shown in Fig. 2.3. 

As our experience with heavy-ion scattering has broadened, it has become clear that the conditions, 
especially the degree of absorption present, that will allow these refractive effects to be seen are 
met by some light systems but are not satisfied by heavy systems. That is the short answer to the 
question posed in the title to this section. 

Before exploring these questions further and examining actual experimental results, we summarize 
briefly the semiclassical concepts that provide considerable insights into the phenomena seen in 
potential scattering and act as unifying principles. Next we turn to the theoretical basis of the 
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Fig. 2.2. Refractive effects in the scattering of a-particles by 90Zr nuclei at several energies (from [167]). 

Fig. 2.3. Striking Airy pattern exhibited in the angular distribution of the elastic scattering of 160 by 160 at a bombarding 

energy of 350 MeV [19X, 1991. The solid line represents an optical potential fit [33] which indicates that the minimum 
near 40” is the first Airy minimum forward of the primary rainbow. The dashed line is the result of an attempted fit with 

a deeper potential which would interpret that dip as the second Airy minimum. It would also predict the first to be near 

60”, where none is observed. 

optical model potential so as to better understand the origin of the properties we infer from the 
measurements. 

3. Semiclassical interpretation of potential scattering: A brief summary 

3.1. Classical trajectories 

The wavelengths associated with heavy-ion scattering are usually short enough, and consequently 
the number of partial waves involved is sufficiently large, that use of the language of semiclassical 
trajectories becomes meaningful and very useful for understanding the characteristics of the scattering. 
The presence of absorption plays a very important role in determining the outcome of the collision 
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Fig. 3.1. Left: classical trajectories that lead to Coulomb (C) and nuclear (N) rainbows. Right: the corresponding deflection 

function (from [ 1841). 

but in practice does not destroy the underlying trajectory picture. Qualitatively, absorption can be 
thought of as simply damping the flux as the system traverses the classical path. This approach is 
discussed elsewhere in more detail [88,143], while a more sophisticated treatment fully accounts for 
the complex nature of the potential from the outset [ 108, 1071. 

Fig. 3.1 illustrates some typical trajectories for scattering from an attractive, real hadronic potential 
plus a repulsive Coulomb potential. The scattering angle as a function of impact parameter b, or 
angular momentum (1 + i)fi = kb, is called the dejection function O(I) and is shown on the right 
of Fig. 3.1. Trajectories with positive 0, in this case the peripheral ones that are dominated by the 
Coulomb repulsion, constitute nearside scattering, while those drawn to negative 0 by the attractive 
nuclear potential represent farside scattering. 

3.2. Nearside and farside scattering 

The significance of the terms nearside and farside is perhaps more obvious if one looks at the 
trajectories that can contribute to a given scattering angle, as indicated in Fig. 3.2. (The inset to 
the right is to remind us that these trajectories are classical constructs and are attended by wave 
diffraction in a quanta1 treatment.) The quanta1 scattering amplitude f(0) can always be decomposed 

into two parts by using the partial-wave expansion [ 1821 

f(0) = (2ik)-‘C (2Zt l)a&(cos 0) , 
I 

(3.1) 

where the partial wave amplitude is 

al = e2’“/(& - 1) . (3.2) 

Here S, is the elastic partial wave S-matrix element and D[ the Coulomb phase. We may then 
express the standing wave Legendre function PI(cosO) as a sum of travelling waves running in 
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Fig. 3.2. Schematic representation of three semiclassical trajectories that result in the same scattering angle. The right-hand 
section suggests how the resulting angular distribution is analogous to a three-slit interference pattern. 

opposite directions around the scattering centre [74], 

p,(cos 0) = et+)< cos e> + Qj-‘(cos l9) ) (3.3) 

where 

Ql*)(cos 0) = f [P,(cos 0) F igQ!(cos O)] , (3.4) 

and Ql is the Legendre function of the second kind. For large 1, the Q, *(*I) behave like the travelling 
waves exp[fi(l + i)O]. Then it is easy to see that the (z!z) components of (3.3) represent scattered 
waves emanating from opposite sides of the scattering centre. Thus we have from (3.1) 

f(e) = fN(e> + fF(e) ) 

where 

(3.5) 

f:(e) = (2ik)-’ F (21+ l)alQjT)(~Os 0) . 

The interpretation of a nearside-farside decomposition 
absorption accompanied by an attractive real potential. 

(3.6) 

is especially transparent when there is strong 
Systems following the trajectories with small 

impact parameters are absorbed, but those on peripheral paths are affected by the attraction. These 
peripheral paths are associated with a window of angular momenta close to the grazing value I= lg. 
Each I-window, nearside and farside, produces a scattering amplitude with a single-slit diffraction 
pattern (see Fig. 3.3) and a magnitude that decreases exponentially as the scattering angle moves 
away from the classically allowed path. In many cases of physical interest, and for angles not too 
close to the grazing angle &, these amplitudes may be written for 8 > 8, as [143,88] 

(3.7) 

The two patterns, fN(e) and fF(e), are similar but separated in angle by 28,, because of the Coulomb 
repulsion (Fig. 3.3). In the absence of a nuclear field, we have EN =&r. A short-ranged nuclear 
attraction at the surface enhances the waves diffracted from the farside and (for 8 > 19,) reduces those 
from the nearside, so aN > &. Consequently, while fr(O) < fN(@ at small 6, there is a crossover 
angle 0 at which fr = fN and beyond which the farside scattering dominates. This is illustrated 
in Fig. 3.4 which shows the individual cross sections sin e]$(f9)]2, as well as their coherent sum. 
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Fig. 3.3. Illustrating classical trajectories and waves diffracted from the near and far sides of a strongly absorbing region. 
The solid curves represent grazing trajectories which suffer diffraction at the edges of the “black” sphere. The long-dashed 
curve is a Rutherford trajectory for a larger impact parameter which suffers little diffraction. The short-dashed curve is a 

Rutherford trajectory for a small impact parameter, which in practice is strongly absorbed (from [143]). 

Fig. 3.4. Example of the nearside/farside decomposition of the angular distribution (expressed as ln(da/dO)) for scattering 
by a strongly absorbing sphere plus refraction at the surface (from [ 1841). 

(The presence of the (sin 0) ‘j2 factor in (3.7) often makes it more convenient to examine the cross 
section da/de = 2~ sin 0 da/d&?, rather than the more usual da/da.) The farside-nearside interference 
pattern seen in Fig. 3.4 corresponds to Fraunhofer two-slit diffraction and is most pronounced near 
the crossover angle 4. It results from the phase factors in (3.7) so that the maxima are spaced 
by AtI M x/I~. Beyond this interference pattern we are left with the farside exponential tail that is 
characteristic of farside dominance. When observed, the position of this, and any associated Airy 
structure (see below), allows one to place constraints on the strength of the real potential in the 
surface at distances somewhat inside the strong absorption radius. 

3.3. More general decompositions 

The decomposition (3.3) and (3.4) has been used to generate the nearside-farside decompositions 
shown in this paper. Although this is mathematically exact, the physical interpretation in terms of 
travelling waves is unambiguous only for large I, that is for peripheral collisions. A more general 

semiclassical technique for scattering from complex potentials has been introduced [73], based upon 
the work of [108,107] (see also [25]). We quote from [73]: “Long usage has conferred an aura 
of ‘physical reality’ on the rays of geometrical optics, and it is this accumulated experience with 
the way rays describe wave propagation that provides the ‘physical interpretation’ of the analogous 
decomposition of f(O) into its ‘semiclassical trajectory’ components 

f(e) = f,(O) + f2(0> + . . . .” (3.8) 
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This applies particularly to decomposing the farside amplitude itself into semiclassical subamplitudes, 
such as those associated with the two farside trajectories shown in Fig. 3.2. These two, in particular, 
play an essential role in our analysis of rainbow phenomena. The farside trajectory with the larger 
impact parameter is the one discussed earlier and represented by the amplitude &(0) in Eq. (3.5). 
When the absorption at smaller radii is not complete, systems following another trajectory with a 
smaller impact parameter may survive, emerging at the same scattering angle and interfering with 
the first one. This is the origin of rainbow phenomena and is most simply discussed at our present 
level in terms of the deflection function. 

3.4. Deflection functions 

The deflection function for scattering by a real potential is related to the real scattering phase 
shifts 6, in the WKE% approximation by 

O(Z) = 2d&/dl, 

where the elastic scattering S-matrix element is 

(3.9) 

sr = e2idi. (3.10) 

In practice, the potentials that we shall encounter are complex and the corresponding phase shifts 
become complex. One may then consider the deflection function for scattering by the real part of 
the potential alone. Alternatively, we may use in Eq. (3.9) just the real part of the phase shift by 
writing 

Z = Pile 
2i6, 

, (3.11) 

where IS11 < 1. There is no strict justification for either procedure but fortunately examination of 
realistic cases of light heavy-ion scattering shows that the two approaches frequently give very 
similar results. This supports our assumption that the spatial motion of these systems is primarily 
determined by the real potential while the imaginary potential primarily reduces the flux as it travels 
along these paths, and hence reduces the magnitude of the outgoing scattering amplitude. (This view 
also underlies the semiclassical treatments of [32].) 

The structure of the typical deflection function shown in Figs. 3.1 and 3.5 can be easily understood. 
The positive segment for large I (large impact parameters) is due to the repulsive Coulomb field. 
We may write 0 as a sum of nuclear and Coulomb components 

O(1) = oN(l) + @(l) ) (3.12) 

where 

@(r) = 2 arctan (q/l + t) , (3.13) 

and q is the Sommerfeld parameter for a relative velocity u 

q = Z1Z2e2/fiv , (3.14) 

The positive angle (nearside) segment is relatively small because the repulsive Coulomb interaction 
is weak for the light systems of interest here. As the impact parameter decreases, the attractive 
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Fig. 3.5. Deflection function and farside differential cross section for (unsymmenized) “C + r2C scattering at 289 MeV, cal- 

culated using a potential that reproduces the observed scattering for this system. The nuclear rainbow occurs at 0s = -66” 
with Ls N 26. The Airy maxima and minima on the bright side result from interference between the L, and L < contri- 
butions (from [143]). 

nuclear potential, which empirically is found to be quite deep (for example, - 200 MeV for the 
case shown in Fig. 3.5, so that the attractive force is m a few tens of MeV/fm), overwhelms the 
Coulomb repulsion (Nfew MeV/fm) and induces farside scattering to negative angles. However, 
the magnitude of the negative angle cannot increase without limit, provided the energy is above 
the range that allows orbiting. An extremum is reached and then 0 decreases to zero for head-on 
collisions. 

3.5. Rainbows 

Classically, the differential cross section at the scattering angle 0 = (01 is given by 

g(@ = c Cl+ l/W2 
k2 sin 0(dO/dll * 

(3.15) 

where the sum allows for the possibility that more than one 1 value results in the same scattering 
angle 8. This expression diverges whenever do/d1 = 0. This is called a rainbow, since the corre- 
sponding phenomenon in the scattering of light from water droplets is responsible for atmospheric 
rainbows. The deflection functions of Figs. 3.1 and 3.5 show two such extrema. The outer, for large 
1, results in a Coulomb rainbow, seen at small scattering angles. (The name is a little misleading 
because the outer maximum in 0 results from a balance of Coulomb and nuclear forces.) The inner 
minimum in 0 gives rise to a nuclear rainbow at 8 = (OR 1. 

3.6. Supernumerary rainbows and the Airy pattern 

Of course, there is no longer a divergence at a rainbow angle in a quanta1 description, and 
the sum over cross sections in (3.15) becomes a coherent sum over amplitudes. The latter fact is 
vital for understanding the behaviour of the cross section at angles 8 < [oRI where there are far- 
side contributions from two angular momenta I at each angle 8, as indicated by the trajectories in 
Fig. 3.2. These are denoted Z,(6) and Z,(Q) in Figs. 3.2 and 3.5, and their interference results in a 
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X 

Fig. 3.6. Graph of the Airy integral Ai( In our context, x is proportional to 0 - IOR 1, so that n =0 corresponds to 
f3= l@Rl and positive x is on the (classically forbidden) dark side of the rainbow. 

series of maxima and minima in the farside cross section shown in Fig. 3.5. This has become known 
as an Airy pattern after the 19th century Astronomer Royal of England, Sir George Airy, who pro- 
vided the first mathematical model of the atmospheric rainbow. By using a parabolic approximation 
for the minimum in the deflection function, he was able to express the scattering amplitude as the 
well-known Airy function Ai shown in Fig. 3.6. In our context, the argument x is proportional to 
13 - IOR 1: see [ 1581 for example. Then x = 0 represents the primary rainbow and x > 0 corresponds 
to the classically forbidden darkside of the rainbow where the amplitude decreases exponentially 
with angle. The extrema for x < 0 represent supernumerary rainbows, and it is their observation that 
gives the most unambiguous signal of rainbow phenomena; at least the first Airy minimum can be 
discerned clearly in the examples shown in Figs. 2.2 and 2.3. These Airy oscillations have widths 60 
= rt/( Z, -1, ), much broader than the widths of the nearside/farside oscillations at the more forward 
angles. 

The imaginary part of the optical potential plays a very important role at this juncture in de- 
termining the relative magnitudes of the 1, and 1, contributions to the scattering amplitude, and 
thus how distinctive their interference pattern can be. The I, trajectories experience deeper pene- 
tration of the potential, and hence more absorption, than the 1, ones; consequently, they interfere 
less effectively than if the potential were real. If the absorption along the I, trajectory is increased 
so that the interference with the 1, amplitude becomes negligible, we are left with a featureless 
farside amplitude that falls off exponentially with increasing angle. Fig. 3.5 shows the cross section 
for farside scattering from the reaZ part alone of an otherwise realistic “C +12C potential. We see 
a primary rainbow and two well-developed higher-order Airy maxima or supernumerary rainbows. 
On the other hand, Figs. 3.7 and 3.8 show examples of the scattering induced by complex poten- 
tials that are not unrealistic. Fig. 3.7 illustrates the nearside, farside decomposition for a potential 
(CC1 ) needed to fit measurements of i2C +I2 C scattering at 159 MeV [29]. Despite the absorption 
present, a distinctive Airy minimum near 70”, the first preceding the primary rainbow near 120”, is 
clearly visible, and even a hint of the second one can be seen in the farside amplitude. By way of 
contrast, Fig. 3.8 shows the same case except that the absorptive potential at small radii has been 
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Fig. 3.7. Decomposition into nearside and farside contributions of the scattering by a complex potential (Ccl) found to 

fit measurements of “C + “C scattering at 159 MeV. The solid curve denotes the coherent sum of the two amplitudes. 
An Airy minimum in the farside scattering is seen near 70”, preceding the primary rainbow near 120”. (From [BR88c]. 

For clarity, the two ions have been treated as nonidentical.) 

Fig. 3.8. As for Fig. 3.7, except that the absorptive potential has been artificially increased at small radii”. The Airy 

pattern in the farside contribution seen in Fig. 3.7 no longer appears because the additional absorption has dampened the 
I, part of the farside amplitude. 

increased artificially. ’ Now the additional absorption has dampened the 1, contribution so much 
that no perceptible Airy pattern remains in the farside amplitude, and the cross section exhibits a 
smooth exponential-like falloff at angles beyond the farside-nearside interference region. Although 
inappropriate for this particular case of ‘*C +‘*C at 159 MeV, such patterns have been observed for 
other systems or energies. (‘*C +I60 at 608 MeV is one such case, discussed in [29].) At one time 
this was regarded [58] as “characteristic of a nuclear rainbow”, but in the light of our present un- 

derstanding, we believe the term “rainbow” should be reserved for those cases where some remnant 
of the Airy pattern can be identified. A structureless exponential-like falloff might be better referred 
to simply as farside dominance or a farside tail. 

It is instructive to compare in Fig. 3.9 the magnitudes ]SI] of the S-matrix elements for the two 
cases shown in Figs. 3.7 and 3.8. (The plot of ]SI] vs. 1 may be called the absorption profile for 
scattering by that potential.) The ]SI ( for I2 23 are almost identical for the two potentials, and as a 
consequence, the differential cross sections are almost exactly the same out to 0 M 40”. However, 
those for small 1 have been reduced by more than two orders of magnitude by the additional 
absorption. The angular momentum I, associated with the inner farside trajectory falls in this region, 
thus contributions from this trajectory have been essentially eliminated and no Airy interference is 
seen in Fig. 3.8. It is also worth noting that the original potential, which does reveal in Fig. 3.7 a 
pronounced first Airy minimum, does so with IS11 for small 1 that are only a few times 10P3. 

A more detailed analysis [29,73] of the scattering shown in Fig. 3.7, as well as similar cases, 
will be discussed later. 

r By adding to potential CC1 of [29] an imaginary term with a shape that is the derivative of the Woods-Saxon shape, 
strength @‘o = 80 MeV, radius &I = 1.7 fm and diffuseness ao = 0.5 tin. 
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Fig. 3.9. The magnitudes of the 
degrees of absorption occurring 
1 1 23 are almost identical. 
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S-matrix elements for the cases shown in Figs. 3.7 and 3.8, showing the very different 
for the partial waves with small impact parameters, although the grazing waves with 

4. Meaning and theoretical basis of the optical model potential 

4.1. Optical model potential as an eflectioe interaction 

An optical model potential is an effective interaction U,(r) between two particles whose centres 
of mass are separated by the distance Y, which can be used in a one-body SchrGdinger equation 

-$v’ + U,(r) I x(r) = Ex(r) 

such that the asymptotic behaviour of its solutions x(v) (with appropriate boundary 
describe their elastic scattering, at least in an energy-averaged way. (We ignore any 

(4.1) 

conditions) 
dependence 

on the spins of the particles for simplicity.) In Eq. (4.1), E is the energy of relative motion in 
the centre-of-mass system, while p = MPMJ(MP + Mt) is the reduced mass of the system when 
the projectile and target are well separated. The two nuclei remain in their ground states in this 
scenario. No attempt is made to describe explicitly any excitation or distortion of the nuclei during 
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the collision. Any effects due to such polarization are assumed to be taken into account by the 
characteristics of the potential UE; in particular UE = I$ + i WE has an imaginary part which describes 
the loss of flux (absorption) into nonelastic channels. 

The availability of accurate data covering a wide range of angles for a-particle elastic scattering 
has made it possible to determine phenomenological optical potentials without discrete ambiguity 
for many target nuclei. We are approaching a similar situation for the scattering of light heavy-ion 
systems. The significance of this and the interpretation of the potentials is the main subject of the 

present review. 

4.2. Energy dependence and nonlocality 

The potential UE is written in Eq. (4.1) as though it is local, although it may vary with the 
energy E. Model potentials are almost invariably assumed to be local, although, in principle, theo- 

retically derived potentials are nonlocal, 

&x(r) = 
s 

UE(r, /)x(d) dv’ . (4.2) 

Consequently, it is customary to derive equivalent (but generally approximate) local forms in order 
to compare with more phenomenological local potentials obtained by analysis of measured elastic 
scattering. The energy dependence implied in Eq. (4.2) is intrinsic (which may be interpreted as a 
nonlocality in time [138-1401). A transformation of the spatial nonlocality (momentum dependence) 
to give an equivalent local potential results in an additional energy dependence. The two types of 
energy dependence cannot be distinguished in phenomenological potentials. 

4.3. Microscopic theories of the optical potential 

4.3.1. Introduction 
Many ways of calculating a nucleus-nucleus optical potential have been proposed. Frequently a 

total energy curve is calculated as a function of the distance separating the centres of mass of the 
two nuclei. (Care has to be taken over the definition of this distance when the two nuclei overlap!) 
After subtraction of the energy of the two noninteracting nuclei, this energy curve is then interpreted 
as an optical potential and used in Eq. (4.1) to calculate the elastic scattering. This is incorrect. 
Such approaches attempt to follow explicitly, to a greater or lesser degree, the readjustments that 
the two nuclei make as they begin to interact and overlap: distortion of the nuclear shapes, reaction 
to the Pauli principle, effects due to the saturating nature of nuclear forces, etc. Such an interaction 
energy function does not determine just the relative motion while the nuclei remain in their ground 
states but is related to the motion of a wavepacket which can include a wide range of excited states 
of the individual nuclei. Such a wavepacket may be appropriate for describing the evolution of a 
process like fusion, but the ground-state component must be projected out asymptotically before it 
can describe elastic scattering. Even when the calculation is performed in an adiabatic approximation 
so that the system does return finally to the elastic channel, corrections to the kinetic energy term 
in Eq. (4.1) are required (see [ 1501 for an early discussion). 

A detailed criticism of the identification of the optical potential with such an energy curve has 
been presented by Horiuchi [84,86] (see also [69]), with particular emphasis on the inadequacy of 
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the adiabatic assumption. One practical point that has been stressed is that a “potential” of this kind 
has properties that conflict with those now known to hold for the real parts of phenomenological 
optical potentials that reproduce measured elastic scattering: namely that the interaction energy curves 
are shallow at low bombarding energy and become deeper as the bombarding energy increases and 
the repulsive effects of the Pauli principle decrease. Empirically, as documented in this review, the 
real parts of the optical potentials are found to be deep (several hundreds of MeV) and to become 
less deep as the incident energy increases. 

The folding model, to be discussed in more detail in chapter 5, does result in real potentials that 
satisfy the empirical constraints. It can be regarded as a first approximation to the real part of the 
effective interaction which is derived within Feshbach’s reaction formalism [68] (see Section 4.4) 
and which controls the relative motion of that part of the total wavefunction in which the two 
nuclei remain in their ground states. Thus it is appropriate for use in the optical model (Eq. (4.1)). 

Feshbach’s theory also provides guidance as to the corrections to the folded potential that may be 
expected, and a framework within which they may be estimated. 

4.3.2. Antisymmetrization, exchange and the resonating group method 
Even if we use internal wavefunctions for the two nuclei, each of which is antisymmetric, the 

Pauli principle requires the total wavefunction also to be antisymmetric under the interchange of 
nucleons between the two nuclei. Some insight into the effects of this requirement is provided by 
the results of studies using the resonating group method (RGM) [39,124,125,84,86]. 

In its usual one-channel form, the RGM freezes the two nuclei in their ground states but takes 
full account of the exchange of nucleons between them. It uses the trial wavefunction 

~{X(r)~~o(~~)~to(rt>) 3 (4.3) 

where &o and &o are the individually antisymmetrized internal ground-state wavefunctions for the 
projectile and target respectively, x(v) is the wavefunction of relative motion and the antisymmetrizer 
d exchanges nucleons between them. A one-body wave equation for the relative motion function 
x(r) is then constructed which includes a highly nonlocal RGM “potential”. Besides a local direct 
term which is just a folded potential, the antisymmetrizer results in a hierarchy of nonlocal exchange 
terms, according to the number of nucleons exchanged. An accurate localization procedure has been 
devised which yields local potentials equivalent to these exchange terms [84,86]. 

ARer localization, the RGM approach results in deep (real) potentials, comparable to the empirical 
ones, which become less deep as the bombarding energy increases and as the attractive exchange 
terms become weaker. These studies also indicate that the one-nucleon exchange contribution is the 
largest of the exchange terms, and dominates for peripheral collisions because it has the longest range. 
They also caution us that significant corrections may arise from the other terms at smaller distances, 
especially for near-symmetric systems (Ap =:A,). At the same time, it should be kept in mind that 
the RGM equation for x(v) cannot immediately be identified with the optical model Schrljdinger 
equation (4.1) (see [39] for a helpful discussion, also [69]), although the main conclusions reached 
about the RGM potential can be expected to be characteristic also of the optical model potential. 

4.3.3. The absorptive, imaginary potential 
The number of realistic attempts to calculate the imaginary (absorptive) part of the optical potential 

is quite limited. (But see [205], whose approach is based upon Feshbach’s theory. Also, [32] consider 
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the imaginary potential for peripheral collisions using a semiclassical approach.) In practice, the 
imaginary potential is usually treated in a phenomenological way, either by multiplying the real 
folded potential by a complex strength or by assuming a form such as the Woods-Saxon one, 
and adjusting parameters to fit elastic data. The origin of the imaginary potential, and the associated 
contributions to the real part, is seen most transparently within the framework of Feshbach’s reaction 
theory, to which we now turn. 

4.4. Reaction theory of Feshbach 

4.4.1. Introduction 
There is no truly microscopic theory of the optical potential for the scattering of two composite 

nuclei in the sense that there is for nucleon-nucleus scattering [136, 1371. However, it is useful 
to appeal to the theoretical framework provided by the reaction theory of Feshbach [68]. Despite 
some difficulties with the exchanges of nucleons between the two nuclei which arise because of 
antisymmetrization, this approach often facilitates physical interpretations in a transparent way. Fur- 
thermore, the mean field defined in this way for a given heavy-ion system also sustains bound states 
which can be tentatively associated with actual (“quasi-molecular”) states of the compound system. 
Indeed, evidence has been adduced in some cases for either bound states or quasi-bound resonances 
which seem to have the corresponding cluster structure, provided some account is taken of the Pauli 

principle (see, e.g., [92,117]). 
Our presentation here of Feshbach’s theory is didactic and ignores many subtleties. We refer the 

reader to [68] for an authoritative discussion. 

4.4.2. Outline of the theory 
Let us initially ignore the exchange of nucleons due to antisymmetrization. Then the total wave- 

function for the colliding projectile plus target system, p + t, may be expanded in terms of the 
complete set of internal eigenstates of the individual nuclei 

y = C Xij(Y)4ppi(Sp)$lj(tf) 9 
ij 

(4.4) 

where xii(V) describes the relative motion when the nuclei are in their internal states labelled i and 
j. Then xoo gives the elastic scattering if i, j = 0 denotes the ground states. We want an effective 
interaction, or optical potential, that will generate x0*(r) when used in the one-body Schradinger 
Eq. (4.1). Inserting the expansion (4.4) into the many-body Schrodinger equation and integrating 
over the internal coordinates results in an infinite set of coupled equations for the Xii(r). If we use 
Feshbach’s projection operator formalism to eliminate explicit reference to the nonelastic channels 
[68, 1821, we obtain an exact expression for the equivalent effective interaction which acts in the 
elastic channel alone and determines xoo(v). This we may write 

uE= voo+~~c’vo. 
1 

E - H + is 
V! 
x0 ’ 12’ 

(4.5) 

Here V is the (real) interaction between the two nuclei, while a stands for a pair of internal state 
labels i,j. The prime reminds us that the sum runs over all states a in which at least one nucleus 
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is excited. The first term of (4.5) is real and is simply the folded potential 

161 

v,o = V,(r) = (&704toI Wpo~ro) > 

where the round brackets denote integration over the internal coordinates 
Then we may rewrite (4.5) as 

U, = VF(Y) + AU, . 

The second term AU,, is often referred to as the dynamic polarization 
from couplings to the nonelastic channels. 

(4.6) 

5, and & of the two nuclei. 

(4.7) 

potential (DPP) and arises 

We should reemphasize that the potential U, (and by implication an equivalent model potential), 
defined in this way, is designed, when used in the SchrGdinger equation (4.1), to generate the relative 
motion xoo(v) of the two nuclei while they both remain in their ground states. This may be a very 
small component of the total wavefunction in that region where the two nuclei overlap appreciably; 
in that case, the strong absorption into other channels manifests itself through x0,-,(v) becoming small 
there. 

4.4.3. Polarization eflcts 
The physical processes associated with the DPP are easy to understand from Eq. (4.5). The 

interaction V excites one or both nuclei to the state CI. The system then propagates under the 
influence of the mutual interaction according to the Green function 

G=f%(E-H+is)-‘. (4.8) 

Because the Hamiltonian H contains the interaction V, the system may make a transition to a different 
inelastic channel, a’# a, during this propagation. Finally, V induces a transition back to the elastic 
channel. 

Several properties of the DPP contribution AU, to the effective interaction U, are clear from 
Eq. (4.5) [ 1821. First, it depends explicitly upon the energy E. Second, it is complex. The imaginary 
part arises From energy-conserving transitions to open nonelastic channels in which flux is lost from 
the elastic channel. The real part comes Corn virtual excitations, corresponding to readjustments the 
two nuclei make as they begin to interact but which are reversed and they return to their ground 
states. Energetically closed channels can contribute to the real part of AU,. 

Lastly, the DPP is nonlocal; a system that is excited into a nonelastic channel at position r will, 
in general, return to the elastic channel at another position r’ #r. Some procedure must be devised 
for obtaining an equivalent local potential before theoretically constructed effective interactions can 
be compared with local phenomenological ones. 

4.4.4. Antisymmetrization and exchange 
The individual internal nuclear wavefunctions $i(c) in (4.4) and (4.6) are each taken to be 

antisymmetrized, but the Pauli principle requires the total wavefunction (4.4) also to be antisymmetric 
under interchange of nucleons between the two nuclei. This introduces formal complications [68] 
that we shall not go into here. In practice, the only concession to antisymmetry that is made in the 
folding model (chapter 5) is to consider interchange of the two interacting nucleons. This process 
has been called knock-on exchange because in nucleon scattering from nuclei it results in a target 
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nucleon being ejected and replaced by the projectile nucleon following their mutual interaction. If 
the interaction Y is comprised of two-body interactions 

v = cup*, 
Pt 

(4.9) 

with p labelling a nucleon in the projectile and t one in the target, including this knock-on exchange 
is equivalent formally to replacing 

opt --f upt( 1 - ppt > , (4.10) 

where Ppt is the operator that exchanges all coordinates of these two nucleons. Then the first term 
(4.6) of the potential (4.5) is replaced in this approximation by 

= VFD + V:, say. (4.11) 

Interchanging the spatial positions of the two nucleons affects the positions of the centres of mass of 
the two nuclei, and their separation changes to r’ #v. The corresponding exchange contribution Vf 
to the potential (4.11) becomes nonlocal. The range of nonlocality is not large because it arises from 
recoil effects mAi1 and A;’ [78,162], and is further limited by the finite range of upr. (A opt with zero 
range would result in a local potential.) In practical calculations, the nonlocal exchange contribution 
becomes replaced by an approximately equivalent local term [78,181,99] (see chapter 5). 

The knock-on exchange contribution Vf to the potential (4.11) is found to be far from negligible 
when realistic nucleon-nucleon interactions are used. The relative sizes of the direct VF and ex- 
change VF terms are sensitive to the effective interaction chosen between two nucleons in odd states 
of relative motion [178,20], although their sum V,? + Vf is much less sensitive [178,181]. This oc- 
curs because the “oddness” of the odd-state interaction yields direct and exchange terms of opposite 
sign which thus tend to cancel. A recent example [ 1021 compares folded potentials calculated for 
a+40 Ca using G-matrix effective interactions based upon the Reid and the Paris nucleon-nucleon 
potentials. The older Reid-based interaction results in an attractive direct component, and an attrac- 
tive exchange component of similar magnitude. On the other hand, the more realistic Paris-based 
interaction results in a repulsive direct potential. This is compensated for by a much more attractive 
exchange term, such that the summed direct plus exchange potentials from the two interactions are 

almost identical. 
Finally, we should note again that the single-nucleon knock-on exchange potential discussed here 

cannot be compared directly with the one-nucleon exchange contribution to the RGM “potential” 
discussed in Section 4.3.2. The latter is an effective potential which contains contributions from the 
kinetic energy operators and orthogonal&y requirements, as well as from the interchange of nucleons 
that are not actively interacting with each other [69,84,87,125]. 

4.4.5. The imaginary potential 
Feshbach’s formalism provides a convenient and transparent starting point for models of the 

absorptive processes that result in the imaginary part of the optical potential. Using Plemelje’s 
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operator relation 

1 
lim- = 
e-0 a + ie 

9 i - i&(a) , 
0 

(4.12) 

where B denotes the Cauchy principal value, we may formally separate AU of Eqs. (4.5) and (4.7) 
into its real and imaginary parts. A particularly simple expression for Im AU emerges if we neglect 
the elements of V, and hence of the propagator G of (4.8), that are off-diagonal in the representation 
(4.4). Then 

Im AU E Im U, = -rt C’~,,(V)X,(Y)~O(~‘)X~+(~‘)~(E - E,) , 
x 

(4.13) 

where again the prime on the sum reminds us that the ground state r with i =j = 0 is excluded and 
where the energy-conserving delta function ensures that only open channels contribute. Actual calcu- 
lations tend not to use the separation (4.12) but evaluate the full AU. With the same approximation 
of neglecting off-diagonal parts of G, we have 

AW,r’) = C’ KdW,,(v%oIo(~‘) . (4.14) 
DLl’ 

A model for the nonelastic processes determines the coupling terms I$,, while various approximations 
for the Green function G,, have been used. In principle, the sum over intermediate states tl is infinite 
(including continuum states of the two nuclei), but in practice, of course, a very truncated set of 
states is used. The expression (4.14) has been applied to the scattering of nucleons (for examples, 
see [168,49]), of alpha particles (for example, [172,203,60,123]) and of heavy ions [205] (see 
also [ 1601 and other references there). An important simplification was introduced by Vinh Mau 
[123,205]; the important contributions to the sum over the intermediate states a in (4.14) were 
assumed to come from limited regions of excitation energy, so that the Green functions G,, could 
be replaced by averages and taken out of the cc sums, G&Y,/) --t G(v,Y’). Closure could then be 
used to perform the a sum, 

(4.15) 

where the last term corrects for the ground-state term being excluded from the primed sum. The 
final expression then depends only upon ground-state properties, with no explicit reference to the 
excited states except for the choice of an average excitation energy. A WKB approximation is used 
to simplify the Green function G(v,v’) and a Wigner transform is introduced to reduce the nonlocal 
potential to an approximately equivalent local one. 

Despite the sequence of approximations involved, this approach has been quite successful in 
reproducing the main features of the imaginary potentials found empirically (see [ 1601 and other 
references there), at least for peripheral collisions. The only application to a light heavy-ion system 
seems to be to 12C +12 C [205]. While the predicted Im U is in agreement with phenomenological 
ones in the surface, it does appear to be too absorptive at small radii. It is not clear whether this 
is due to the approximations made in the theory or whether it is due to the particular model input 
used. 
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4.5. Dispersion relations and “threshold anomalies” 

4.5.1. Dispersion relations 
The first term of the potential (4.5) is independent of the energy E, while according to (4.12) the 

remaining DPP term is complex 

A&(r,r’) = AV,(r,r’) + i&(r,v’). (4.16) 

Feshbach [67,68] seems to have been the first to point out that there is a dispersion relation between 
the real and imaginary parts 

g 
AV,(r,r’) = ; 

s 

W&(r, r’) 
El _ E dE” 

together with the complementary relation 

9 WE(Y,Y’) = -_n s A~,~Y,Y’) ti, 
El-E * 

(4.17) 

(4.18) 

These are analogues of the Kramers-Kronig relations for a complex refractive index in optics [93], 
and can also be interpreted as an expression of causality, namely that a scattered wave is never 
emitted before the arrival of the incident wave [48, 1381. 

Eqs. (4.17) and (4.18) explicitly refer to the property that the potential is nonlocal in coordinate 
space; the relations hold for any given pair Y and r’, as well as any weighted integral over them. As 
discussed elsewhere, this nonlocality (as well as that in I& arising from exchange) is equivalent to a 
momentum dependence rather than a dependence on energy E, but phenomenological local potentials 
cannot distinguish between these dependences. Consequently, some of the energy dependence found 
for phenomenological optical model potentials is “spurious” and reflects an underlying nonlocality. 
Only the true, or “intrinsic”, E-dependence is relevant to the dispersion relations (4.17) or (4.18). 
Some discussion has been given elsewhere [ 1351 on how to account for the spurious part. Fortunately, 
there is some evidence that the spurious E-dependence is smooth and slow, whereas in the next 
section we are concerned with the consequences of a more rapid intrinsic variation with E. In 
practice [ 1871 the relations (4.17) and (4.18) are usually assumed to hold for the phenomenological 
local potentials, but the possibility of some spurious effects due to nonlocality should always be kept 
in mind. 

The dispersion integral (4.17) for A& involves I+‘,, at all energies E’. In general, we will not know 
this, particularly the behaviour at high energy. Different hypothetical extrapolations may provide very 
different values for A I$. However, our concern here is with the influence on A V, of a rapid variation 
of W, within a limited E range, rather than the absolute value of AVE. A subtracted version of the 
relation is useful for this; effectively we normalize A& to its empirical value at some reference 
energy ES and study the dispersive effects relative to that. This greatly reduces the sensitivity to 
the behaviour assumed for W, at energies far from the ones of interest. We immediately get the 
subtracted form from (4.17) 

AV, - A&S = (E -&f 1 
wEt 

TC (E’ - E)(E’ - E,) dE” 
(4.19) 
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The first point we note about the dispersion relations is that a potential that is real ( W = 0) at all 
energies may be nonlocal but has no intrinsic E-dependence. Further, an absorptive potential that 
varies slowly with E, such as those constructed to represent the effects of Coulomb excitation or of 
the breakup of ions like 6Li, is associated with only a weak real polarization potential. On the other 
hand, any rapid and localized variation of WE must be accompanied by a variation in A& that is 
similarly localized in the energy E. 

4.5.2. Threshold anomalies 
As just remarked, a rapid intrinsic variation with E of the imaginary potential implies a corre- 

sponding variation of the real potential. In particular, the denominator in Eq. (4.17) ensures that if 
1 W, 1 (where W, 5 0) increases rapidly over some small range of E, the associated contribution to 
A& wiI1 be attractive (A I$ < 0) in that same E region. Since we expect that WE will always vary 
in the way just described when nonelastic channels become open (hence the term “threshold”), the 
effect on the real potential (initially unexpected and so-called an “anomaly”) should be a universal 
phenomenon, although the size and hence observability will depend upon the specific behaviour 
of w,. 

A very closely related “anomaly” for a nucleon traversing nuclear matter has been known for 
a long time (see [ 1361 for example). In that case the Fermi surface plays the role of “threshold”. 
The Coulomb barrier provides a threshold for heavy-ion collisions. Nonelastic channels begin to 
be effectively closed by the Coulomb repulsion at energies below and in the vicinity of the top of 
the barrier; consequently, the absorptive strength WE decreases. This, and the associated increase in 
the attractive real potential, has been observed in a number of cases (see [187] for a summary of 
examples prior to 1991). The scattering of I60 by ‘08Pb (where the top of the Coulomb barrier occurs 
at E/A M 5 MeV) has become the classic, and most dramatic, example: see Fig. 4.1, which shows 
the strengths of the real and imaginary potentials near the strong absorption radius as a function of 
bombarding energy. The upper solid line shows the behaviour of the real potential predicted by the 
dispersion relation when the lower linear segments are used to represent WE [ 1871. 

The Coulomb barrier is of much less importance for light heavy-ion systems (small Z,Z,), but the 
number of open nonelastic channels increases as the energy rises above the lowest threshold. This 
leads to 1 W,l increasing also, until eventually kinematic matching conditions become the controlling 
feature and WE tends to level off or even decrease with further increase in E. It seems likely that 
this threshold behaviour of WE will be less rapid than that caused by the Coulomb barrier in heavy 
systems; consequently, the associated anomaly in the real potential would be expected to be less 
strongly localized in energy. This is the case for the “C + 12C system that is examined later [30]. 

Another manifestation of the threshold anomaly for heavy-ion collisions is the enhancement of 
fusion cross sections at near- and sub-barrier energies. All models of the fusion process involve a 
potential barrier which has to be at least partially penetrated before fusion occurs. Any increase in 
the attractive nuclear component of this barrier will lower it and tend to increase the fusion cross 
section [ 1871. 

4.6. Deep or shallow potentials: Uniqueness 

One of the early questions raised concerning heavy-ion scattering was “Deep or shallow poten- 
tials?’ (e.g., [179]). The predominance of strong absorption made the question somewhat academic, 
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Fig. 4.1. Illustrating the “threshold anomaly” in the strengths of the real and imaginary parts of the optical potential for 

the scattering of I60 + *‘*Pb which occurs for energies in the vicinity of the top of the Coulomb barrier (about 80 MeV 
in this case). Plotted are the values of the potential at r = 12.4 fin, near the strong absorption radius. The curve for the 
real potential was obtained from the dispersion relation (4.17) using the straight line-segment representation shown for 

the imaginary potential (adapted from [153]). 

but now one of our contentions is that careful studies of light heavy-ion systems have determined 
unambiguously that the physically realistic real potentials are indeed “deep”. This follows the earlier 
conclusion, based upon the same arguments, that a-particle-nucleus real potentials are deep; that is, 
have depths ~100-200MeV in the target interior [76]. 

For completeness, we should discuss briefly how unique these conclusions are. For example, it is 
known that many potentials may give the same scattering phase shifts, so presumably some implicit 
constraints accompany our conclusions. All the work reported here makes the basic assumption 
that the optical potential can be represented in a local form, is essentially independent of angular 
momentum 1, and varies only slowly and smoothly with energy E. Within this context, we find 
the real potentials have depths and radial shapes consistent with the folding model when “realistic” 
nucleon-nucleon effective interactions are used. This gives us some confidence in the interpretation 
of these potentials as physically meaningful. 

Recently, there have been interesting studies of the construction of shallow potentials that give the 
same scattering phase shifts as the deep ones (see [87] for a review). In particular, Baye [lo, 1 l] 
applied supersymmetry arguments to construct shallow real potentials that are rigorously phase- 
equivalent to energy-independent, l-independent deep real potentials. At the same time, unphysical 
(e.g. Pauli-forbidden) bound states in the deep potential are eliminated. The resulting shallow po- 
tentials remain independent of energy, but exhibit a l/r2 singularity at small radii and a strong 
dependence on angular momentum 1. These operationally unpleasant properties, combined with the 
simple and intuitively pleasing interpretation of the deep potentials, seem to make the use of the 
deep potentials much more preferable and useful. 
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The fact that much heavy-ion scattering data can be fitted using shallow, nonsingular and 
I-independent potentials is due to the scattering, because of strong absorption, providing insuffi- 
cient information to determine the potential unambiguously (or sometimes because of limited data). 
In particular, such data can only yield information on a relatively small “window” of partial waves 
for peripheral collisions. 

5. Folded potential models 

5.1. Introduction 

As the reader will have surmised by now, we regard folded real potentials as central to our 
understanding of nucleus-nucleus interactions. They comprise the first-order term of the optical 
potential according to Feshbach’s theory. In practice, they are modified by a renormalization factor N 
that is allowed to deviate from unity when experimental data are being fitted. It is assumed that 
this effectively takes into account higher-order corrections to the real potential from the real part of 
the DPP AU, and perhaps additional corrections from nucleon exchanges. Of course, the needed 
deviation of N from unity should be small ( 5 10% or so) if the model is to remain meaningful. 
(Often adjustments of this order can hardly be distinguished from those due to uncertainties in the 
ingredients of the folding model itself.) 

It is now time to turn to a more specific discussion of folding [ 162,18 1,182]. Most important 
is the choice of a realistic effective nucleon-nucleon interaction, but first we review the overall 
structure of the model. It is generally assumed that the interaction V is a sum of local two-body 
potentials upt, as in Eq. (4.9), although many-body aspects may be represented by a dependence of 
uPr on the density of the nuclear matter in which the two interacting nucleons are embedded. Then 
the folded potential (4.6) may be written 

(5.1) 

where, for simplicity, we have ignored spin and isospin. Here pp and pt are the density distributions 
of the projectile and target ground states normalized so that 

J pi(ri) dri = Ai . (5.2) 

The coordinates are defined in Fig. 5.1. We have allowed for a possible density dependence of upt. 
Because there is integration over two densities, expression (5.1) is often called double folding. 
Although involving a six-dimensional integral, it is very simple to evaluate if uPt does not depend 
upon the densities. Then we use Fourier transforms to work in momentum space [ 1811, thereby 
reducing the integral to a product of three one-dimensional integrals. When npr does depend upon 
the densities (see below), equally simple forms can be obtained if the density-dependence is chosen 
to factorize in certain ways, as in (5.20) below, for example. The power law (5.25) does not separate 
in the same way but results in a sum of a relatively few terms if the power p is integer and small 
and the prescription (5.21) is used. (Fortunately, /3 = 1 seems to be the favoured choice!) Evaluation 
of the exchange term is equally simple if the pseudo-potential approach (5.7), below, is taken. The 
more realistic treatment of Khoa et al. [98,101] requires a little more effort. 
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TARGET PROJECTILE 

Fig. 5.1. The coordinates used in the double-folding integral (5.1). The primed coordinates and the dashed lines result 

after the nucleons p and t have been interchanged because of antisymmetrization. This illustrates how the centres of mass 
of the two nuclei are moved by the exchange, thus making the exchange part of the potential nonlocal. 

The folding formula (5.1) satisfies some simple relations if + does nut depend upon the densities. 
If the density distributions are spherically symmetric and u,, is scalar, we have 

J( b) = -&f )&$d~(pf) = ‘$&+,f > 9 

where J(f) is the “volume integral” of the function f 

J(f) = 47t 
.I 

f(r)r2 dr . 

Furthermore, the mean-square radii are related by 

(5.3) 

(5.4) 

(T’)h = (r’), + (r2>, + (r2Ll,,, , 

where 

(r2)f = / f(r)r” dr/ / f(r)r2 dr . 

The relations (5.3) and (5.5) do not hold 
pt. Estimates of the corrections introduced 

5.2. Knock-on exchange 

(5.5) 

(5.6) 

if the interaction oPt depends upon the densities pP and 
by density dependence have been presented [ 1951. 

As discussed in Section 4.4.4, the only effect of antisymmetrization under exchange of nucleons 
between the two nuclei that is normally included in the folding model is the single nucleon knock-on 
exchange in which the two nucleons that are interacting via z+ are interchanged as in Eq. (4.11). 
This makes the exchange term in the potential nonlocal, as indicated in Fig. 5.1. 

At least two groups [ 161,162,129] calculated this knock-on exchange potential and concluded that 
it could be estimated quite accurately by adding a zero-range pseudo-potential to the interaction up’ 
in the matrix element (5.1). Namely, replace r+ by 
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The zero-range immediately makes the exchange term local. The strength j(E) depends only weakly 
on the energy E. It has been obtained by calibrating against “exact” calculations for nucleon- 
nucleus scattering [129], or approximate calculations for heavy-ion scattering [78,162,53]. These 
two estimates may lead to considerably different results [189]. 

Instead of the simple but semiphenomenological approach of (5.7) a more consistent microscopic 
approximation to the exchange potential has been proposed (see [98, 1011 and other references there). 
This takes explicit account of the finite range of upt, y et still results in a local potential through 
the use of local WKB approximations for the change in relative motion and for the off-diagonal 
elements of the one-body density matrices. The local momentum needed involves the potential that 
is being calculated, thereby posing a self-consistency problem. This may be solved iteratively. Despite 
these complications compared to the ansatz (5.7), the exchange potential is readily evaluated. No 
semiphenomenological adjustment is required, as was needed for the value of j(E) in Eq. (5.7); 
everything follows directly from the op’pt chosen. This approach has been applied successfully to the 
scattering of a-particles [ 1021 and light heavy-ions [ 10 1,103]. 

5.3. The eflective nucleon-nucleon interaction 

The success or failure of a folding model can only be judged meaningfully if the effective inter- 
action employed is truly “realistic”. Although much progress has been made, there are still many 
questions to be answered before we can be sure that the goal of realism has been reached [133,134]. 
In our present brief review, we merely summarize some of the approaches now in use. As usual, 
an important criterion of realism is addressed by feedback from success or failure when a given 
approximation is confronted by experimental data. 

The bare nucleon-nucleon potential, obtained from analysis of nucleon-nucleon scattering mea- 
surements, is too strong to be used directly (i.e. in Born approximation), but it is now widely 
recognized that the main features of the optical potential for nucleon-nucleus scattering can be 
understood by using the lowest-order Brueckner reaction matrix as an efIective nucleon-nucleon in- 
teraction [136, 134,133,95]. Deriving this effective interaction for a finite nucleus is a formidable 
task, so the usual approach is to do so for infinite nuclear matter as a function of density. Then a 
local density approximation (LDA) is invoked. The LDA assumes that the interaction of a nucleon 
pair at a position r in a finite nucleus where the density is p(r), is the same as in uniform nuclear 
matter with the same density. (Of course, this neglects any dependence on density gradients.) 

The problem for heavy-ion scattering is further complicated because the two interacting nucleons 
are immersed in two pieces of nuclear matter moving relative to each other, which implies a quite 
different Pauli operator in the Bethe-Goldstone equation [ 131. At least two attempts have been made 
to overcome this problem by solving the Bethe-Goldstone equation in this environment [ 180,651. 
The first attempt appears to result in real potentials that are too shallow and imaginary potentials 
that are too absorptive, although this could be due to the choice of nucleon-nucleon interaction and 
the approximations used. The second attempt identifies the optical potential with the energy-density 
curve, an approach that was criticized earlier (Section 4.3). As a consequence, the calculated real 
potential increases in depth as the energy increases (up to E/A = 1 GeV) instead of decreasing as 
found empirically [ 180,651. More frequently, however, the approach has been to use the LDA just 
described, replacing the single target density by the sum of the two colliding density distributions. 
Thus we neglect any dynamic consequences of their relative motion on the effective nucleon-nucleon 
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interaction, but this simple approach has had some remarkable success (documented in the remainder 
of this review). 2 

Before discussing some specific effective interactions that are in use, we examine the role of spin 
and isospin. 

5.4. Spin and isospin structure 

The central part of the effective nucleon-nucleon interaction up’pt may be written 

$1 = loo + vo&t)rp . zt + ~lO(Yp& . CJt + 4&t)qI . ctql . 7,) (5.8) 

where CJ, r are the Pauli matrices for spin and isospin, respectively. In general, there will be spin- 
orbit and tensor terms also (for example, see [182, p. 6381). When either target or projectile has 
zero spin, the usT terms in (5.8) with S = 1 do not contribute. Similarly, the usr with T = 1 do 
not contribute if either nucleus has zero isospin (N = 2). Usually, the spin terms are relatively 
unimportant for determining cross sections (but, of course, can become important for polarization 
measurements). For one thing, only one or a few unpaired nucleons in each nucleus contribute to 
the S = 1 potential whereas all nucleons contribute to the S = 0 part. 

Similarly, the T = 1 interactions tend to make either no contributions or only small ones. For 

example, the integrand of Eq. (5.1) for two spinless nuclei (so S = 0 only) may be written 

PpPtvoo + (P,” - P;)(P: - PPkOl > (5.9) 

where p;, p/’ are the neutron, proton distributions, respectively, in nucleus i. For illustration, we may 
assume pr = (Ni/Ai)pi and pf = (Zi/Ai)pi, then (5.9) becomes 

uoo+uol@L4m-z~) 
AD 

Now vol and voo are comparable in magnitude for realistic interactions (typically 2101/uoo N -0.5), 

whereas the product of asymmetries (Ni - Z,)/Ai is usually either zero or very small, even for light 
systems involving an “exotic” neutron-rich nucleus like “Li [106]. 

(5.10) 

Consequently, almost all calculations of folded potentials have utilized only the spin-, isospin- 
independent interaction uoo. 

Frequently, instead of the representation (5.8), the nucleon-nucleon interaction is expressed in 
terms of the total spin (singlet S or triplet T) of the two-nucleon system and the parity of its 
relative orbital angular momentum (even E or odd 0). In these terms, for example, the spin-, 
isospin-independent component uoo becomes [ 14,182] 

uoo = $(3USE + 3UTE + us0 + 9uro). (5.11) 

This representation is particularly convenient when considering exchange, for the effect of the ex- 
change operator Ppl is to change the sign of the odd-state components and leave the even-state ones 
unchanged. Thus the interaction coo appropriate for the knock-on exchange term becomes 

v^oo = $J3USE + 3UTE - us0 - 9uro). (5.12) 

* However, as Mahaux [ 1341 remarks, we must beware of confusing a successful comparison to experimental data with 
a theoretical justification. It is necessary but not sufficient. 
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This change of sign also implies some cancellation of the odd-state contributions when the direct and 
exchange potentials are added, making the results less sensitive to the choice of odd-state interaction. 
However, this cancellation can never be complete, as we now see. 

Both even and odd terms contain a long-ranged (x 1.4 fm) piece from the one-pion exchange 
potential (OPEP). The OPEP is proportional to (gp . cr,)(z, . z,), so can only contribute to the o1 I 
component in Eq. (5.8). Thus we find the sum of its contributions to Eq. (5.11) vanishes; the even- 
state pieces are cancelled by the odd-state ones. However, the change of sign for the latter in the 
exchange interaction COoo of (5.12) means the OPEP does contribute there. 

5.5. Density-independent M3 Y interactions 

A variety of effective nucleon-nucleon interactions have been introduced into the folding model, 
but that which became known as M3Y is probably the most widely used and certainly is represen- 
tative of “realistic interactions”. 

Details are given by Bertsch et al. [14]. The derivation proceeded in two steps. First the Bethe- 

Goldstone equation was solved in an harmonic oscillator basis, using the Reid [ 1711 soft-core inter- 
action, to yield the Brueckner reaction- or G-matrix. An oscillator parameter ho = 14 MeV was 
chosen, appropriate for nuclei near 160. Then a sum of Yukawa terms was found whose oscillator 
matrix elements most closely reproduced the G-matrix ones. The central components were fitted 
using three Yukawa terms with ranges of 0.25,0.40 and 1.414 fm (hence the notation M3Y, with M 
standing for Michigan to distinguish it from some other, similar, interaction models being investigated 
at that time). The term with the longest range was fixed to be the OPEP, leaving the other two 
strength parameters to be adjusted for each central component. The odd-state components of the 
central interaction are the most poorly determined parts. Instead of using the Reid results for them, 
it was proposed to use pure OPEP for the triplet-odd interaction and a three-Yukawa fit to the 
oscillator matrix elements of Elliott et al. [63] for the singlet-odd interaction. 

This work was later extended to use the more modern and more fundamental Paris nucleon- 

nucleon potential [ 1221. This potential was used to generate all (odd as well as even) components 
of the effective interaction [5]. To distinguish these variants, one should refer to the M3Y-Reid and 
M3Y-Paris effective interactions. 

Results were given for all spin, isospin components of the interaction, including spin-orbit and 
tensor, but our primary interest here is in the S = T = 0 spin- and isospin-independent central term. 
Explicit forms for this term follow: 

-25 

M3Y-Reid: Y&Y) = 2134% 
2.5r 1 MeV , 

M3Y-Paris: 

J 

-25 

2538% 
2.5r 1 

MeV . 

(5.13) 

(5.14) 

Both versions consist of a short-ranged repulsion and a longer-ranged attraction, passing through 
zero near Y M 0.5 fm. In momentum space this implies a change of sign near 4 = 2 fn-’ . These are 
common characteristics of realistic effective interactions. 

The interactions (5.13) and (5.14) have volume integrals (5.4) of J&Reid) = - 146 MeV fm3 
and J&Paris) = +13 1 MeV fm3. They are not as short-ranged as their component Yukawas might 
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suggest. The mean-square radius (5.6) for the Reid version is 7.26fm2 (the same as a single Yukawa 
with a range 1.10 fm), while for the Paris version it is 8.73 fm* (as for a single Yukawa with a 
range 1.21 fm). 

As discussed earlier, the knock-on exchange matrix element involves interactions u^ in which the 
odd-state contributions have changed sign. This allows the OPEP, absent from (5.13) and (5.14), to 
contribute to Coo: 

-0.70721. 

M3Y-Reid: Coo(~) 
e-4r e-2.5r 

= 4631- - 4r 1787- - 2.5r 7.847 e-_.-._ 0.7072r 1 MeV , (5.15) 

-2sr 

M3Y-Paris: fioo(r) = -1524; - 518.8% - 
e-0.7072r 

2.5r 
7.847--- 

0.7072r 1 MeV . (5.16) 

These forms have been used in recent calculations of the exchange potential for a-particle-nucleus 
and heavy-ion scattering [ 10 l-l 031 in which the finite range was accounted for explicitly as described 
in Section 5.2. However, many other calculations use t,he zero-range pseudo-potential of Eq. (5.7) 
to represent the knock-on exchange. The magnitude of Joe(E) has been determined empirically [ 1291 
by comparing cross sections for protons scattering from various targets, and at various energies up 
to 80 MeV, calculated using (5.7) with those in which the exchange was calculated exactly. The 
results using the Reid interaction can be expressed as 

M3Y-Reid: j,,(E) M -276 [l - O.O05(E/A)] MeV fm3 , 

while use of the Paris form gives 

(5.17) 

M3Y-Paris: j,,(E) z -590 [I - O.O02(E/A)] MeVfm3 , (5.18) 

where E/A is the bombarding energy per projectile nucleon in MeV. (An alternate approach [78,53] 
to the estimation of so0 can lead to a significantly different energy dependence [ 1891.) 

A notable difference between the Reid-based and Paris-based direct interactions (5.13) and (5.14) 
is that the latter is repulsive. Its volume integral is comparable in magnitude to the Reid one, but 
of opposite sign. On the other hand, the Paris exchange term is roughly twice as attractive as 
the Reid one; this is made particularly evident in the pseudo-potential strengths (5.17) and (5.18). 
However, when direct and exchange potentials are combined, their sums are very similar [ 1021. 
This emphasizes the importance of including the knock-on exchange when calculating the folded 
potentials. The magnitudes of the exchange terms compared to the direct ones also emphasize the 
need to treat the exchange as accurately as possible. 

Finally, two more general comments on these M3Y interactions must be made. First, they are 
purely real, so that the imaginary part of the optical potential either has to be constructed indepen- 
dently (Section 4.4.5) or, most frequently, treated phenomenologically. 

Secondly, they are independent of the density of nuclear matter in which the two nucleons are 
embedded, and are also independent of energy except for the weak dependence of the knock-on 
exchange. Indeed, from their origin as fits to oscillator matrix elements, one sees that they concern 
the effective interaction of two nucleons within a nucleus like 160, and hence represent some average 
over a certain range of energies and over a range of densities from zero to normal nuclear matter. 

It is now appropriate to turn to a more careful consideration of how the effective interaction varies 
with the density of the medium, 
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Fig. 5.2. Illustrating the importance in the folding model for alpha particle scattering of a density dependence of the 
interaction. The potentials for peripheral collisions are almost the same in the two cases, hence give the same scattering 

at small angles, but the density dependence makes the potential much less deep in the interior and gives very different 

scattering at large angles (from [ 1821). 

5.6. Density-dependent M3Y interactions 

It has long been recognized that the effective interaction between two nucleons in a nucleus 
depends upon the density of the surrounding medium (for example, see [ 131 and references there); 
indeed, this density dependence is required for nuclear matter to saturate rather than collapse. Satu- 
ration requires that the attraction weakens as the density increases. 

Perhaps the first clear indication that this plays an important role in the folded potential arose 
from studies of a-particle scattering. Folded potentials based upon density-independent interactions 
like the M3Y could reproduce the data at forward angles or low energies; that is, they correctly 
predicted the potential experienced in peripheral collisions. However, the rainbow-like features seen 
at higher energies and larger angles were not reproduced because these features are sensitive to the 
real potential at smaller radii. The folded potential was too deep there by almost a factor of two. 
This is a clear indication that the effective interaction must depend upon the position within the 
nucleus of the two interacting nucleons. A dependence upon density is a simple way to represent 
this and has a sound physical basis. Fig. 5.2 illustrates the effect, and provides another example of 
how the observation of refractive phenomena, discussed in chapter 3, can be an important source of 
physical information. 

(One might wonder if the additional contribution to the folded potential from the real part of the 
DPP (Section 4.4.3) would provide an alternative explanation. However, estimates of this contribution 
[204] indicate that it is small and, besides, is attractive, not repulsive.) 
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5.6.1. The DDM3Y interaction 
A variety of density-dependent interactions have been introduced. Here we discuss some based 

upon the M3Y interaction of the preceding section. It was assumed that the radial dependence is 
independent of the density and energy so we can use a factored form 

oDD(p,E,r) = f(p,E)u’(r), (5.19) 

where U’(T) is the original M3Y interaction (including the knock-on pseudo-potential) described in 
the preceding section. There is no theoretical justification for this factorization, but it does not seem 
to be an unreasonable approximation that the shape of v(r) does not vary strongly with density (or 
energy over the range of main concern here, E/A N 1 O-l 00 MeV). Furthermore, as already stressed, 
the original M3Y interaction itself already represents some average over density and energy. 

The first version [109, 1 lo] took d(r) to be the M3Y (Reid) interaction (5.13) together with the 
knock-on exchange pseudo-potential as in (5.7) and (5.17). The density dependence adopted was 

f(~ > E) = C(E)[l + a(E)e-P(E)P] 3 (5.20) 

with 

P = P/G-p I+ Pdrt > . (5.21) 

This choice allows for a simple factorization of the integrand of the folding integral (5.1) which 
allows one to easily perform the integration in momentum space [ 1811. In the density-dependent 
term one simply replaces each pi(ri) by 

ii = pj(ri)CSP’(” . (5.22) 

(Possible changes due to a choice of coordinates other than those chosen in (5.2 1) were examined 
by Goldfarb and Nagel [79].) The parameters C(E),&(E) and P(E) were chosen at each energy so 
as to make the variation with density of the volume integral of uDD match as well as possible the 
results of the Brueckner-type calculations of Jeukenne et al. (JLM) [95] for a nucleon scattering 
from nuclear matter of various densities p ranging from about 5% to 100% of “normal” nuclear 
matter po, and at nucleon energies from 10 to 140MeV. 

The volume integral J,fD(p,E) of the spin- and isospin-independent interaction $,, is to be iden- 
tified with the quantity F$(p, ,5)/p of JLM. The behaviour with energy and density is illustrated in 
Fig. 5.3 taken from JLM, and the parameter values obtained are indicated in Fig. 5.4 [l 10,64,29]. 
The JLM calculations implicitly include the knock-on exchange. We also note that adopting the 
form (5.19) assumes the same density dependence for the direct and exchange terms. The JLM 
calculations give both the real and imaginary parts of the G-matrix interaction, but the imaginary 
parts, while moderately successful in describing nucleon-nucleus scattering, are not thought to be 
appropriate for heavy-ion collisions. The spectrum of open channels for two heavy ions is quite 
different, and excitation of surface collective modes, absent from uniform nuclear matter, is known 
to be important [97,205,160]. 

Thus, in summary, the spin- and isospin-independent part of the DDM3Y interaction is 

z~Ff~~~(p,E, r; Reid) = f(p, E)[voo(r; Reid) + &,(E; Reid)] , (5.23) 

where f is given by (5.20), uoo by (5.13) and & by (5.17). 
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Fig. 5.3. The volume integral of the spin- and isospin-independent real part of the G-matrix interaction calculated by 

Jeukenne et al. [95] for a nucleon of various energies scattering from uniform nuclear matter of density p. These results 
implicitly include the knock-on exchange (from [95]). 

Fig. 5.4. The parameter values adopted for the density- and energy-dependence (5.20) of the effective interaction DDM3Y 
[llO, 64,291, obtained by matching the G-matrix results of [95]. 

One difficulty with the form (5.20) for f(p) is that densities roughly twice that of normal matter, 

P M 2p0, are encountered when strong overlap of the two ions occurs, whereas the normalization 
to JLM is only possible up to p M po. Extrapolation beyond that using the exponential form in 
(5.20) is questionable. More reliable, perhaps, is a power-law dependence, even though it does not 
enjoy the factorization property that led to the simplification (5.22). We now turn to a develop- 
ment that uses such a dependence, and also invokes the saturation of nuclear matter as a con- 
straint, as well as employing a more careful and less phenomenological treatment of the knock-on 
exchange. 

5.6.2. Saturation as a constraint on the interaction 
One motivation for originally introducing density dependence into the effective nucleon-nucleon 

interaction was that it was needed to ensure the saturation of nuclear matter [ 131. This implies an 
important constraint [ 1621 if we are to take seriously the idea that the effective interaction required to 
generate optical potentials for scattering is essentially the same as that needed for nuclear structure 
problems such as the shell-model (Hartree-Fock) potential for bound nucleons. This idea has a firm 
theoretical basis for nucleon-nucleus systems [ 133,134,136], but unfortunately there is no similar 
truly microscopic theory supporting the idea for nucleus-nucleus systems. Nonetheless, it provides a 
reasonable ansatz to be tested, tests which it appears to have survived, at least for the light heavy-ion 
systems reviewed here. 
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Fig. 5.5. The equation of state (EOS) for symmetric cold nuclear matter, calculated for various effective nucleon-nucleon 

interactions. The M3Y interaction does not give saturation, while the original DDM3Y interaction saturates with the 
observed binding energy per nucleon (here denoted E/A) but at much too small a density. The various interactions of 
Khoa et al. were adjusted to give the observed binding energy of 16 MeV at the density of 0.17 fme3. Shown are the 
EOS for the interactions based upon the Reid nucleon-nucleon force (from [loo]). 

The binding energy of nuclear matter is given (in Hartree-Fock approximation) by the sum of 
the kinetic and (one-half of) the potential energies of the individual nucleons. The binding energy 
per nucleon, B, should saturate, i.e. have a minimum as a function of p, with Bo M I6 MeV at 

P = PO w 0.17 frn3. The curvature of B(p) at p = po gives the incompressibility of normal nuclear 
matter 

K = 9p2(82B/+2)]p=po , (5.24) 

an important quantity about which considerable uncertainty still remains. 
The M3Y interaction itself does not saturate; -B(p) continues to increase as the density p grows 

(Fig. 5.5). However, the introduction of a density dependence f(p), as in (5.19), which weakens 
the attractive interaction as p increases, allows saturation to occur. The exponential parameteriza- 
tion (5.20), with the parameter values (Fig. 5.4) for E/A = 5 MeV, together with the M3Y(Reid) 
interactions (5.13) and (5.15) gives a minimum at po ti 0.07 fm-3 with B. M 15.9 MeV [loo]. 
Consequently, the conventional DDM3Y form does not satisfy the criterion; it saturates with the 
appropriate energy but at much too low a density (Fig. 5.5). 
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Khoa et al. [lOO--1031 have addressed this problem recently. For simplicity, the parameters in 
the density dependence f(p) are assumed to be independent of energy, in contrast to the original 
DDM3Y of the preceding section (Fig. 5.4). Initially, the C,a and p of the exponential form (5.20), 
in conjunction with the M3Y-Reid or M3Y-Paris interactions of Eqs. (5.13)-(5.16), were adjusted so 
as to give B0 = 16 MeV at p. = 0.17 fm-3. These versions were denoted DDM3Y 1 and the parameter 
values given in [ 1021. They correspond to rather soft equations of state (EOS) for nuclear matter 
with K = 17 l(Reid) and 176(Paris) MeV. The exponential dependence on p in (5.20) is restrictive 
and the parameters cannot be adjusted to satisfy the saturation properties with a larger value of K. 
(Note that if C and CI are positive, as required, f(p) cannot change sign as p increases.) 

Consequently, a more realistic power-law dependence on p [ 131 was adopted 

f(P) = CC1 - NPP) 7 (5.25) 

which can change sign at large p. The power /I is taken to be one-third of an integer, corresponding 
to dependence upon an integer power of the Fermi momentum. Various fl were chosen (/? = i, 1, 2 
and 3) in combination with M3Y-Reid or M3Y-Paris, and values for C and a found which satisfy 
the saturation conditions B. = 16 MeV and p. = 0.17 fmm3; these are given in [ 1021, together with 
the corresponding K values which range from 170 to 566 MeV. These interactions were denoted 
BDM3Yn, n = O-3, respectively, and the resulting EOS are illustrated in the lower part of Fig. 5.5. 

The folding model for the scattering of two nuclei as used here takes p to be a simple superpo- 
sition of the target and projectile densities. 3 Thus the total density p approaches 2p. when the two 
nuclei overlap strongly (even more for ac-particle-nucleus systems [102]). This makes the folded 
potential at small radii sensitive to the kind of density dependence assumed. The interaction in this 
region weakens as IZ (or the power p) increases, thereby offering the opportunity to determine the 
appropriate n (or fl) whenever the scattering is sensitive to the depth of the potential in the interior. 
In this way we can obtain a measure of the incompressibility K. With this in mind, the DDM3Yl 
and BDM3Yn interactions have been applied to the scattering of nucleons [loo] and alpha parti- 
cles [ 1021 from nuclei, and the scattering of light heavy-ion systems [ 101,103]. The latter analyses 
are described in more detail below; here we only remark that they consistently favour the DDM3Yl 
or BDM3Yl interactions. The parameters that describe the corresponding density dependencies of 
these interactions are given in Table 1, together with the incompressibilities K. For example, for 
complete overlap, p = 2~0, the BDM3Yl(Paris) interaction is reduced in strength by a factor of 
f(2po)/f(O) = 0.407. This factor becomes 0.433 for the DDM3Y l(Paris) interaction. In other words, 
the interaction between two ions is roughly halved by the density dependence when they completely 
overlap. 

If we give maximum weight to the power-law (5.25) and the M3Y-Paris interaction (5.14) and 
(5.16) as being the most realistic, these analyses imply K N 270 MeV. Use of the M3Y-Reid form 
gives a somewhat smaller K -230 MeV, while employing the less realistic exponential form (5.20) 
results in an even lower value of K N 175 MeV. 

3 The density superposition (5.21) is used for the direct interaction, while for the exchange 
chosen so that the density is evaluated at a position midway between the positions of the two 
they are exchanged. 

terms the coordinates are 
nucleons before and after 
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Table 1 

Parameters of the density dependencies of the favoured DDM3Yl and BDM3Yl interactions, and the corresponding 
nuclear matter incompressibilities K (from [ 1021) 

Interaction c 

BDM3Y 1 -Paris” 1.2521 

BDM3Y 1 -Reid” 1.2253 

DDM3Yl-Parish 0.2963 

DDM3Y I-Reidb 0.2845 

“Density dependence as in Eq. (5.25). 

bDensity dependence as in Eq. (5.20). 

u. 

1.7452 fm3 

1.5124fm3 

3.7231 

3.6391 

D 
;MeV) 

1.0 270 
1.0 232 

3.7384 fm3 176 
2.9605 fm3 171 

In the course of these applications to scattering data, it was found necessary [ 1001 to introduce 
an additional mild energy dependence over that provided by localizing the exchange potential. This 
was parameterized as a linear function 

g(E) = [l - WIA)l> (5.26) 

with y = 0.002 MeV-* (Reid) or 0.003 MeV-’ (Paris). The direct part of the full interaction now 
has the form 

%%Ar> = dEMiO~oo(~) ; (5.27) 

where uoo is given by (5.13) (Reid) or (5.14) (Paris). Likewise the exchange part becomes 

(5.28) 

where & is given by (5.15) (Reid) or (5.16) (Paris). 
It was mentioned earlier (Section 5.5) that the M3Y-Paris direct interaction (5.14) was repulsive, 

in contrast to the attractive M3Y-Reid of (5.13), but that this difference was compensated for by the 
greater attraction of the Paris exchange term. This is illustrated in Fig. 5.6 for the folded potential 
for cL+40Ca, based upon the BDM3Yl density-dependent version. The decompositions into direct 
and exchange components are very different, but their sums are almost indistinguishable. 

The philosophy behind the work described in this section has been extended recently to asymmetric 
nuclear matter [ 1061. In this the isovector, spin-scalar components uol(r) and fiool(y) of the M3Y 
interactions [ 14,5] were used together with the same forms of density dependence with parameters 
adjusted so as to reproduce the symmetry energy of nuclear matter, as well as the saturation properties 
previously discussed. Unfortunately, the symmetry (isospin-dependent) part of the central nucleus- 
nucleus potential is found to be only a few percent of the isoscalar term and does not have measurable 
effects on the elastic scattering cross sections, even for exotic neutron-rich systems like I ‘Li + 14C. 
It appears that one must appeal to charge-exchange reactions, which isolate the isovector part of 
the interaction from the isoscalar part, in order to test the validity of any model of the isovector 
interaction. 
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Fig. 5.6. Comparing the direct and exchange components of the folded potential for a+40Ca at 141.7 MeV, constructed us- 
ing the BDM3Y 1 interactions based upon either the Reid or more recent Paris nucleon-nucleon forces. The decompositions 
into direct and exchange components are very different, but their sums are almost identical (from [102]). 

5.7. The Coulomb potential 

At large separations Y, where the hadronic forces have become negligible, the Coulomb interaction 
between two nuclei is usually assumed to be unambiguous and equal to 

K-(r) = Z,Z,e*/r . (5.29) 

(This neglects small but long-ranged and complex contributions due to dynamic polarization of the 
nuclei by the Coulomb force itself [89].) The Y-I dependence of (5.29) is no longer valid when 
the two nuclear surfaces begin to overlap at smaller Y. Frequently, the Coulomb potential at small 
r is represented by the potential felt by a point charge incident upon a uniform charge distribution 
of radius Rc, following a tradition established in the analysis of proton scattering. Unfortunately 
this prescription does not tell us what value to use for Rc in a nucleus-nucleus collision. Figs. 5.7 
and 5.8 illustrate two choices for I60 + 160, Rc = 6.8 and 4.3 fin. (The charge distribution of 160 
has an RMS radius of about 2.6fm, corresponding to a uniform distribution with a radius of 3.4fm.) 
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Fig. 5.7. Coulomb potentials for r60+ I60 according to various assumptions about the two charge distributions: (a) 
point + uniform distribution of radius 6.8 fm; (b) point + uniform distribution of radius 4.3 frn; (c) two uniform distributions 

each with radius 3.4 hn; (d) two rounded (shell model) distributions each with an RMS radius of 2.6 fm. The corresponding 
charge distributions are shown inset (from [182]). 

Fig. 5.8. The angular distributions for I60 + I60 scattering at 3.50 MeV using three of the Coulomb potentials illustrated 
in Fig. 5.7, but the same nuclear potential. The dotted curve uses charge distribution (a), the dashed curve uses (b), while 

the solid curve uses (c). 

The resulting Vc potentials differ by 60% at Y = 0. This is a significant difference because I60 + I60 
is one of the systems reviewed here whose scattering can reveal the strength of the (hadronic plus 
Coulombic) interaction at small radii. (Unfortunately, published reports of analyses do not always 
specify what form of Vc was used. The nuclear potentials that optimize the fit to the 350 MeV data 
may differ up to 6-7 MeV (- 4% of their value) at small radii, depending on the choice of 6.8 or 
4.3 fm for &.) 

We should employ a more realistic, folded, Coulomb potential to be consistent with the folding 
approach to the hadronic interaction (although this still neglects an exchange Coulomb contribution 
arising from antisymmetrization). There is an analytic expression available [94,166] when each 
nucleus is represented by a uniform charge distribution. This choice for 160 + 160 is shown as 
(c) in Fig. 5.7, together with (d), the result of numerically folding over two rounded (shell-model) 
distributions, each with the same RMS radius of 2.6 fm. These two choices agree quite well, giving 
I$ that differ only by a few percent even at Y = 0. 

It is also interesting to note that the “point plus uniform distribution” approximation, which is 
often incorporated in computer programs for scattering problems, requires a radius Rc appreciably 
smaller than the sum of the radii of the two nuclei in order to give a Vc comparable to the more 
realistic ones. For example, Fig. 5.7 shows that Rc M 4.3 fm is needed for 160 + 160. In the usual 
parameterization 

RC = I@;‘~ + A;“] , (5.30) 



M.E. Brandan, G.R Satchler IPhysics Reports 285 (1997) 143-243 181 

this would imply rc M 0.85 f?n when Ap = A, = 16. In general, for two distributions with equal radii 
R, = RZ, the Coulomb potential at the centre is always 1.6 times that for a “point plus uniform 
distribution” approximation with Rc = RI + Rz. 

5.8. The dynamic polarization potential and breakup 

5.8.1. Dynamic polarization 
The dynamic polarization potential (DPP) was discussed formally in the context of Feshbach’s 

theory [68] in Sections 4.4.2 and 4.4.3, where it was denoted AU,. The absorptive, imaginary 
part was discussed in Section 4.4.5, but little attention has been paid so far to the real part. This 
represents a correction to the folded real potential and should be small if the simple folding model 
is to be a reliable guide to the properties of the real optical potential. The existence of threshold 
anomalies (Section 4.5 and Fig. 4.1) shows that this is not always so. Such cases occur at relatively 
low bombarding energies, where the scattering is not particularly sensitive to the detailed shape of 
the real potential but is determined largely by the value and slope of the potential in the vicinity 
of some strong absorption radius. Consequently, it is often sufficient to simply renortnalize the real 
folded potential in order to fit the data. 

However, it would be very surprising if, in fact, the real part of the DPP had the same radial 
shape as the folded potential V~(T). For example, if the virtual excitation of collective surface modes 
is important, one might expect the DPP to be concentrated near the surface [8,9,70]. 

The overall success of realistic folding models, as indicated by a need for renormalization factors 
N close to unity (with the exception of threshold anomalies), implies that in most cases the real 
DPP is relatively weak. One other important exception occurs for the scattering of weakly bound 
nuclei, and we turn now to this class. 

5.8.2. Breakup effects 
It was recognized early that the folding model appeared to fail for the scattering of the weakly 

bound nuclei 6*7Li and 9Be [ 1811. These data required a substantial renormalization of the real folded 
potential by factors of N-0.6. (Initially [ 1811 the scattering of ‘Li seemed to be “normal”, but later 
studies revealed it to be just as “anomalous” as 6Li [ 1851.) 

It was natural to associate this failure of the model with the enhanced breakup of the projectile 
nuclei due to their weak binding. (The ground states of 6,7Li and 9Be are bound by only 1.47, 2.48 
and 1.57 MeV, respectively.) Subsequently, the effects of breakup have been investigated in detail, 
using coupled discretized continuum channels (CDCC) techniques [185]. These studies confirm that 
including couplings to the breakup channels allows one to fit the elastic data by using the full folded 
potential without substantial renormalization (N M 1). 

We can expect similar, or even stronger, effects in the scattering of more exotic, weakly bound 
nuclei close to the nucleon drip lines, such as “Li [90] which is bound by only about 300 keV. 

It is also possible to construct wavefunction-equivalent (or “trivially equivalent”) local potentials 
from the solutions of the coupled equations that will generate exactly the same elastic wavefunctions 
and the same elastic scattering when used in a one-channel Schrodinger equation (see [89], for 
example). In other words, these are local representations of the DPP. The price paid for localizing 
in coordinate space is that these DPP depend upon the angular momentum variables. However, the 
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Fig. 5.9. The effect of couplings to breakup channels on the elastic scattering of 6Li + 28Si at 99 MeV. A folded potential 
obtained from the M3Y interaction was used, multiplied by a complex normalization factor (NR + i NI). N, was fixed 
at 0.623. Without the breakup couplings, the value NR = 1 .O does not reproduce the data (dotted curve), and has to be 
severely reduced to NR =0.554 (dashed curve). However, the value NR = 1.0 does give an acceptable fit (solid curve) 
when the couplings to the breakup channels are included, showing how the breakup effects have an effect mostly on the 
real potential (from [ 1851). 

dependence of the DPP upon angular momentum is not strong for the important peripheral partial 
waves or at large radii, so we may expect to learn something about their average behaviour. 

5.8.3. The scattering of 6Li 
The CDCC techniques have been applied particularly to study the effects of breakup on the scatter- 

ing of 6Li. The calculations reported in [185] employed the M3Y interaction defined in Section 5.5 
for both the real and imaginary potentials. (It would be very interesting to repeat these calcula- 
tions using what we now think to be the more realistic density-dependent interaction described in 
Section 5.6. We would not expect the qualitative features to change for cases where the scatter- 
ing is dominated by peripheral collisions, but differences could occur when the scattering becomes 
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sensitive to the interior of the potential.) Breakup of 6Li into a + d in relative s-, p-, and d- 
wave states was taken into account. Bombarding energies of 34-156 MeV, on various targets, were 
considered. It was found that the scattering predicted by the coupled-channels calculations, using 
the full M3Y interaction (with N = 1 ), was very similar to that obtained in the one-channel (optical 
model) calculations with a reduced M3Y interaction (N M 0.6) for the real potential, as was required 
to fit the experimental data. Curiously, the same imaginary potential could be used in both types of 
calculation (in practice, in these calculations the same folded M3Y shape was used for the imaginary 
potentials, reduced in strength by Ni M 0.6). This implies that breakup has rather little effect on the 
imaginary potential. Fig. 5.9 illustrates this for 6Li +*?Si at 99 MeV. 

These findings were corroborated when the local potentials equivalent to the coupled equations 
were examined [185]. The DPP were found to have strongly repulsive real parts in the surface 
region and weak imaginary parts. This is in contrast to the DPP resulting from couplings to inelastic 
channels whereby the target is excited to bound vibrational states; there the average DPP is found 
to be predominantly imaginary [89]. Thus these vibrational couplings have little influence on our 
judgment of the success of the folding model for the real potential, while the imaginary potential is 
usually treated phenomenologically anyway. 

The characteristics just discussed were found to be sensitive to the nature of the coupling to 
the nonelastic channels. A largely real coupling, such as is usually assumed for the excitation of 
low collective states, results in a DPP that is mostly imaginary, while a coupling with a strong 
imaginary part, such as was used for the breakup reactions, tends to give a DPP that is mostly 
real and repulsive. For further discussion, the reader may consult the detailed review by Sakuragi 
et al. [185]. 

6. Applications to experimental data 

A large amount of light heavy-ion data have been successfully analysed with potentials obtained 
microscopically or by using deep phenomenological potentials. We present the data, the main results 
from the optical model analyses in relation to the potential themselves and other related quantities 
such as total reaction cross sections. 

Much of the data are obtained for the scattering of two identical nuclei. Hence the differential 
cross sections are symmetric about 90” in the cm system, thus restricting the angular range that 
can provide information. In addition, we may see structure near 90” that arises from interference 
between the unsymmetrised amplitudes for scattering to 8 and 7t - 8, which may obscure structure 
that arises from refractive effects. Despite these possible limitations, most of what we have learnt 
about refraction in the scattering has come from these identical systems. 

6.1. The data 

In this section we refer to the elastic scattering data for light heavy-ion systems, mostly 12C + 
l*C > I60 + i*C and 160 + i60, at E/A above 6 MeV, where the observation of refractive effects 
in the angular distributions has permitted the (relatively unambiguous) determination of the nuclear 
complex potential. 
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6.1.1. 12c +12c 
In 1976, Stokstad and collaborators measured rather complete elastic scattering angular distri- 

butions of 12C by 12C at 14 laboratory energies between 71 and 127 MeV (E/A between 6 and 
10 MeV) [206,196]. The measurements extended up to 90” and the data displayed a complex oscil- 
latory behaviour with periodic structures of different period at forward angles and those close to 90”. 
Even though refractive effects could not be easily identified in the data themselves, the conclusions 
of the optical model analysis were definite in the need for deep real potentials. As was shown years 
later [144], and will be discussed later here, the techniques of nearside/farside decomposition that 
were fully developed in the 1980s were indispensable in unravelling the refractive contributions from 
the diffractive contributions in these relatively low-energy data. 

This system has continued to be of great interest and so far (until 1996), the elastic scattering 
has been measured for angles beyond the diffractive oscillations at laboratory energies of 140 and 
159 [121], 240 [18], 289 [50], 300 [17], 360 [42], 1016MeV [41] (superseding a previous measure- 
ment at 1030 MeV [40]), 1450 and 2400 MeV [85]. Fig. 6.1 shows some of the measurements. At 
140 and 159MeV, the differential cross sections were measured up to 90”, and it is possible to guess 
at the presence of broad Airy maxima (centred at ~50” at 159MeV and at x62” at 140MeV), in be- 
tween the Fraunhofer pattern at forward angles and the oscillations near 90” due to symmetrization. 
While the data at 240 and 289MeV did not extend far enough to display the full extent of a nuclear 
rainbow, the measurements at 360 MeV show the beginning of the exponential falloff of the nuclear 
rainbow, distinctly evident in the angular distribution beyond 8,, %25”. As E/A approaches 1OOMeV 
and higher, the rainbow moves forward faster than the Fraunhofer oscillations, and the visual identifi- 
cation of its Airy minima in the angular distribution is less clear. Most of the individual optical model 
analyses of these data have been performed with phenomenological potentials, to which we refer in 
Section 6.4. 

6.1.2. ‘60 +I60 
In the 1970s the elastic scattering excitation function of I60 + I60 was measured around 90” 

at laboratory energies between 70 and 180 MeV, revealing the presence of regularly spaced broad 
maxima [83]. The analysis of these data assumed phenomenological optical potentials having shallow 
real parts similar to those previously derived from lower energy data [ 194, 13 11; these proved to be 
unable to describe the new observations. 

All of the I60 + I60 elastic scattering measurements at intermediate energies, near or above 
E/A = 10 MeV, have been made quite recently either by Bohlen or by Sugiyama, and their colleagues. 
Very complete and precise measurements exist at laboratory energies of 124 [120], 145 [200,120], 
250 [loll, 350 [198,199], 480 [103] and 704 MeV [12]. These data are a remarkable achievement, 
involving cross sections as small as lop5 of the Rutherford values. The data below 350 MeV extend 
up to 90”, displaying the typical Fraunhofer oscillations at forward angles and the symmetrization 
interference near 90”, with gross structures in between which one could surmise are due to Airy 
maxima and minima. At 350 MeV and above, an Airy minimum followed by its maximum be- 
comes evident (in a remarkable way at 43” at 350 MeV; see Fig. 2.3) as the diffractive structure 
moves forward like l/,/E, while the refractive interference moves forward approximately as l/E. 
The symmetrization oscillations near 90” are left behind. 
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Fig. 6.1. Elastic scattering angular distributions (relative to Rutherford or Mott cross section) for I60 + “C and 12C + “C. 
The curves are calculations with phenomenological potentials given in Table 6.2 (from [27]). 

The system I60 + 160 is at present the light heavy-ion system for which the most complete 
elastic scattering angular distributions are known. It is the one that has been subjected to the most 
numerous and detailed analyses in the last few years and is likely to continue in this role. 

6 I 3 ‘60 +12C . . . 

The data for this system are neither as numerous nor complete as for the identical systems 12C 
+ 12C or 160 + 160. Elastic scattering data have been obtained at 139, 216 and 311 MeV [21], 
608 [26] and 1503 MeV [175]. The cases at the lowest three energies were not measured far enough 
in angle to establish the presence of refractive minima or maxima. Fig. 6.1 presents the data at the 
two highest energies. The results at 608 MeV, that show beyond 18” the structureless falloff which 
can be attributed to farside dominance, have been extensively analysed and interpreted, and will be 
referred to later. At 1503 MeV, the Airy structures have moved forward in angle to be superimposed 
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on the Fraunhofer oscillations; these data have also been the subject of thorough analyses which 
will be discussed below. 

61.4. 6Li scattering 
The elastic scattering of 6Li has been extensively studied with bombarding energies below 

50 MeV [47], and at a few higher energies for several targets: 28Si at 135 [58] and 154MeV [192], 
6Li and 40Ca at 156 MeV [147,52] and 14C at 93 MeV [61]. The target 12C is the most consis- 
tently studied, at E/A = 10 [16], 16.5 [193] and 26 [52] MeV. A systematic study [154-1561 at 
E/A = 35 and 53 MeV of 6Li scattered off “C and 28Si (and 40Ca, 58Ni, 90Zr and 208Pb at the lower 
energy) has been performed recently at the National Superconducting Cyclotron Laboratory at MSU. 
These data, which consisted of cross sections extending down to between 1 and 10 ub/sr, showed 
the diffractive oscillations to be followed by the exponential falloff of a nuclear rainbow. Thus the 
experiment permitted the clear observation of refractive effects in the angular distributions for all 
but the *‘*Pb targets and analysis was able to determine the potential depths unambiguously. For the 
lightest targets, the “hump” of the first Airy maximum could be seen in the data. 

6.1.5. Other light systems 
The elastic scattering has been measured at intermediate energies in many light heavy-ion systems 

other than the ones already discussed, but in such cases data only exist at a few, sometimes single 
energies, and the measurements are rather limited in angle, not reaching into regions where refractive 
effects might appear to their full extent. 

Elastic scattering of 7Li off ‘*C, 48Ca 58Ni and 208Pb has been measured at a few energies between 
about 60 and 150 MeV [96,119,197]. hr general, these measurements do not extend to sufficiently 
large angles to observe the disappearance of Fraunhofer oscillations and the possible presence of 
farside dominance. Recently, the scattering of E/A = 50 MeV 7Li+ 12C and 28Si has been measured 
with great completeness [ 1571. The data show very clearly the structureless falloff of the cross section 
beyond about 15” and up to 40”; this feature permits the determination of “unique” potentials solving 

the discrete ambiguities encountered in previous analyses. 
The systems 9Be + 12C, 160 have been studied at E/A FZ 18 MeV [ 1831. Following the Fraunhofer 

oscillations, the angular distributions show a change of slope followed by a featureless flat region up 
to the last point that was measured (at about 60” ); the description of the data by phenomenological 
potentials required “refractive” potentials, i.e. deep real parts accompanied by an imaginary term 
much weaker than the real at small radii. The analysis [ 1831 interpreted the feature at 60” as a weak 
primary Airy minimum. Since it was strongly damped and scarcely visible, it was referred to as an 

Airy “ghost”. 
A measurement [ 181 of 13C + 12C at E/A equal to 20 MeV showed features similar to those of 

l*C + 12C at the same E/A. A hint of an Airy minimum was observed in the data and the optical 
model analysis (phenomenological and folding model using DDM3Y) required potentials similar to 
those obtained in the systematic study of 12C + 12C. 

A beam of 14N at E/A = 20 MeV was used to study the scattering off ‘*C [31]. As in other 
cases in this energy range, the data displayed the transition between Fraunhofer oscillations and 
a structureless angular region at larger angles. The results of the optical model analysis were not 
conclusive, allowing descriptions with either weakly or strongly absorbing potentials. 

All systems mentioned so far in Section 6 display in their angular distributions refractive features 
which range from dominance of farside scattering up to clear signatures of a nuclear rainbow. 
The main difference among the potentials describing them is the magnitude of the absorption in 
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the internal region, but, without exception, all these systems allow an interpretation in terms of 
a weakly absorbing nuclear potential. The system ‘*C + *‘Ne is the lightest system for which data 
exist at intermediate energies (one set of elastic scattering measurements at E/A = 20MeV [ 191) and 
where a description in terms of a weakly absorbing potential has not been possible. Even though 
the general appearance of the data is similar to that often described in this section (i.e. Fraunhofer 
oscillations followed by a rather flat cross section beyond), the original analysis and later attempts 
to describe the measurements with a weakly absorbing potential have failed. 

At E/A = 94 MeV, Roussel et al. [175-1771 measured the I60 elastic scattering on a variety of 
targets ranging from ‘*C, to which we have referred already, up to *08Pb. The 160 + ‘*C and 28Si 
scattering were clearly dominated by farside contributions but a phenomenological potential could 
only be well determined for the lightest target. The measurements for 40Ca, 90Zr and *08Pb were 
mostly sensitive to the potential in regions about l-2 fm inside the strong absorption radii. 

6.2. Optical model analyses 

Elastic scattering angular distribution data are analysed by comparing them to optical model cal- 
culations performed using a computer program (PTOLEMY [ 1321 and ECIS [ 1701 are the most 
commonly used ones for heavy-ion systems). The nuclear complex potential is entered into the code 
as an input, either point by point or through the parameters of a standard analytical expression. If 
the analysis assumes a microscopic real part, i.e. it is a folding model analysis, the calculated values 
of V(r) at certain radii are entered, and the code searches on the value of the overall normalization, 
N, in order to optimize the fit to the data. For the imaginary part, the folding model analyses usu- 
ally assume a parameterized form, either with the Woods-Saxon (WS) shape raised to some power 
n (most often n = l), (WS)“, the surface-peaked derivative of the WS form factor (WSD), or a 
combination of them; the optical model code searches to find the parameter values which optimize 
the agreement with the data. If the analysis is phenomenological, the real and the imaginary part are 
assumed to have WS, (WS)” or WSD shapes, or some combination, and all the potential parameters 
can be searched on. Generally, the goodness of fit is quantified via the x2 expression, 

1 ‘% (0* - I&,>* +-_C (6.1) 

where ath, a,,, and Acr,, are the theoretical cross sections, experimental cross sections, and uncer- 
tainties in the experimental cross sections, respectively. N, is the total number of angles at which 
measurements were made. (Note that N, is not the number of degrees of freedom NF. where Nr = 
N, - i$ and Np is the number of parameters varied. NF and N, may differ significantly 
number of parameters becomes large, as for example when using “model independent” 
defined in terms of splines or Fourier-Bessel series.) 

when the 
potentials 

6.3. Applications of the folding model 

The 1979 review by Satchler and Love [ 1811 presented the successful application of real potentials 
calculated via double folding techniques, supplemented by WS imaginary potentials, to “typical” 
heavy-ion data available up to that date. The effective interaction used was the M3Y of Eq. (5.13), 
based on a G-matrix constructed from the Reid potential, together with the zero-range pseudo- 
potential (5.17) to account for the knock-on exchange. 
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63.1. 12C +12C scattering 
An earlier analysis of i2C + 12C [206,196] at E/A between 6 and 10MeV had used an essentially 

equivalent interaction. The resulting folded potential had a depth of about 450 MeV at the centre. 
The data could be described remarkably well. The required potential renormalizations N were close 
to unity and only weakly dependent upon the energy. The main conclusion drawn from this analysis 
was the need for real potentials that were much deeper, at regions near 4-6 fm, than the shallow 
potentials originally assumed from the fits made to data at much lower energies. The scattering at 
large angles (up to 90’) was shown to be sensitive to a notch in the real potential centred at radii 
as small as e2 fm, suggesting that the data contained some information about the potential even at 
such a small internuclear separation. However, an independent work [ 1741 showed that, in spite of 
the sensitivity to the deeper regions of the potential, discrete ambiguities in the determination of the 
real part still remained. 

An early global analysis [23] of data at the higher energies of 161, 289 [50] and 1030 MeV [40] 
used an energy-independent microscopic real potential, 380 MeV deep at the centre and calculated 
with the same effective interaction as in [ 1961. This work suggested the presence of nuclear rainbow 
scattering in the 12C + 12C system. The claim was based on the overall characteristics of the three 
sets of data which, when plotted as a function of the parameter E = &,E,,, showed the structureless 
falloff that follows a nuclear rainbow at an approximately constant value of E. This unification of 
the refractive effects in an angular distribution, valid for a given potential, had been predicted by 
Knoll and Schaeffer [ 1071. The renormalization constant N needed to fit the data was found to be 
energy-dependent, decreasing from about unity at 1OMeV per nucleon to about 0.5 at E/A = 85MeV. 
The imaginary potential required was found to be weaker than the real one over most of the radial 
region, a condition that appears to be necessary for the manifestation of refractive scattering. More 
complete data, however, were needed to definitively establish the presence of this refractive effect. 

Even though the analysis in [23] reported sensitivity of the data to the potentials in regions 
appreciably inside the strong absorption radius, and the need for a very attractive real part which 
located the rainbow angle in approximately the region where the angular distribution started to fall 
exponentially, the imaginary term was, in general, about 50 MeV at the centre, probably too strong 
to permit the observation of the Airy interference essential for the identification of a rainbow. In 
other words, the data did not necessarily show the clear signs of an Airy minimum, but only the 
dominance of the farside component in the scattering amplitude. This fact was stressed by McVoy 
and Satchler [ 1431, who showed that the mechanism producing the exponential falloff in the optical 
model analyses was the absorption combined with sufficient attraction in the nuclear surface, and not 
necessarily the dark side of a rainbow. The 240MeV data measured by Bohlen et al. [ 181 displayed, 
for the first time in 12C + i2C above 10 MeV/nucleon, a hint of the rise that follows an Airy 
minimum. The analysis [ 181, with phenomenological potentials, required relatively weak absorption, 
W M 22 MeV at the centre. 

6.3.2. Folding with density-dependent interactions 
The need for a density dependence in the effective interactions used in folding techniques for 

heavy-ion potentials at energies close to E/A = 10 MeV had been anticipated by Love [ 1301; over- 
estimations of 32% in the magnitude of the 12C + “C potential at the strong absorption radius and 
76% at r x 0 could arise if the density-dependence was ignored. Analyses of elastic and inelastic c1- 
particle scattering had been made using a density-dependent form of the M3Y interaction [ 109,l lo]. 
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These showed the need for weakening V(r) in the interior for alpha energies above about lOOMeV, 
where the observations of a nuclear rainbow imposed severe constraints on the internal values of 
the real potential (see Fig. 5.2). This density-dependent interaction was the DDM3Y of Eq. (5.23), 
a generalization of the M3Y to have an explicit dependence on the nuclear density that was nor- 
malized to the G-matrix calculations of [95] (see Section 5.6.1). The effect of this requirement is to 
weaken the interaction as the density increases, and results in folded potentials which are less deep 
near the centre, where the two nuclei overlap strongly, than those calculated from the M3Y force. 
The applications to u-particle scattering consistently required renormalization factors of N x 1.3. 
Folding model analyses using DDM3Y were first applied to a variety of heavy-ion data [64]; the 
renormalization factors that emerged in that case tended to be less rather than greater than unity. 

A thorough analysis, using DDM3Y folded potentials, of the recently measured 12C + 12C, 160 
+ 12C and 13C + 12C at energies above E/A M 10 MeV soon followed [28]. The data thus analysed 
comprised 13 sets at E/A between 9 and 120MeV. The imaginary parts of the potential were assumed 
to have the Woods-Saxon shape (with n = 1). Reasonably good fits were obtained at all energies 
with renormalizations N close to unity, ranging between 0.83 and 1.27, and averaging 1.0 f 0.1. 
The value of the real potential at the centre varied from about 250 MeV at E/A x 10 MeV down 
to about 100 MeV at E/A M 100 MeV. Thus, the variation by more than a factor of two in this 
energy range could be accounted for by the intrinsic energy-dependence of DDM3Y that arose from 
its normalization to the G-matrix of [95]. This is in contrast to the original, bare M3Y interaction 
that contains very little energy-dependence. The imaginary parts were more weakly absorptive than 
had been found in the previous work with M3Y [23], having central depths between about 25 MeV 
(at E/A x 10 MeV) and about 15 MeV (at E/A x 100 MeV). The reduced imaginary radius could be 
held at a fixed value of co = 1.13 fm at all energies except E/A = 120 MeV (where it was 1.21 fm), 
without deterioration in the quality of the fit. 

A global microscopic analysis using the same DDM3Y interaction applied to 12C + 12C data 
which included the angular distributions measured by Stokstad at lower energies, did extend these 
results down to E/A M 6 MeV [30]. The renormalization N required for the folded real potential was 
about 1.1 below E/A = 10 MeV, slowly decreasing to about 1 .O at E/A = 120 MeV. The parameters 
describing the WS imaginary part displayed a smooth energy dependence. Solid symbols in Fig. 6.2 
show the values of the real renormalization parameter N for energies E/A up to 24 MeV. The values 
represented by the empty symbols are explained in Section 7.2. 

The “jO+ 160 data at 350 MeV have also been analysed using DDM3Y real folded potentials [33]. 
The fits were very successful, and required a value of N equal to 1.08; it appears that the imaginary 
part for this system must include a Woods-Saxon derivative term which peaks near the surface, in 
addition to the volume term, in order to optimize the fits, whenever a monotonic real part (such as 
the DDM3Y potential) is used. 

In spite of the apparent success of the potentials calculated with the DDM3Y effective interaction 
in the description of data for a-particle scattering (except for the need for N M 1.3), and for 12C+ 12C, 
160 + I60 and 160 + 12C, both over a wide energy range, the question of the appropriateness of 
this intera;tion as an approximation to the NN interaction in the nuclear medium has been pursued 
further by Khoa and his collaborators [lOO-1031. They use the same M3Y form, (5.13) or (5.14), 
but explored the use of a more realistic power-law density-dependence (that in Eq. (5.25)), instead 
of the exponential dependence (5.20) used in the original DDM3Y model. In addition, they employ 
a better approximation to the knock-on exchange term that takes account of the finite range of the 



190 ME. Brandan, G.R. Satchlerl Physics Reports 285 (1997) 143-243 

wo 200 300 

Elob (MeV) 

Fig. 6.2. Values of the real potential renormalization which give mimimum x2 in the folding model analysis of 12C + “C. 
The effective interaction was the original DDM3Y. The solid symbols indicate the family of solutions which gives a 
“continuous” description in the complete energy interval (from [30]). 

interaction: see Section 5.6.2. The parameters C and cc of the power-law density-dependence (5.5) 
were tuned to reproduce the saturation density and binding energy of normal nuclear matter for 
each value of the power /? [loo, 1011. These were called the BDM3Yn interactions, with n = O-3 
denoting the power of beta used. In addition, the C, a and /I of the exponential form (5.20) were also 
modified to satisfy the saturation conditions (which the original DDM3Y does not). This was called 
the DDM3Yl interaction. These parameter values were not allowed to vary with energy (contrary 
to the original DDM3Y: see Fig. 5.4). 

These new interactions were applied to describe “C + 12C, I60 + 12C, and I60 + I60 data at 
E/A above 10 MeV [ 100, 1011. All the folding model potentials thus obtained give good agreement 
with the data at forward angles, which correspond to scattering trajectories that only experience the 
surface of the potential. This is illustrated by the lower part of Fig. 6.3, which shows the scattering 
for two of the r2C + 12C energies. However, differences appear at the larger angles fed by trajectories 
which experience the inner parts of the potential. These differences allow us to select the most 
appropriate among the interactions. This is important, since each corresponds to a different value of 
the incompressibility of nuclear matter, and provides evidence of the value of this quantity. . The 
two studies [loo, 1011 strongly favoured the DDM3Y 1 or BDM3Y 1 interactions, implying a fairly 
soft equation of state for nuclear matter. 

The renormalization factors N needed for the DDM3Y 1 and BDM3Y 1 interactions were found 
to be energy-independent, averaging 0.92 f 0.05, and 0.93 f 0.05, respectively, for the 12 data sets 
analysed. The optimum imaginary potentials have features similar to those found in previous folding 
model or phenomenological analyses. 

Later, the “generalized” folding model of Khoa was applied to study the scattering of I60 + r60 
at four energies, 145,250,350 and 480MeV, using the Paris version (5.16) of the interaction [103]. 
Fig. 6.4 shows the different potentials at a single energy. The potentials agree in the surface region 
and, as was the case with the Reid version, they differ for the largest values of the density, i.e. for 
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Fig. 6.3. Fits to “C + ‘%I elastic scattering data (lower part) given by folding model real parts (upper part) calculated 
with different density-dependent effective interactions (from [ 1011). 

the smallest internuclear distances. Fig. 6.5 shows the fits to the 160+160 data: again, the interactions 
DDM3Y 1 and BDM3Y 1 are the preferred ones. The renormalization N needed appears to be slightly 
energy-dependent, going from 0.90 (0.93) at E/A = 8 MeV to 0.82 (0.83) at 30 MeV/nucleon, for 
interaction DDM3Y 1 (BDM3Yl). This effect might be due to the opening of inelastic channels as 
the energy increases [ 1031. 

FinalIy, we should note that the application of these interactions to the scattering of a-particles 
gave similar results; the rainbow data at large scattering angles established the DDM3Y I or BDM3Y 1 
interactions as the physically correct ones [ 1021, but still the a-particle data required renormalization 
factors N a little larger than unity. 

6.3.3. Folding model for the scattering of 6Li 
A distinguishing feature of the analyses of 6Li elastic scattering at the lower energies was the 

“failure” of the folding model, meaning that the attractive, real folded potential obtained using the 
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Fig. 6.4. Direct and exchange parts of the total I60 + I60 folded potentials calculated using different density-dependent 

interactions (from [ 1031). 

Fig. 6.5. Data and fits to I60 + I60 elastic scattering measurements at various energies. The optimum fits are those given 

by the DDM3Yl and BDM3Yl real parts. The varaible q is the linear momentum transfer (from [103]). 

M3Y interaction (5.13) and (5.17) was too strong and needed to be renormalized by factors typically 
of N- 0.6. This was ascribed to the effects of break-up, as discussed in Section 5.8. However, when 
the more definitive data became available for 6Li + ‘*C and 28Si at E/A = 35 and 53 MeV, which 
allowed a less ambiguous determination of the potential family, it was claimed El561 that they were 
consistent with the M3Y interaction without the considerable renormalization found necessary at 
lower energies. This result was somewhat surprising because estimates of the break-up effects [ 1851 
had indicated that they should still be sizable at these energies. 

Upon reanalysis of the 12C data [189], two factors were found to account for the conclusions of 
[ 1561. One was that the optimum fit to the data (the one to give the lowest x2) does require a 
significant renormalization. The other was that a prescription [78,53] was used for the strength of 
the knock-on exchange term in (5.7) that differs appreciably from that of (5.17). The latter has been 
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regarded as part of the conventional “M3Y model”. When the conventional term (5.17) is used, the 
i2C data at both these energies required a renormalization of the folded potential by N- 0.7 to obtain 
the minimum x2. Furthermore, a much weaker energy-dependence is predicted for the potential than 
was deduced in [ 1561. 

Later, any argument about which prescription for the strength of the knock-on term was more 
correct was avoided by using two versions (the DDM3Yl and the BDM3Y 1 based upon the Reid 
nucleon-nucleon force) of the density-dependent interaction of Khoa, described in Section 5.6.2. 
This includes an explicit treatment of the knock-on exchange which does not make any zero-range 
approximation. 

These two more realistic interactions gave almost indistinguishable fits to the ‘jLi + 12C data at 
E/A = 35 and 53 MeV, with renormalization factors a little closer to unity, but with larger x2 values 
than obtained with the original, but renormalized, M3Y interaction. Similar increases in x2 were 
found for other 6Li + 12C data sets at the lower energies of E/A = 10,16.5 and 26 MeV. This was 
taken to indicate that simply renormalizing the folded potential was not adequate to compensate for 
the polarization potential due to break-up (Section 5.8); some shape changes had to be taken into 
account. 

To do this, a correction term A V(r) was added to the folded (DDM3Y 1 or BDM3Y 1) real 
potential. This AV(u) was defined by its values at certain radial knots in the region 1 <Y < 8 fm, 
with a cubic spline interpolation between the knots. The values at the knots, together with the 
imaginary potential parameters, were then adjusted to optimize the fit. The renormalization factor 
N for the folded potential was kept fixed at unity. Large reductions in x2 were obtained in this 
way at all the energies considered, compared to the use of the renormalized “bare” folded potential. 
Furthermore, the resulting AY(r) potentials had the characteristic expected for the real polarization 
potentials due to break-up [ 1851, namely they are repulsive in the surface region, with radii around 
4-5 fin, and small elsewhere. Two examples are shown in Fig. 6.6. The largest effects were found 
at E/A = 16.5 MeV, where the total real potential in the surface was reduced by about 40%. At 
E/A = 35 and 53 MeV, the reduction was about 13%. Thus the result in this surface region is to 
reduce the strength of the total real potential by the same amount as was found necessary when 
simply renormalizing the “bare” folded potentials (as in Fig. 5.9), but at the same time leaving the 
strength unchanged at smaller radii. It is in this way that greatly improved fits to the data were 
obtained. 

By successfully explaining a case which at first seemed anomalous, these studies further reinforce 
the conclusion that the density-dependent DDM3Y 1 or BDM3Yl interactions are promising candi- 
dates for use in folding models, including their treatment of the knock-on exchange contributions. 

6.4. Phenomenological potentials 

Phenomenological analyses of the data that concern us were attempted almost simultaneously 
with the folding model descriptions. One has to remember that the seminal studies of a-particle 
scattering which gave rise to the concept of refractive effects in nuclear elastic scattering were done 
using phenomenological potentials. Goldberg, in the 197Os, discovered that, if the exponential falloff 
following the nuclear rainbow was present in the data, the potential could be determined without the 
cumbersome discrete ambiguities that had plagued analyses of data which did not display the full 
rainbow structure [75], These studies were usually made with WS (n = 1) type potentials, although 



194 ME. Brandan, G.R. Satchlerl Physics Reports 285 (i997) 143-243 

‘Li+“C, E,.=99 MeV 1 
real optical pot. 

0 1 2 3 4 5 6 7 8 

R [fml 
0 1 2 3 

R Gm] 
5 8 7 8 

Fig. 6.6. Examples of potentials (solid curves) which fit 6Li + 12C scattering, each of which consists of a folded potential 
generated from the DDM3Yl interaction (dashed curves) plus a spline correction term. Also shown (dot-dashed curves) 
are the folded potentials alone, renormalized by the factor NR to optimize the fit to the data (from [ 1041). 

Table 2 
Optical model parameters= for 6Li scattering 

Target &ab 
(MeV) 

VD 
(MeV) 

wo 
(MeV) 6, 

Jv 
(MeVtin3) 

Jw 
(MeVfin’) 

Ref. 

‘V 210 113.5 2.988 0.793 34.2 3.851 0.784 298 160 11551 
*aSi 210 125.2 3.945 0.836 31.4 5.171 0.822 276 135 [1551 
40Ca 210 145.2 4.313 0.868 31.1 5.797 0.811 284 130 11551 
58Ni 210 174.5 4.397 0.907 32.0 6.220 0.806 253 108 r1551 
90Zr 210 170.0 5.297 0.939 31.3 7.291 0.810 257 105 11551 
*“Pb 210 224.0 6.541 1.001 35.1 9.640 0.824 258 92 U551 
12C 318 126.9 2.601 0.897 29.3 3.881 0.878 285 150 11561 
2sSi 318 117.6 3.923 0.874 40.6 4.843 0.772 264 141 11561 

“Woods-Saxon potentials, defined by U(r)= - Let’s -iWof(xw)‘I +i4ao WD df’(xh)/dx, where f(x)=(exp(x)+ I)-‘, 
and x; = (r - Ri)/u,. For this Table, va = VI = 1. 

the shape of a folded potential is closer to a WS with n = 2. Indeed, Goldberg pointed out [77] that 
potentials with a WS* shape gave slightly better fits to the a-particle data. 

The analyses of 6Li scattering by light targets at energies below N 100 MeV resulted in many real 
potential families, with depths discretely different from each other by certain amounts [51]. However, 
at E/A = 35 and 53 MeV the nuclear rainbow falloff was clearly observed and “unique” potentials free 
from these discrete ambiguities could be determined [154-1561. The 6Li + 12C, *‘Si data, analysed 
with potentials of Woods-Saxon form (no need for a Woods-Saxon-derivative imaginary term was 
found), required strongly attractive real parts ( V0 M 110 - 130 MeV) and a relatively weak imaginary 
term ( W. M 30-40 MeV). Table 2 includes potential parameters for 6Li scattering. The extrapolation 
of these potentials towards lower energies, assuming a logarithmic energy dependence for the real 
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Table 3 
Optical model parameters for “C and 160 scattering 

Erab VR VI h wo Rw RD Jv Ref. 

(MeV) (MeV) tkn) T&-I) (MeV) (fm) TE) ZeV) (fm) $n) (MeVfm’) t&eVfm3) 

12c + 12c 

78.9 1 I 312 
102.1 1 1 284 
121.6 1 1 287 
139.5 1 1 250 
158.8 1 1 200 
240.0 1 1 175 
288.6 1 1 175 
360.0 1 1 175 

1016 1 1 120 

I60 + 12c 

139.2 1 1 275 
215.8 1 1 175 
311.4 1 1 175 
608 1 1 175 

1503 1 1 80 

I60 + I60 

124 2 2 413 
145 2 2 414 
350 2 2 400 
480 2 2 401 
704 2 2 269 

2.66 0.852 9.17 6.41 0.324 0. 342 72.3 t301 
2.75 0.903 14.2 5.49 0.590 0. 351 76.2 [301 
2.61 0.970 17.0 5.49 0.601 0. 351 91.5 [301 
2.86 0.900 17.3 5.60 0.485 0. 337 95.1 [271 
3.22 0.870 25.0 5.08 0.717 0. 334 114 ~271 
3.31 0.839 27.0 5.17 0.650 0. 302 125 ~271 
3.07 0.955 22.0 5.33 0.663 0. 288 111 ~271 
2.87 0.894 25.0 4.87 0.645 0. 235 98.4 1271 
3.01 0.879 25.0 4.41 0.862 0. 175 86.0 1271 

3.45 0.747 15.0 
3.78 0.849 25.0 
3.82 0.846 25.0 
3.15 0.975 24.7 
4.24 0.763 23.1 

3.97 1.53 16.0 6.86 0.970 0. 337 62.9 WOI 
3.95 1.49 16.8 6.80 0.883 0. 329 65.2 w91 
3.80 1.60 29.7 6.27 1.02 7.63 4.62 0.321 298 98.2 [331 
4.17 1.25 51.2 5.43 1.31 9.0a 5.17 0.62 250 120 [121 
4.41 1.35 53.6 5.50 0.70 2.1” 6.34 0.68 280 140 [121 

6.23 0.436 0. 360 
5.55 0.601 0. 308 
5.69 0.643 0. 317 
5.21 0.662 0. 232 
5.07 0.825 0. 175 

82.8 u71 
104 ~271 
113 ~271 
88.5 v71 
82.7 [271 

“The surface absorption is assumed to have the shape of the derivative of a (WS)2 form. 

part, was suggested as a possible way of selecting among the many solutions that had been found in 
previous individual analyses. However, a subsequent analysis of the scattering from 12C at these and 
lower energies [104] has indicated a different, much weaker, energy dependence below E/A = 25 MeV 
(see Section 6.3.3). 

The analysis of the 7Li + r2C and 28Si measurements at E/A = 50 MeV [ 1571 determined Woods- 
Saxon potentials which are included in Table 2. They are similar to those for the scattering of 6Li 
at E/A = 53 MeV on the same targets. The volume integrals per interacting pair for the two isotopes 
differ by less than 3% at these two energies. 

The [27] global analysis of the then available 12C + 12C and I60 + 12C elastic scattering data 
for 10 5 E/A 5 100 MeV assumed WS form factors for both the real and imaginary parts of the 
potentials. This study concluded that, in order to obtain a consistent description of all the data with 
a potential whose real and imaginary parts were smooth functions of the energy, the imaginary part 
had to be weakly absorptive. The values of the central absorption ranged between 15 and 27 MeV. 
The central part was strongly attractive, with 80 5 V, 5 275 MeV. The potential parameters from [27] 
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can be found in Table 3 and the results of the calculations are shown by the curves in Fig. 6.1. 
It must be pointed out that in [27] the data at 139.5,158.8,608 and 1503MeV were fitted first, 
thus determining their optimum potential parameters, and the parameters for the other energies were 
interpolated from these. The most severe constraints on the determination of the potentials in this 
study came from fitting the 140 and 159 MeV data, whose complicated angular distributions, which 
contain both Fraunhofer and symmetrization interferences superimposed on broad Airy maxima and 
minima, could only be reproduced with potentials of the type already described. 

The 160 + 160 data have been analysed phenomenologically by many authors, in many ways. 
In general, for the best fits, this system requires an imaginary part composed of a volume plus a 
surface term, while the real part has been assumed to have either a WS or a WS2 form factor. Table 
3 contains some of the potential parameters reported. These potentials share the main features already 
determined for similar light heavy-ion systems, that is a strong real part and a weak absorption. In 
Table 3 we have selected those potentials that correspond to the so-called family A in [ 1171 and 
type IV in [200,120]. As discussed in [ 1011, this is the phenomenological potential family that most 
closely agrees with the latest microscopic calculations, considering their volume integrals as well as 
their evolution as a function of incident energy. A discussion about the possible discrete ambiguities 
for this system can be found in Section 7.2. 

6.5. Volume integrals 

It has been known since many years ago that the volume integral of the nuclear potential may be 
much better determined by the data than the potential itself [ 1821. Even in cases of extreme sensitiv- 
ity of the scattering to the potential, a small readjustment of the various parameters is possible, while 
keeping the integral a constant. This fact has been of particular relevance to the study of the inter- 
action of light heavy-ions. The relatively weak absorption in these systems permits some sensitivity 
to the potential interior and therefore the volume integral obtained from fits to the scattering data 
contains some information from this region. As will be presented in detail in Section 7.2, the role 
that the volume integral plays as the representative of a given family of potentials has allowed the 
unambiguous results obtained at high energies, from measurements where the nuclear rainbow falloff 
and/or the Airy extrema are clearly visible, to be extrapolated towards the lower-energy regime. 
Alternatively, volume integrals suggested by molecular resonances at low energies have been used 
to help in selecting among possible potential families at higher energies. In the case of I60 + 160, 
where both approaches have been used, the results have been internally consistent, as well as in 
agreement with the systematics observed in similar systems. 

The (complex) volume integral of U,(r) per interacting nucleon pair, Ju(E), is defined as 

UE(r)r2 dr =Jv(E) + iJ#), (6.2) 

where Ap,A1 are the mass numbers of the projectile and target nuclei, respectively. The minus sign 
is introduced in the definition (6.2) so that J is positive for attractive (negative) potentials UE. 
The value of the integral has been normalized by dividing by ApA,, the number of interacting pairs 
of projectile and target nucleons (compare with Eq. (5.3)). Then one would expect the real parts 
Jv for different systems to be similar if the folding model is valid. The density-dependence of 
the underlying nucleon-nucleon interaction would then have the consequence that Jv would slowly 
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become smaller as the ions became heavier (larger) and the weakening of the interior potential began 
to have relatively more effect on the integral. 

At first sight, there is no obvious reason why the imaginary part JW should show a corresponding 
independence of the system, except perhaps at high energy where the impulse approximation or 
Glauber theory begins to have some validity. Then the imaginary part of the potential could also be 
regarded as the expectation value of a sum of nucleon-nucleon terms [59,163]. 

Fig. 6.7 shows the values of Jr and Jw for a variety of potentials that fit the “C + 12C, 160 + 12C, 
and 160 + 160 data discussed earlier in this chapter. Included in the figure are values from the 
phenomenological potentials in Table 3, from microscopic analyses using the DDM3Y effective in- 
teraction, and from recent analyses using Khoa’s extended folding model formalism. As can be 
observed, in the first place, for a given system and energy, the different real potentials all have 
similar volume integrals per nucleon pair, in some cases being indistinguishable from each other. 
Secondly, the imaginary potential, which differs in parameterization from one study to the other 
(WS, WS2, WSD or their combinations), seems to have its integral Jw even more accurately de- 
termined by the data than Jv. Thirdly, for a given E/A there is no substantial difference in Jy or 
Jv between the three systems, except for Jr being M 20% smaller for I60 + 160 than 12C + 12C or 
I60 + 12C. The relatively weak absorption in 160+ 160 is probably associated with the doubly closed 
shell structure of the participating nuclei which reduces the number of open channels available [ 151. 
This manifests itself in the exceptional displays of refractive effects in the elastic scattering for this 
system. 

Phenomenological [ 154,156] analyses of 6Li + 12C have resulted in values for Jv (-300 and 
-285 MeVfm3 at E/A = 35 and 53, respectively) that are slightly larger than those for 12C projectiles 
at the same E/A. The Jw- 160 and N 150 MeV fm3 for 6Li projectiles at E/A = 35 and 53 MeV are 
significantly larger than those for 12C or 160 . We surmise that this reflects the effect of the breakup 
channels for reactions induced by 6Li projectiles. Folding model analyses [104] gave similar results, 
although the Jv values were a few percent smaller. These were based upon the DDM3Yl and 
BDM3Y 1 interactions (with N = 1 ), with a supplementary real spline term to represent the effects 
of coupling to the breakup channels (see Section 6.3.3). 

The solid lines in Fig. 6.7 correspond to the application of the dispersion relations (Section 4.5) to 
the 12C+ 12C volume integrals. The JW curve is a linear segment parameterization of the experimental 
values and the JV curve is the predicted behaviour from expression (4.19). The agreement of the 
predictions with the values obtained from the optical model analyses is very good, and the conclusion 
can be drawn that the energy-dependence due to the underlying nonlocality in the potential is weak, 
since most of the observed energy dependence can be accounted for by the dispersion relation. 
Qualitatively, the energy-dependences of JV and JW observed in Fig. 6.7 are similar to the well 
known “threshold anomalies” at low energies for heavier systems which are caused by the rapid 

changes in the absorption as the inelastic channels open up near the Coulomb barrier. The Coulomb 
barrier is weak and ineffective for a light system like 12C + 12C, but at these energies which are 
well above the barrier, the evolution of the kinematic matching conditions affects the absorption into 
nonelastic channels, causing an increase, followed by a levelling off, and finally a weakening of the 
strength of W as the energy increases. This in turn produces the observed changes in the real part, 
as required by the dispersion relation. 

Fig. 6.8 compares the real and imaginary volume integrals for the system 12C + 12C with curves 
that represent Jv and Jr for protons and a-particles scattered off light targets. The proton Jv curve 
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Fig. 6.7. Summary of real and imaginary volume integrals per interacting ion pair as a function of projectile energy per 

nucleon for three systems. The plotted values are results of various phenomenological and folding model analyses. The 
curves are dispersion relation predictions for “C + “C (from [36]). 

is a linear parameterization of optical model results for scattering off 12C [ 1591, while the JW curve 
represents an average behaviour for the same target [82]. The a-particle real and imaginary volume 
integrals come from global analyses of scattering by 160 [148,2]. Studies of a-particles scattered by 
many targets suggest that Jv should be similar for 12C and 160, while Jw may be about 40% larger 
for i2C than for I60 [I]. The overall energy dependence of the real volume integrals is similar for 
all the represented systems, but there is a systematic decrease in Jv as the mass of the projectile 
increases up to 12C This is the behaviour anticipated above, arising from the density-dependence of . 

the effective nucleon-nucleon interaction. It also agrees qualitatively with a phenomenological study 
of volume integrals for light ions [Sl]. 

On the other hand, the value of Jw z 100MeVfm3 reached by the light heavy-ions at intermediate 
energies is quite similar to those found for proton and a-particle scattering. This might indicate that 
the impulse approximation or Glauber view is becoming increasingly valid at these energies, so that 
the scattering can be regarded as a sum of individual nucleon-nucleon collisions. However, as [37] 
have discussed, the potential assumptions contained in the optical limit of the Glauber approximation 
strongly overestimate the degree of absorption in the nuclear interior and are in conflict with the 
systematic evidence obtained from the elastic scattering data (see Section 8). Then, the apparent 
success of the Glauber view both in the interpretation of imaginary volume integrals as well as 
in the total reaction cross section predictions to be presented in the following section, may be an 
indication of the insensitivity of these two calculations to the details of the imaginary potential in 
the internal region. 
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Fig. 6.8. Real and imaginary volume integrals per interacting ion pair for protons on ‘*C, alpha particles on j60, and 

“C + “C. Short- and long-dashed curves represent results from phenomenological analyses for protons and alphas, re- 
spectively, and solid curves are the dispersion relation predictions for ‘*C + “C shown in Fig. 6.7. The symbols are 

phenomenological and folding model results for ‘*C + ‘*C. 

The remarkably smooth behaviour of the volume integrals for light heavy-ions over a range of 
more than a factor of 10 in energy is one of the stronger arguments in favour of the description of 
this vast amount of data in terms of weakly absorptive and deeply attractive potentials that furnish a 
description of the angular distribution structures as the interplay of diffractive and refractive effects. 
Concerning the results for folded potentials included in Fig. 6.7, it must be recalled that these 
analyses have all required renormalizations of about unity, thus also implying that the density- and 
energy-dependence built into the effective interactions (DDM3Y, or the more recent DDM3Yl and 
BDM3Y 1) agree well with the energy dependence required by the data. 

The results for Jv and Jw that have just been described indicate, on one hand, that real poten- 
tials calculated from a folding model, using a properly determined density- and energy-dependent 
interaction, reproduce remarkably well the main features of the scattering for these light heavy-ion 
systems, and on the other, that the imaginary potential does reflect somewhat the structure of the 
participating nuclei, requiring therefore a more elaborate microscopic description. 

6.6. Total reaction cross sections 

Studies of the total reaction cross section, 0 R, for heavy-ions has been an active field in the period 
covered by this review. Direct measurements were performed on a variety of systems [ 164,ll l-l 131 
over wide energy intervals, and in addition “experimental” values have been inferred from the phase 
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Fig. 6.9. Summary of total reaction cross section data for “C + “C. The solid curves are microscopic calculations using 

deep (upper) and shallow (lower) real nuclear potentials (from [ 1861). 

shifts obtained from optical model analyses of elastic scattering data [21,50,24,186]. All this interest 
was triggered largely by the work of De&es and collaborators [59,163] who predicted, based on a 
few observations at very high energies, a rapid energy dependence of CR which was a reflection of 
the energy dependence in the individual nucleon-nucleon interactions. The measurements confirmed 
the predicted decrease of bR to less than the geometrical limit for E/A above some tens of MeV, 
reaching a minimum near 300MeV, as Fig. 6.9 shows for 12C + 12C. 

DeVries’ original calculations were based on the optical limit of the Glauber approximation, 
assuming straight-line trajectories for the colliding nuclei. The effect of the nuclear potential was 
studied [22] and it was found that the effects of a deep real potential (similar to those resulting from 
folding model calculations) could be observed in the behaviour of aR at E/A M 10 MeV. The two 
solid curves in Fig. 6.9 correspond to potentials with shallow and deep real parts; the best agreement 
with the experimental values is obtained with the deep potential assumption [186]. 

The value of bR can be calculated from the transmission coefficients F corresponding to the l-wave 
elastic scattering matrix elements Sl, 

(6.3) 

where 

iy = 1 - lS[j2 ) (6.4) 

and where j is the reduced wavelength. This expression is only weakly sensitive to the details of the 
real part of the optical potential. As (6.3) indicates, it is dominated by the behaviour of T, with 1. 
The (21+ 1) weighting means it is most sensitive to the peripheral partial waves, where T, falls from 
-1 to 0. In turn, these are especially sensitive to the diffuseness of the imaginary potential, as has 
indeed been observed [21,185]. As an indication of the variation in bR for different optical model 
potentials we find, for example, that for the i2C + i2C elastic scattering data at Elab = 126.7 MeV, 
one obtains values ranging from 1330 to 146Omb, a variation of lo%, depending on the potential 
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chosen. As observed in Fig. 6.9, the optical model analyses give results consistent with the direct 
measurements as well as the predictions from nucleon-nucleon cross sections [59,163]. 

7. Potential ambiguities 

7.1. Continuous ambiguity 

The continuous, or Igo, ambiguity [91] for heavy-ion optical potentials refers to the possibility of 
describing a given set of elastic scattering data with any of an infinite number of potentials which 
have in common the same exponential tail in the large-r region. The origin of the ambiguity is, of 
course, the strong absorption that eliminates all sensitivity to the inner parts of the potential [ 1821. 

The cases that interest us in this work, are precisely those where the absorption is relatively weak 
in the interior region. Sensitivity tests have reported sensitivity to small radii well inside the point 
where a Woods-Saxon potential becomes exponential, and therefore no Igo-type ambiguity can be 
expected. Fig. 7.1 shows an example of real potentials that reproduce well, aZbeit with differing 
degrees of goodness, high energy 160+ “C data [ 1141. The WS curve is the optimum Woods-Saxon 
potential, while FOLD + AY is the result of adding to a DDM3Y folding-model calculation the 
sum of two WS derivatives, one attractive (centred near Y M 4 fm) and one repulsive (near 1 fin), 
so that the total potential has a nonmonotonic behaviour. The imaginary parts of these potentials 
were weak, about 20 MeV at the centre. The quality of the fits obtained with these two potentials 
were good, with x2 approximately unity. The agreement between these optimum potentials in the 
region Y 13 fm suggests, as was independently proven by a notch test, that the sensitivity extends 
inside the point (Y M 4 fin) where the potentials become purely exponential; therefore, no continuous 
ambiguity is expected, and indeed none was found. This example is representative of the degree of 
sensitivity encountered in similar light heavy-ion systems at other intermediate energies. 

As will be discussed below, certain sets of measurements can be described in terms of a strongly 
absorbing potential, as well as by ones which are weakly absorbing. The former potentials do present 
an Igo-type ambiguity, as was encountered in the original analysis of 160 + 12C at 608 MeV. 

7.2. Discrete ambiguity in the real part 

Discrete ambiguities in the determination of the nuclear potential have been known for light ions 
since the 1960s [62], and were soon found for the first experimental studies of light heavy-ion elastic 
scattering. The measurements, on the identical-particle systems 12C + 12C and 160 + 160, consisted 
of cross sections taken at a few selected angles and energies between the Coulomb barrier (about 
10 MeV) and 60 MeV in the laboratory. The optical model analyses of these data, made using 
Woods-Saxon potentials [ 13 1,173], showed a variety of ambiguities in the determination of the 
nuclear potential, in particular the existence of a large number of discrete families of real potentials 
which fitted equally well the angular distributions and the excitation functions. For simplicity, the 
one chosen to illustrate the main features of the scattering was the weakest family of potentials, 
which for *‘jO + 160 had a real part only 17 MeV deep. This choice required no energy-dependence 
in the potential strength. From then on, such shallow potentials were frequently used in analyses of 
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Fig. 7.1. Real parts of optical potentials that fit the scattering of I60 + “C at E/A =94MeV. The dashed curve represents a 
folded potential based upon the original DDM3Y interaction and renormalized by the factor N = 0.99. The solid curve shows 
the unrenormalized folded potential plus an optimum spline correction term. The dotted curve indicates a Woods-Saxon 
potential (from [ 1141). 

heavy-ion scattering measurements, until data at higher energies became available which showed the 
inadequacy of such a weak attraction at small radii. 

The discrete ambiguities in the real potential encountered in the analysis of a-nucleus scattering 
were resolved by the observation of nuclear rainbows, whose structureless falloff determined uniquely 
the appropriate potential family [75]. Fig. 7.2 shows an example given by Goldberg to illustrate the 
power of the refractive effect. The data up to 60” could be described by a number of Woods- 
Saxon potentials with discretely different real parts. For example, the first one had V-l 15 MeV, 
and the second had I’~180 MeV. For the 115 MeV potential, the nuclear rainbow was located at 
about 60”, and the first Airy minimum forward of the rainbow was located at about 30”. (This may 
not be obvious to the untrained eye; the nearside/farside decompositions discussed in Section 10.1 
permit one to disentangle the Airy structures of the farside amplitude from the diffractive near/far 
interference.) The optical interpretation of the scattering by the 180 MeV potential is different, since 
its nuclear rainbow is near 140”, the first Airy minimum appears at 60” and the second Airy minimum 
is at 30”. Generally, in the presence of a discrete ambiguity, the observed refraction minima will 
correspond to different orders of Airy minima, as one changes from one potential to the next. In 
the case shown by Fig. 7.2 the observation of the exponential falloff of the nuclear rainbow well 
beyond 60” allowed the unique selection of the 115 MeV potential as the appropriate one. This 
entails the measurement of very small cross sections at energies sufficiently high for the refractive 
falloff to appear at angles smaller than 180”. (This becomes 90” for identical systems; for example, 
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Fig. 7.2. Comparison of cross sections for elastic scattering of a-particles from ‘*Ni. The arrows indicate the maximum 

deflection angles calculated using the 6 = 115 MeV (-60”) and the 6 = 180 MeV (E 140”) real potentials that fit the 

forward angle data (from [76]). 

we have estimated [30] that the nuclear rainbow in ‘*C + “C will reveal itself forward of 90” at 
I&, 2 200 MeV.) 

For light heavy-ions at E/A 5 10 MeV, a qualitatively similar discrete ambiguity has been observed. 
Fig. 6.2 illustrates how different “families” of real folded potentials, characterized by their discretely 
different renormalization factors N, describe equally well the ‘*C + 12C data below E/A = 10 MeV. 
At higher energies, as the nuclear rainbow falloff moves into the experimentally accessible angular 
range, the choice becomes unique (indicated by the solid symbols in Fig. 6.2) and the ambiguity 
can be removed, if consistency between the results for the two energy regions is demanded. 

The analysis of the I60 + 160 data at 350 MeV [ 198, 1991 presents an interesting example of the 
complications that can arise because of the discrete ambiguity. The measurements were performed 
in two different experiments, the second one extending the original angular range from 61” up to 
73”. Fig. 7.3(a) shows the first set of data [198] and three possible descriptions of the original data, 
with increasingly deep WS2 real potentials A, B, and C, which lead one to interpret the clearly 
visible 43” minimum as the first, second and third Airy minimum, respectively. Fig. 7.3(b) shows 
the manifestation of the discrete ambiguity in the x2 vs. Y0 relation; the minima in x2 correspond to 
the central depths of the three potentials shown in Fig. 7.3(a). The initial analysis of these data [ 1981 
seemed to indicate that the observed 43” minimum corresponded not to the primary Airy minimum, 
but to the secondary (as predicted by potential family B), and predicted that the differential cross 
section would rise up again to display the rainbow maximum at around 70”. Kondo et al., in an 
independent phenomenological optical model analysis of the original data [ 1171, proposed that the 
43” minimum most probably was the primary one. Their argument came from a comparison of 
the real potential strength (quantified by its volume integral) at 350 MeV and those independently 
determined from an interpretation of scattering data at much lower energies, near the top of the 
Coulomb barrier, in terms of “molecular” resonances [ 115,116]. At these low energies, the potential 
must be sufficiently deep so as to sustain quasi-bound states with enough radial nodes to satisfy the 
Pauli principle (see chapter 12). This condition allowed three potentials whose volume integrals are 
indicated in Fig. 7.3(c), together with the integrals for the three potentials A, B and C determined 
from the 350 MeV scattering data. On very general grounds, we expect the strength of the potential 
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Fig. 7.3. Resolution of the discrete ambiguity in the real potential for I60 + 160 at 350 MeV. (a) The original elastic 
scattering data [ 1981 and calculations with three different potentials: A (solid curve), B (dashed curve) and C (dotted 
curve). (b) The x2 value as a function of the real central depth V shows three minima, one for each of the potential 
families. (c) The volume integral per interacting ion pair, for two energies. The lower energy values of JV come from 
the work of [ 1151. The potentials that are consistent with the dispersion relation are connected by the dotted curve (from 

[1171). 

to increase as the energy decreases, allowing one to select the pair of potentials joined by the dotted 
line as the physically realistic ones. 

As made evident by Fig. 7.3(a), only the unambiguous observation of the exponential falloff well 
after the rainbow angle can identify an Airy minimum as being indeed the first, and therefore remove 
the potential family uncertainty. The measurements were extended further out in angle [199] and 
no rise was observed beyond 61” (see Fig. 2.3), confirming KondG’s potential choice. However, if 
nontraditional forms are selected for the potential shapes, some doubts may still remain; details on 
this subject can be found in Section 9. 

If the solution of the discrete ambiguity problem is far from trivial with data of the quality dis- 
played by the 160 + 160 measurements at 350 MeV, the situation is even harder at lower energies 
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Fig. 7.4. Resolution of the discrete ambiguity in the real potential for I60 + I60 at 145MeV. (a) The data [200] and 

calculations with three different potentials, called III, IV and V. (b) Unsymrnetrized calculations with three potentials that 
fit the data, illustrating the discrete shift in the Airy minima and maxima as the potential strength increases. (c) Volume 

integral per interacting ion pair for real potentials III, IV and V, together with results at two other energies. The dashed 
curve indicates the choice of family IV, since it is the one that follows the energy dependence established in previous 

studies (from [200]). 

where no exponential falloff can be seen in the measured angular range. Fig. 7.4(a) shows measure- 
ments for I60 + I60 at Elab = 145 MeV [200], where a strong minimum can be observed at about 
54”. What is shown in Fig. 7.4(b) is the unsymmetrized optical model calculation in order to avoid 
the (uninteresting in this situation) interference near 90” due to the identity of the nuclei. (This 
interference extends to more forward angles and becomes more evident as the energy decreases 
because of the reduction in the slope of the unsymmetrized angular distribution, until it dominates 
the angular distribution as the energy approaches the top of the Coulomb barrier. Thus it becomes 
a much more bothersome feature for the interpretation of the data at lower energies. Another exam- 
ple is presented in Section 10.1). The angular distribution for potential I in Fig. 7.4(b), which has 
V. = 12 1 MeV, shows the nuclear rainbow exponential falloff after the 54” minimum, showing that 
this is its first Airy minimum. This potential predicts no minima beyond this angle. Potential II, with 
V. = 209 MeV, places its first Airy minimum at 86”, and the one at 54” becomes the second Airy 
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minimum. For potential III, with Vo = 362 MeV, 54” is the angle of the third Airy minimum, while 
77” is the angle for the second, and the first is located at about 1 IO”, and so on for the stronger 

potentials. Since the angular distribution is symmetric with respect to 90”, and within this angular 

range no exponential falloff is observed in the data (Fig. 7.4(a)), no nuclear rainbow identification 
may be possible. At higher energies, the angular structures move forward in angle allowing one 
to observe the rainbow and to choose the appropriate family, as has been done for this system at 
350 MeV. Fig. 7.4(c) is an extension of Fig. 7.3(c), and shows that the 145 MeV family IV is 
consistent with the phenomenological studies at the other energies [ 1201. The same conclusion is 
reached after a folding model analysis [ 1011 of the data. 4 

This explanation of the discrete ambiguity for light heavy-ions in terms of an angular shift of the 
Airy pattern was proposed in 1991 [34], based on an analysis of 6Li+5sNi scattering at E/A = 35 MeV, 
and other lighter systems. Fig. 7.5(a) shows the discrete ambiguity for potential calculations (farside 
only) that describe equally well data forward of 35”. Starting from the shallowest real potential 
that describes the 29” minimum (I’, = 174 MeV), the fits deteriorate as the real strength increases 
because the calculated minimum moves backward, beyond 29”, until the value I’, = 266 MeV is 
reached. This particular value of V, puts the second Airy minimum at 29”, therefore restoring the fit 
to the data. If one continues increasing the real potential strength, the minima do shift backward until 
the next Airy minimum falls into place ( V0 = 360 MeV) and one recovers an acceptable fit, etc. It is 
the semiperiodic structure of the Airy pattern that causes the discrete ambiguity. The measurements 
[155] that motivated this analysis reached up to 50” and did show an exponential decay beyond 35”, 
therefore selecting unambiguously the value of V0 = 174 MeV as the correct one. 

In the same work [34], the shift of the Airy pattern in going from one potential to the next was 
shown to be equivalent to a phase-shift increment by ~TC for the low-partial waves, while no phase 
change occurs for the peripheral ones. Fig. 7.5(b) shows the phase shifts corresponding to the real 
potentials in part (a). The deflection function, calculated as in (3. lo), indicates that the 29” minimum 
arises from the interference of the I M 22 and 40 partial-wave amplitudes. It can be observed in 
Fig. 7.5(b) that the difference between 6(22) and 6(40) changes by an integer number of rc between 
the ambiguous potentials. The reader will probably be reminded of the much earlier proposal by 
Drisko et al. [62] of a similar explanation for the discrete ambiguities in light nuclear systems. 
A discussion of the effect of potential resonances in the discrete ambiguity for light ions can be 
found in [34]. We emphasize that the requirement of some transparency for low-l partial waves (i.e. 
weak absorption) is essential in order to observe the discrete ambiguity. Without it, we would regain 

the continuous ambiguity of Igo [91]. 

7.3. Shallow- or deep-W ambiguity 

The 1988 global analysis of 12C + “C and I60 + 12C data above 10 MeV per nucleon [27] showed 
the need for a weak absorptive potential to produce a consistent description of the data at several 
energies. The key factor in the proposed description was the unambiguous need for shallow imaginary 
parts, between 15 and 27 MeV at the centre, over the energy range from 10 to 94 MeV/nucleon. 
These conclusions applied to both phenomenological and microscopic real potentials. Fig. 7.6 shows 

4 This conclusion arises from the similar values of the volume integrals; due to an error in [ 1011, probably typographical, 
the authors mention potential III as the one consistent with their DDMSYI folded potential. 
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Fig. 7.5. Illustration of the discrete ambiguity in the real potential for 6Li + 58Ni. (a) Farsides calculated with three 

potentials that fit the data forward of 35”. (b) Phase-shifts for the three potentials, showing increments of nz among them. 
This ambiguity is solved by the data, that extends up to 50°, in favour of the potential having vO= 174MeV (from [34]). 
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Fig. 1.6. Values of the (relative) x2 as a fknction of the imaginary potential central depth for four sets of elastic scattering 
data. Dotted curves “FM” correspond to folding model analyses using the original DDM3Y potentials. The other curves 
are results with phenomenological real parts whose central depths (in MeV) are indicated. All the imaginary parts are 
treated phenomenologically, with WS shapes (from [27]). 

Fig. 7.7. Shallow- or deep-W ambiguity in the scattering of I60 f “C at 608MeV. The evolution of the three fitted 
parameters (the renormalization No for a DDM3Y folding model real part, the WS reduced imaginary radius rw and the 
diffuseness aw) is shown as a function of the imaginary central depth Wo. The shallow- and the deep-W minima in x2 
correspond to potentials having different characteristics (from [28]). 

the values of the x2 function as a function of the central imaginary depth for selected sets of data. As 
can be seen, only values of W0 between 15 and 27 MeV allow a description of all the measurements 
with an optical model potential (in this case, of WS shape) which varies smoothly with energy. 

At the same time, this analysis indicated that some of the data sets (such as I60 + ‘*C at 608 MeV 
in Fig. 7.6) could be described well by potentials with either a shallow or a deep imaginary part. 
It is the continuity requirement between different energies that led the authors in [27] and [28] to 
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Fig. 7.8. Shallow- or deep-W ambiguity in the scattering of I60 + “C at 1503 MeV. The values of x2 and the renormal- 
ization N for a DDM3Y folding model real part are shown as a function of the imaginary central depth W. The imaginary 
part was treated phenomenologically, assuming either WS or WS2 shapes (from [ 1141). 

choose the weakly absorptive solution as the “correct” one; later studies showed that in some cases 
the best fit (in terms of giving the minimum x2) might actually correspond to the potential with the 
stronger absorption, indicating that the x2 criterion should be treated with caution. 

Three of the data sets showing this weak- vs. deep-W ambiguity were studied in detail 
as part of an analysis using potentials with folding model real parts [28,114]. Fig. 7.7 shows 
the evolution of the potential parameters as a function of the imaginary real depth W. for the 
case of 160 + ‘*C at 608 MeV. It can be observed that the parameters do not transform smoothly 
in going from the weak-W ( W x 25 MeV) to the deep-W ( W > 80 MeV) solutions, but instead they 
correspond to two discretely different types of potentials. For the case shown in Fig. 7.7, the weak-W 
potential is relatively well determined, while the deep-W presents a continuous ambiguity (it is possi- 
ble to obtain fits with similar quality for an infinite number of combinations of imaginary parameters 
if W. is about 80 MeV or larger). This is not exactly the case for 160 + ‘*C at 1503 MeV, as displayed 
in Fig. 7.8, where besides the weak-W potential that prefers W x 16 MeV, the deep-W potential shows 
a preference for a given depth, W M 50 - 60 MeV, depending on the choice of WS or WS* for the 
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imaginary form factor. Another apparently “unambiguous” deep-W alternative is found in the ana- 
lysis of another high-energy case, that of 12C + 12C at 1016 MeV, with minima at W M 30-40 MeV. 
An interpretation of this ambiguous description in terms of semiclassical trajectories is presented in 
Section 10.2. 

Besides the cases already mentioned, other W ambiguities have been observed for other heavy- 
ion systems. For example, I60 + 28Si at E/A = 94 MeV displays two minima in x2, qualitatively 
similar to those in Fig. 7.8, at W M 40 and 70 MeV. Here no weak-W description has been 
found [ 1141. 

8. General features of the potentials and the WV systematics 

The heavy-ion nuclear potentials discussed are capable of describing a large amount of elastic 
scattering data over a wide energy interval. So far we have looked directly at the data trying to 
identify in the measurements those features which could indicate an interpretation in terms of re- 
fractive effects. But, which are features in the potentials themselves that signal their “refractive” 
character? The most obvious of these characteristics are the strengths of the real and the imaginary 
parts. Real parts must be deep in order to “pull” the farside trajectories sufficiently to negative 
angles and to locate the maxima and minima of their Airy interference pattern at the angles where 
the data show them. Since the sub-trajectories of the farside amplitude that produce this interference 
penetrate into the interior of the potential, the imaginary potential must be shallow for them to 
survive. 

The first and second rows in Fig. 8.1 show the real and imaginary parts of phenomenological 
potentials that describe 12C + 12C and 160 + 160 data at two different energies. Two alternative po- 
tentials have been chosen for each case. The selected potentials display the main features found in 
all data analyses: they depend on the energy, their real parts are deep (V N lOO-350MeV) and 
their imaginary parts are relatively shallow ( W - 7-30 MeV). By using a logarithmic scale, the 
second row in Fig. 8.1 emphasizes the next important feature of these potentials: the shapes of the 
real and imaginary parts are always different, particularly at the far surface, where the absorption 
decreases faster than the nuclear matter distribution. The third row in Fig. 8.1 presents the above 
features summarized in a single function [38]: the ratio of the imaginary and real parts, W(r)/V(r), 

as a function of radius. The function 

has been called [38] a “reduced imaginary potential” since it can be interpreted as the flux removal 
from the elastic channel W(r) weighted by the inverse of the matter distribution, approximately 
represented by V(r). This function is remarkably similar for all the potentials, as can be observed 
in Fig. 8.2, where l*C + ‘*C potentials and their ratio are shown for E/A between 7 and 82 MeV. 
Three characteristics can be seen: 

(a) For small r, W(r)/V(r)< 1, indicating deep elastic interpenetration of target and projectile, a 
feature required by the appearance of refractive effects in the angular distributions; 

(b) For large Y, W(r)/?‘(r) 4 1, implying low reaction rates at the far-surface; 
(c) At the surface, W(r)= V(r). 
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Fig. 8.1. Typical potentials that describe light HI elastic scattering. The solid curves in the top two rows are the real 
parts and the dashed curves correspond to the imaginary parts. In spite of the different parameterizations, they all show 

a systematic behaviour for the ratio W(r)/V(r) (from [38]). 

For phenomenological potentials with Woods-Saxon shape these features of W(r)/V(r) can be 
traced back to relations between some of the potential parameters: W -c V, R, > R,, and a, < a,. 
These are fulfilled by all but one of the potentials listed in Tables 2 and 3 (the exception, at a high 
bombarding energy, is discussed later). The systematics for different systems at different energies 
indicates that the maximum of the reduced potential w(r) is located at radii about 1.2-1.4 fm times 
(AT + A:“) and that this radius decreases as the energy increases. Attempts to relate W(T) to other 
variables of the scattering have found [38] that the peak in W(Y) coincides in location with the 
apsidal distance for the trajectory with the angular momentum 1 for which the function dlSl/dl has 
its maximum. According to Austern and Blair [7] and Frahn [71], this indicates the peripheral region 
where collective direct reactions originate. Within this formalism, the peak also marks the so-called 
strong-absorption radius for the system and happens to be slightly larger than the imaginary radius 
R, for the light heavy-ion data thus analysed [38]. 

These W(Y) systematics are fulfilled by phenomenological potentials describing a-particle scattering 
on nuclei from 12C to 208Pb (with the exception of “?Sn), 6,7Li scattering by a variety of targets, 
12,13C + r2C I60 + 160, and I60 + r2C, all for energies E/A greater than about 6 MeV. Fig. 8.3 shows 
W(T) for potentials that fit some of these data and which fulfill the systematics. The ratio has been 
plotted against a scaled radius r. = r/(A:;‘3 + A:‘3) to unify the representation for different systems. 
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Fig. 8.2. Phenomenological potentials (WS shapes) for “C + 12C: real parts are shown in (a), imaginary parts in (b), and 
the ratios W(r)/V(r) in (c). Numbers indicate E/A, in MeV (from [38]). 

The folding model analyses which have been performed on some of these heavy-ion data using the 
DDM3Y effective interaction, produce potentials which also obey the W(Y) systematics at energies 
E/A 5 15 MeV, as the example in Fig. 8.1 shows. Above this energy, the calculated potentials 
frequently present a far-surface tail that is steeper than that which apparently is required by the data 
[ 1901, and the ratio W/V does not drop to values less than unity in the external region. Almost 
all these folded potentials have been constructed using the zero-range pseudo-potential (5.7) for the 
exchange term, and it might be surmised that this is responsible for the discrepancy just mentioned. 
It would be interesting to examine this using the more sophisticated approach of Khoa et al. [98,101 J 
which does not make the zero-range approximation. 

Phenomenological potentials which are known not to agree with the w(r) systematics are those 
for “Ne + i2C, i4N + i2C, 9Be + 12C and 9Be + 160. All of them are absorptive in their far surface, 
having a, < a,,,, and a w(r) curve which increases continuously, without a maximum. It is not yet 
clear what there is in the structure of these nuclei that sets them apart from the behaviour observed 
for the other nuclei, which are mostly “4n” or “a-particle” nuclei, but their strong deviation from 
the w(r) systematics indicates that the detailed structure of target and projectile can influence the 
absorptive part of their optical potentials. 

The dashed curves in Fig. 8.3 correspond to the high energy data 12C + 12C at E/A = 85 
MeV and I60 + 12C at 94 MeV. For these two systems, the absorption in the far-surface has in- 
creased, relative to that for the lower energy potentials, so that W(r),W(r) R. 1 and the W(T) 
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Fig. 8.3. The ratios W(I)= W(r)/V( ) r as a function of reduced radius for systems that follow the systematics. In (a), the 
different curves correspond to WS potentials at different energies. In (b), which corresponds to potentials that fit the 145 
and 350 MeV data, the solid curves correspond to phenomenological (WS2) potentials and the dashed curves are potentials 
obtained by inversion. In (c), the different curves correspond to WS potentials at different energies (from [38]). 

systernatics are not fulfilled. An explanation for this apparent evolution of the potentials with en- 
ergy has been given in [37] based on the application of the double-Glauber approximation to light 
heavy-ion scattering. 

The optical limit of the double-Glauber approximation obtains the scattering phase shifts from 
a “potential” which is essentially a double-folding potential used for both V(r) and W(v), with 
complete neglect of suppression due to the Pauli principle. This potential gives the same radial 
shape for the real and the imaginary part, and at E/A M 100 MeV, W/V is approximately equal 
to unity. As the systematics of the phenomenological potentials show, the Glauber approximation 
grossly overestimates the absorption, except in the few cases at high energies where W(T) NN 1 
in the far-surface region. The nucleon density is low in this region, Pauli suppression should be 
minimal and it is plausible that the increased absorption implied by w(r) M 1 may be due to an 
increased probability of nucleon knockout in the far-surface, the only type of absorbing process 
considered in the Glauber description. At lower energies, where the Glauber assumptions for the 
absorption strongly disagree with the W(T) systematics, the description of the elastic scattering dif- 
ferential cross section by Glauber theory is bound to be in error. This failure is discussed in detail 
in [37]. 
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9. How well can one set of data determine the potential? 

9.1. Non-standard forms of potential 

Once the weak absorption in the scattering of light heavy-ions has been established, allowing for 
the determination of the potential features in sub-surface regions, the question whether the detailed 
shape of the optical potential may differ from the standard phenomenological or the folding model 
form factor becomes tractable, at least in principle. 

The I60 + ‘*C data at E/A = 94 MeV have been analyzed using optical potentials with more general 
shapes for the real part [ 1141. In particular, the DDM3Y folding model potential was taken as a 
reference, and modifications AV(r) either from a functional form or directly as specified values 
at fixed radial knots with cubic spline interpolation between them, were added. The potentials that 
resulted could even present nonmonotonic shapes, as can be observed in Fig. 7.1. The conclusions 
of the study signaled the possible need for modifications to the folding model potential in order to 
achieve an optimum fit, particularly an increased attraction at the surface and a reduced attraction 
at the centre, as curve “FOLD + Ar in Fig. 7.1, which is a functional form modification of the 
DDM3Y potential [114], indicates. The spline analysis produced potentials with a more structured 
oscillatory pattern than the functional Av but no physical significance was attached to the feature. 
Fits that appeared almost as good as those obtained using the modified folded potentials (although 
with x2 about twice as large) could be obtained with the conventional six-parameter WS or WS* 
forms! 

The complete 160 + 160 data at 350MeV [ 198,199] have also been studied with optical potentials 
more general than the standard form factors. The authors of [33] performed optical model analyses of 
the data exploring the optimum exponents vR and VI to which the Woods-Saxon real and imaginary 
form factors, respectively, had to be raised, as well as the effect of modifying the real and the 
imaginary parts by a general determination of the potential at certain radial knots, supplemented 
by spline interpolation in between and exponential extrapolation at large radii. The first result was 
to detect a slight preference for vR = vI = 2. When a general spline imaginary potential form was 
optimized while keeping a WS or WS* real form factor, the resulting potential was similar to that 
obtained from the addition of an imaginary Woods-Saxon derivative WSD term (centred at about 
4.6fm) to the WS (or WS*) imaginary volume term. Since the analytic option is much simpler to 
use, it was concluded that the optimum imaginary shape was a sum of WS (or WS*) and WSD. 
Concerning a general form for the real potential, exploratory fits indicated that the study could be 
done assuming vI = 1 and no WSD term, without loss of generality. In Section 7.2 we have discussed 
the three families of discretely different potentials (types A,B and C; see Fig. 7.3(a)) found by KondG 
in his phenomenological analysis of the system. We have found [33] that the optimum spline real 
potentials were similar to KondG’s type A and type B, as shown by Fig. 9.1. (Spline potential X is 
too weak to sustain a rainbow, as discussed in [35] and Section 10.2). A DDM3Y folding model 
real potential for this system (with the optimum renormalization equal to 1.05), is also shown in 
Fig. 9.1. It proved to be very similar to the real part of the type A spline potential. The quality of 
the fits is improved by the extra parameters associated with the spline analysis, suggesting in this 
case, as in the other already discussed in this section, that the folded potential using the DDM3Y 
(or the similar, more recent, DDM3Y 1 or BDM3Y 1) interaction is a good first approximation to the 
real part of the potential. 
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Fig. 9.1. Spline real potentials that fit the scattering of I60 + I60 at 350MeV (see Fig. 2.3.). Also shown is a folded 
potential, based upon the original DDM3Y interaction and renormalized by a factor of N = 1.05 (from [33]). 

More recently, these 160+ I60 data at 350MeV, together with others taken at 250, 480 and 
704 MeV, were subjected to analysis [ 121 in which both real and imaginary parts of the optical 
potentials were represented by a series of Fourier-Bessel (FB) or Laguerre-Gaussian (LG) terms 
superimposed upon a starting potential with the form of the square of a Woods-Saxon. The LG 
expansion gave the best description of the data, The resulting fits to the data are shown in Fig. 
9.2 and the corresponding potentials, together with their (correlated) uncertainties, are displayed in 
Fig. 9.3. (The dashed curves in both cases correspond to the results obtained using phenomenoiogical 
Woods-Saxon potentials whose parameter values are tabulated in [ 121.) The model-unrestricted real 
potentials also have characteristics similar to those of the folded ones obtained earlier which used 
the BDM3Y 1 or DDM3Y 1 interactions [103]. 

Another study of the uniqueness of the potentials and phase shifts derived for a single set of 
elastic scattering data was performed on the 160 + **C data at 608 MeV [ 1901. The need for different 
noninteger exponents va and VI was explored, as well as the addition of a WSD term to the standard 
volume imaginary term, and the determination of the real part at fixed knots plus spline interpolation. 
Many different potentials were found, all describing the data with x2 M 1. The real parts of these 
potentials are all smooth functions of r, even if some of the spline potentials are nonmonotonic. The 
central depths of the real potentials are about 100 to 150 MeV, and they all tend to converge toward 
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Fig. 9.2. Elastic scattering cross sections, in ratio to the Mott cross section, for I60 + I60 at several energies, plotted 
us. momentum transfer q. The solid curves are fits obtained using model-unrestricted potentials expressed as series of 

Laguerrffiaussian functions. The dashed curves represent fits obtained using the squares of Woods-Saxon potentials 
(from [ 121). 

V(r) = - 25 MeV at r M 5 fm and to be similar at larger radii. Most of the imaginary parts peak near 
r=3 fm, as shown in Fig. 9.4(a), confirming the need for an additional WSD absorptive term for 
an accurate phenomenological description of this system. Constraining the spline potential to have 
the values given by a DDM3Y folding model potential at Y 5 3 fm, shown in Fig. 9.4(b), suggests 
the need for a more diffuse real tail than that given by the DDM3Y prescription. This study also 
encountered the discrete ambiguity associated with the explanation of the large angle exponential 
falloff. Fig. 9.5 shows calculations for two potentials, one having a much deeper real part (about 
280 MeV at the centre) which predicts the primary Airy minimum to be at 43”, and one that is 
173 MeV deep at the centre that indicates that it is the primary rainbow that has been observed so 
that there are no additional minima to be seen. As in the 160 + 160 cases discussed above, a choice 
between the two could be made based on the systematics known at other energies, and/or similar 
systems. Of course, a definitive solution would require unambiguous data in the 40”-50” angular 
region. 

We have presented in detail examples of thorough studies at single energies where, in spite of the 
reduced absorption, no conclusive answer about the fine details of the nuclear potential can be drawn. 
Furthermore, the chosen cases seem to suggest that the detailed potential structure appropriate for 
one system is not necessarily the one best suited for the other. This, of course, may be an indication 
of the limitations of the simple description of the scattering by a local optical model potential. 
The moral of these exercises seems to be that the optimum knowledge of the optical potential for 
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Fig. 9.3. The real and imaginary potentials obtained from the fits shown in Fig. 9.2. The hatched areas show the 
model-unrestricted LG potentials together with their (correlated) uncertainties. The dotted curves show the Woods- 

Saxon-squared potentials (from [ 121). 

a system cannot arise from the analysis of a single set of data. Ideally the scattering at several 
energies should be measured and studied and, if possible, data for other similar systems should be 
reasonably well described by a potential containing the same physical characteristics. 

In this way we avoid the risk that some idiosyncracy of a particular measurement, rather than a 
true physical effect, is biassing our conclusions. 

9.2. Potentials obtained by inversion of the scattering cross sections 

With present day techniques and sufficiently precise data, it is possible to do a (complex) phase- 
shift analysis of a set of differential cross sections and then invert the phase-shifts to obtain an 
equivalent local potential that will reproduce them. The phase-shift analysis may be done using 
a parameterized S(I) function, for example of McIntyre form [ 1421, or more flexibly by adding 
a corrective function to a smooth starting function. The starting function can be optimized by a 
preliminary fit to the data; it may be of the McIntyre form, or derived from Glauber or other 
theory, or generated from an optimized model potential, folded or Woods-Saxon, etc. The cor- 
rective function then indicates what changes from the starting function are necessary to optimize 
the fit to the data. This procedure is illustrated by applications to the scattering of I60 + i2C 
at 608MeV 1541, “C + *‘C at energies from 139.5 to 2400MeV [I451 and to 160 + I60 at 
350 MeV [4,56]. 
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Fig. 9.4. Two examples of optical potentials that give equivalent fits to the scattering of I60 + “C at E/A =38 MeV. (a) 
Showing that the imaginary parts tend to peak near r =3 fm. (b) The solid curve shows a folded real part constructed 

from the original DDM3Y interaction, renormalized by a factor N =0.845, while the dashed curve represents a spline 
potential constrained to have the same value as the folded one for r 5 3 fm. The spline version has a longer tail than the 
folded one (from [190]). 

The determination of the phase-shifts presents a profound ambiguity problem. Although there is 
no ultimate solution to this problem, there are ways that it can be mitigated [145]. These include 
imposing some conditions, perhaps not well defined, such as “physical reasonableness”, “smoothness” 
and “continuity with energy”. 

The S-matrix S(I) that is so obtained, and which now represents the data, may be inverted to 
give a corresponding local potential. The inversion may be done analytically, in an iterative way, 
if the S-matrix is represented as a rational function [ 1261. A very flexible iterative-perturbative 
(IP) technique has been developed by Cooper and Mackintosh [ 1451 which involves iterating a 
perturbative correction to a starting potential by determining amplitudes within an inversion basis. 
The basis may be spline functions, gaussians or Bessel functions, etc. The uniqueness of the resulting 
inversion potential may be tested by studying its independence of the starting potential and the basis 
chosen. A careful and detailed discussion of the application of this approach, and some uncertainties 
associated with it, is given in [ 1451. One possible interpretation of this procedure follows from 
adopting some model (such as folding) for the starting potential, then regarding the correction found 
as a local and I-independent representation of the dynamic polarization potential [ 1411. 

These powerful approaches enable one to obtain fits of very high quality to precise and complete 
sets of data (namely, x2 per degree of freedom of order unity, assuming that the experimental 
“errors” have been estimated realistically). In this sense the inversion potentials may be said to 
incorporate essentially all the information that is contained in the data. One price paid for this is 
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Fig. 9.5. The scattering of 160 + “C at E/A=38 MeV predicted by two Woods-Saxon potentials which give almost 

indistinguishable fits to the data in the measured angular range, but which differ markedly at larger angles. The WSD real 
potential (solid curve) is much deeper in the centre (about 280MeV) than that for the WSG potential (about 173 MeV). 
This results in a dip near 43” which is interpreted as the first Airy minimum forward of the primary rainbow, which 
is predicted to be beyond 50” for this potential. On the other hand, the primary rainbow for the more shallow WSG 

potential occurs at a more forward angle, about 30”, so we only see the structureless dark side of the rainbow at these 

larger angles (from [ 1901). 

that the potentials may be nonmonotonic, exhibiting oscillations, although an oscillatory behaviour 
is not neccessarily unphysical. It may simply reflect an underlying nonlocality, such as an I- or 
parity-dependence which is averaged over when using typical folding or phenomenological (namely 
Woods-Saxon) potentials. 

It was found in the cases of ‘*C + ‘*C [145] and 160+ i*C [54] that the real inverted potentials 
were similar to the (DDM3Y) folded potentials for radii greater than about 5 fm, but were less 
deep between about 3 and 5 fm. The scattering (as determined by notch tests) was not sensitive 
to the potential at radii smaller than about 3 or 4 fm (although it must be remembered that the 
notch test itself gives results that depend upon the particular potential being used). The case of 
I60 + I60 at 350MeV has been examined by two groups [4,56]. The work of [56] resulted in an 
inversion potential (see Fig. 9.6) whose real and imaginary parts behave very smoothly with radius, 
and whose real part seems to be in good agreement with the “realistic” (BDM3Yl or DDM3Yl) 
folded one [ 1011. On the other hand, the potential found by [4] was based upon an S-matrix of the 
McIntyre form supplemented by six Regge-pole contributions, all but one of which were centred at 
I-values less than 40. This potential exhibited considerable structure, far from the range of theoretical 
expectations, although the quality of fit to the experimental data appeared to be comparable to that 
found by [56]. However, a two-step inversion procedure had previously been shown [55] to exhibit 
serious ambiguities even for exact fits to very precise data. The results of these two groups appear 
to present another example of this, and emphasize again the importance of using “prior information” 
to judge the physical significance of fits to experimental measurements. The “information” in this 
case includes some theoretical expectations as well as the use of systematics of fits to the scattering 
of similar systems or the same system at different energies; this leads us to choose the [56] result 
as the physically significant one. 
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Fig. 9.6. Potentials for I60 + I60 scattering at 350MeV. The solid line (“KA”) represents the type-A Woods-Saxon 
potential from [117], while the broken curves were obtained from inversion of the phase shifts which fit the measured 

cross sections. The dashed curve (“KAf”) started the inversion from the phase shifts generated by the Woods-Saxon 
potential, while the dotted curve (“Gf”) started from the set of phase shifts given by the simplified Glauber model. Note 
that the values for r > 5.3 have been multiplied by a factor of ten (from [56]). 

10. Interpretation of the elastic scattering in terms of trajectories 

The separation of the scattering amplitude into nearside and farside scattering as well as other 
decomposition techniques presented in Sections 3.2 and 3.3 have played a significant role in the 
present understanding of the observed scattering of light heavy-ions. Probably their most practical 
use has been the identification of Airy structures in the scattering, features which do confirm the 
refractive character of the interaction. But, also of great importance, they have proven invaluable 
when trying to understand in optical terms the particular ways in which different potentials give rise 
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to a given angular distribution. In this section we present examples that illustrate the power of some 
of these techniques. 

10.1. Nearsidelfarside decomposition applied to the data 

The nearside/farside decomposition of the scattering amplitude is based on expressions (3.5) and 
(3.6) obtained by Fuller [74] and nowadays incorporated in a handful of computer codes. A revision 
of the formalism can be found in [88] together with many applications envisioned in days when 
some of the most revealing heavy-ion elastic scattering measurements were yet to be made. 

As Fig. 3.2 indicates, the nearside trajectories are sensitive to both the Coulomb potential and 
the nuclear potential tail. The farside trajectories are mostly affected by the nuclear potential in sub- 
surface and surface regions. The farside trajectories I, and 1, interfere, producing widely separated 
Airy maxima and minima in the angular distributions. The interference of the nearside and the farside 
trajectories gives rise to the rapidly oscillating Fraunhofer pattern at forward angles. Fig. 3.7 displays 
the decomposition of the 12C + 12C scattering at 159 MeV into the nearside and farside components 
of the scattering amplitude. The symmetrization interference around 90” has been eliminated from 
the calculation for the sake of simplicity. (The description of the actual data with this potential can 
be appreciated in Fig. 6.1.) As it is depicted in Fig. 3.7, the forward oscillations are caused by the 
interference of nearside and farside amplitudes while the minimum near 67” is a minimum in the 
farside scattering, caused by the interference of the refracted I, and 1, contributions, i.e. it is an 
Airy minimum. 

Few instances of actual light heavy-ion elastic scattering show refractive structures in such a visible 
way. Fig. 10.1 is an example of “j0 + “C elastic scattering at 608 MeV calculated with the potential 
in Table 3. The decomposition into nearside and farside amplitudes reveals that the structureless 
falloff beyond about 20” is a feature of the farside (and one would say that the scattering is “farside- 
dominated”). In this case, there is no clear evidence of Airy minima in the farside, except for 
a hint near 15”. If this were in fact an Airy minimum, arising from the interference of the two farside 
branches of the deflection function, the weakness of the interference probably would be due to the 
strong absorption of the 1, part relative to the 1, part; if the absorption were reduced (for instance, 
by decreasing the value of W0 in the calculation) one would expect the 1, contribution to become 
strong enough to interfere more efficiently with the 1, contribution, so that the minimum should 
become deeper. This is indeed the case for the calculation shown in Fig. 10.1, and the enhancement 
of the 15” minimum caused by the artificially reduced absorption confirms its identification as an 
Airy minimum. The calculations with reduced W, show that the 15” minimum is the first Airy 
minimum in the angular distribution, i.e., it is the primary one, and the nuclear rainbow angle is 
then located at about 40”. This last result could also be obtained directly from the deflection function 
(3.9) by using the calculated phase shifts. 

Next is an example of the use of the nearside-farside decomposition technique in a global inter- 
pretation of the 12C + 12C elastic scattering at energies where the 90” excitation function displays an 
interesting structure. Fig. 10.2 shows the data and the original (1974) interpretations. The enigma 
during all these years has been finding an explanation for the origin of the wide structures, par- 
ticularly the minima between the elephants, and a confirmation of the reality of the proposed third 
pachyderm. The study [ 1441 of the 12C + 12C excitation function was based on a previous opti- 
cal model analysis [30] of complete angular distributions measured at 35 MeV 5 EC,, < 63 MeV, an 
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Fig. 10.1. Calculations for I60 + “C scattering at 608 MeV. The solid curve (labelled Wo = 25 MeV) is the differential 
cross section calculated with the potential that fits the measurements (parameters in Table 3); it has been decomposed 
into its nearside (dotted) and farside (dashed) contributions. The dashed curves labelled WO = 10MeV and 0 show the 
effect on the farside from an artificial reduction of the absorption. The farside minimum near 14” becomes more evident 
as the absorption decreases, confirming its identification as an Airy minimum. 

energy range which overlaps with the one for the excitation function. Fig. 10.3 shows the optical 
model fits to the measured angular distributions. In this analysis the potentials have the traditional 
Woods-Saxon shape and are strongly attractive and weakly absorptive; the parameters can be found 
in Table 3 for a few representative energies. 

The general features of the data in Fig. 10.3 are extremely complex, particularly below about 
120 MeV, because the Fraunhofer oscillations are not confined to the most forward angles but they 
extend over the complete angular range making it impossible to guess at the presence of Airy 
minima or maxima. Things are further complicated by the interference around 90” due to the identity 
of projectile and target, which overlaps with the Fraunhofer oscillations. The panorama is clarified 
when, after removing from the calculations the indistinguishability interference, only the farside is 
observed, as in Fig. 10.4. The main features in this plot are the sharp minima evolving from one 
energy to the next. These are higher order Airy minima (see Section 3.6) which move forward as 
the energy increases. 

Since the angular distribution is symmetrical about 90” for identical particle systems, it is not 
possible from measurements at these energies alone to determine the order of the Airy minima. In 
particular, it is not possible to elucidate whether the last Airy minima observed near 90” at 126.7 MeV 
is or is not the primary one. In order to accomplish this one must appeal to the analyses of the data 
for higher energies and assume continuity. This has been done [30] and we have assigned the primary 
Airy minimum as the one indicated as Al in Fig. 10.4. Then A2 is the secondary one, which crosses 
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Fig. 10.3. The angular distributions for elastic ‘*C + ‘*C scattering at incident energies between 71 and 127 MeV. The 

curves are calculations with phenomenological (WS) potentials. The dashed curves trace the angular positions of the Airy 
minima, identified as Al through A 4r being A, the nth minimum forward of the rainbow angle (from [144]). 

90” at about 100 MeV, and so on. Fig. 10.5 shows the observed evolution of the supernumerary 
minima with energy. Indicated are the ranges of energy and angles where the minima are deep 
enough to strongly affect the angular distribution. 

After reaching this point in the analysis, some of the answers to the old questions concerning 
Fig. 10.2 should be evident. The gross structures in the excitation function are caused simply by the 
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Fig. 10.4. The unsymmetrized farside cross sections produced by the potentials used in the calculations that were shown 
in Fig. 10.3. As in there, the dashed lines connect corresponding Airy minima (from [ 1441). 

refractive structures passing through 90”, and the sharp minima between the elephants are the different 
Airy minima drifting by. In fact, at any angle (preferably at the larger angles in order to diminish 
the importance of the Fraunhofer interferences which also drift with energy) one would observe the 
same qualitative behaviour of the excitation function as at 90”. A recent series of measurements 
of the r2C + 12C excitation function between 44” and 90” in the same energy interval [151] has 
been, indeed, successfully explained through these arguments [ 144). The remaining question concerns 
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Fig. 10.5. The location of the A, Airy minima shown in Fig. 10.3 and 10.4. The number indicates the order (n). The 

solid section in the curves signals the (E, 0) ranges where the minima are deep enough to significantly affect the measured 
cross section (from [ 1441). 

part (c) in Fig. 10.2: is there a third elephant, not yet observed? The response from this analysis is 
positive and furthermore, it includes the prediction that there will not be a fourth elephant beyond. 
According to Fig. 10.5, the 90” minimum at about 130MeV is the primary one, therefore after 
its passage the cross section should rise once more as the nuclear rainbow goes through, and this 
should be followed by the exponential falloff into the classically forbidden region. This prediction, 
inherently tied to the numbering of the minima and therefore to the assignment of a discrete optical 
potential family as the correct one, awaits its experimental confirmation. 

The remarkable manifestation of refractive effects in the 12C + 12C elastic scattering channel just 
discussed is a consequence of the relatively low absorption shown by the system in this energy 
range. Since this seems to be a common feature for similar systems, such as 160 + I60 [ 1201, the 
same explanation does interpret other well known cases of gross structures in oscillating excitation 
functions. 

10.2. Semiclassical decomposition into subamplitudes 

The semiclassical treatment to which we refer next attempts to understand all the structures in an 
angular distribution as arising from the interference between subamplitudes J;.(O) which are smooth 
functions of 8. The scattering amplitude is therefore decomposed into the sum of components (3.8), 
whose interference is the cause for the observed oscillations in an angular distribution. The decom- 
position into nearside and farside scattering is the basic separation [74,88], and the interference 
between these two subamplitudes is the origin of the Fraunhofer oscillations observed in all the 
light heavy-ion elastic scattering. In what follows, the farside component will be further decomposed 
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into semiclassical subamplitudes (or “trajectories”) and the structure observed in the farside compo- 
nent will then be understood as an interference between these trajectories. The semiclassical (WKB) 
methods were originally elaborated by Knoll and Schaeffer [ 1071 and have been put into practical 
use by McVoy and his collaborators [29,73]. 

As a first example of the analysis we show in Fig. 10.6 the scattering of ‘*C + ‘*C at 159 MeV 
[29,73]. In part (a) we display the unsymrnetrized cross section and its decomposition into the near- 
side and farside amplitudes. For a more convenient visualization of structures in the subamplitudes, 
it is not da/dQ that is plotted (as in Fig. 3.7), but hr(do/dQ. It can be observed that the nearside 
and the farside components interfere producing the Fraunhofer oscillations forward of about 50”. 
Beyond this angle the nearside gets much weaker than the farside, the scattering becomes “farside- 
dominated” and the cross section is all due to the contributions from the farside. This component 
shows a dip at about 67” which is interpreted as the interference between farside subamplitudes; 
this is shown in Fig. 10.6(b), where the complex turning points D(Q) for the farside trajectories are 
displayed. Three trajectories are identified: R-, R, and I+. The first two are refractive trajectories 
(which for a purely real potential would describe rainbow scattering; that is, they would be the 1, 
and I, contributions in the notation of Section 3.6). I+ is a “diffractive” farside trajectory [72], 
which in this case is found to make a negligible contribution to the scattering. It can be observed 
that the rainbow angle (where R_ and R, tend to coalesce) is about 120”, and beyond this angle 
only one trajectory, R,, is dominant. Fig. 10.6(c) shows the individual R_ and R, cross sections. 
As expected, each of them is a smooth function of 0, and their interference originates the dip at 
67” which thus is a refractive (i.e. Airy) minimum. Even if the absorption in this case is relatively 
low, it suppresses the R_ contribution sufficiently so as to make the Airy minimum appear only 
weakly. However its appearance in the data (Fig. 6.1) is sufficiently noteworthy that it permitted the 
unambiguous determination of the potential parameters [27]. Fig. 10.6(b) shows that the R, (outer) 
trajectory explores the radial range between 3.5 and 7.5 fm, while R- (inner) is significant only 
beyond about 50” (Fig. 10.6(c)) and therefore sensitive to the potential between 2 and 3 fm. 

The next application of this type of decomposition is the already mentioned case of I60 + ‘*C 
scattering at 608 MeV, where the analysis has encountered severe (but anyhow interesting) ambigu- 
ities. As described in Section 7.3, this system shows a particular type of ambiguity since it can be 
described by a weakly absorbing (shallow-W) potential or by a continuously ambiguous family of 
strongly absorbing (deep-W) potentials. Fig. 10.7 shows the results of the semiclassical decomposi- 
tion for the shallow-W potential. In Fig. 10.7(a), the cross section is decomposed into the nearside 
and far-side components, similar to what is shown in Fig. 10.1. In Fig. 10.7(b) the complex turning 
points indicate that, as in the 159 MeV case, three trajectories contribute to the farside, but in this 
system all three contribute importantly to this amplitude. In Fig. 10.7(c), R- and R, have been 
combined into one R, which interferes with I+. The primary Airy minimum is seen in [RI* at about 
14”. However, at this angle Z+ is becoming dominant and manages to interfere with R so as to 
almost eliminate the Airy minimum from the farside. But then an interference between R, and I+ 
seems to appear, extremely weak, in the farside cross section at about 24”. For this potential the 
farside subamplitudes explore the potential over a range of radii from about 2 to 7 fm. 

Fig. 10.8 shows similar calculations for a “deep-w’” potential. The topology for the turning point 
space is totally different from that encountered previously with the weakly absorbing potentials in 
Figs. 10.6 and 10.7. Fig. 10.8(b) shows that the strong absorption has completely suppressed the 
inner trajectories seen in Fig. 10.7(b) for the “weak-W” case, and the farside is now dominated by 
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Fig. 10.6. (a) The total, nearside and farside unsymmetrized cross sections for the CC1 potential that fits the ‘*C + “C 
data at 158.8MeV. (b) The farside complex turning points for the potential. The dotted lines indicate noncontributing 
portions of the trajectories. (c) The decomposition of the unsymmetrized farside cross section into contributions from 
individual subamplitudes (from [73]). 

the single diffractive trajectory I+ that senses the surface radii between 5 and 7 fm. This trajectory 
is capable of producing a farside amplitude (Fig. 10.8(c)) similar to that produced by the weak-W 
potential (Fig. 10.7(c)). Since the data display an exponential falloff without any noticeable structure, 
either description by itself presents an equally acceptable fit to the data. 

These analyses have provided an explanation of the shallow- vs. deep-W ambiguity encountered 
in the optical model analyses of 160 + 12C at 608 MeV: the weak-W solution is found to be ‘unique” 
because it is the result of a delicate balance among trajectories that sense the complete radial range. 
Conversely, the deep-W solution, sensitive only to the tail of the potential, presents the continuous 
ambiguity which is a feature in cases of strong absorption where the removal of flux from the inner 
regions of the potential restricts the sensitivity to the external region of the interaction. 

A further example of the use of decomposition techniques is the investigation [35] of a non- 
monotonic real potential that fits the 160 + 160 data at 350 MeV. A model-independent analysis 
( lo-parameter-splines for the real part and Woods-Saxon shapes for the imaginary) of these data 
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the trajectories. (c) The decomposition of the farside cross section into contributions from individual subamplitudes (from 

[731). 

[33] found three general types of real potential: potentials similar to Kondo’s families A and B (see 
Section 7.2) and a shallower potential named “X”, all shown in Fig. 9.1. The values of Jv were 
about 290 and 390 MeV fin3 for types A and B, respectively, and 2 18 MeV fm3 for type X. Potentials 
of type A put their first Airy minimum at 44” and potentials of type B interpret this minimum as 
the second Airy minimum. Potential X is too weak to put an Airy minimum at 44”; its own rainbow 
angle is at -34”. How does potential X manage to fit the minimum in the data without an Airy 
minimum? The decomposition of the scattering amplitude into semiclassical trajectories [35] trace 
the cause to the nonmonotonic character of potential X. It indicates that the oscillations of potential 
X in regions inside TN” 3 fm produce a complicated set of three trajectories which originate an am- 
plitude that interferes with the one produced by the smooth potential at r 2 3 fm, in order to locate 
a minimum precisely near 44”. The results from this analysis are a reminder that farside minima not 
of the rainbow type can be generated in complicated ways by unconventional potential shapes. 
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11. Scattering of light “exotic” nuclei 

There is now considerable interest in the scattering of “exotic” light heavy ions, produced as 
secondary radioactive ion beams (RIB) in new facilities now operational, being built or being planned 
[201]. As suggested by our use of the term “exotic”, these ions introduce some unusual features 
which arise because they are situated away from the line of stability, which occurs at N N 2 for 
light nuclei. This entails two characteristics: an excess of one kind of nucleon over the other, and 
a low binding energy. Such nuclei tend to have a few nucleons of one kind that are loosely bound 
and which may form a “halo” surrounding a more normal “core”, as indicated by some density 
distributions shown in Fig. 11.1 that were calculated by use of a Hartree-Fock approximation [66]. 

A prototypical case is the isotope “Li In the most naive view, two of the excess neutrons may . 

be visualized as occupying the OP,,~ shell-model orbit, with a total binding energy of only about 
300 keV, compared to the 6MeV needed to separate a neutron from the 9Li “core”. Consequently, 
the density distribution at large radii is dominated by these two neutrons. This constitutes a neutron 
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Fig. 11.1. Calculated density distributions [66] for some light nuclei, showing the tendency for a tail, or “halo”, of the 
excess nucleons in the more exotic cases. The solid lines represent the sum of neutrons and protons, the dashed curves 
are for the neutrons and the dotted curves for the protons (from [66]). 

“halo”, which is estimated to have an Rh4S radius of about 6.5 fm, much larger than the radius 
of about 2.5 fm for the 9Li core nucleus. (One must not be misled by the somewhat picturesque 
language used; the term “halo” does not mean that the OP,,~ wavefunctions are localized at large 
radii. On the contrary, they are distributed throughout the nucleus but, due to the low binding, have 
long tails that dominate over the other contributions at large radii: see Fig. 11 .l.) 

In this review we have established that many light heavy-ion systems exhibit sufficient transparency 
for the cross sections to be dominated by farside scattering, sometimes with the appearance of a 
prominent (but damped) nuclear rainbow. The question here is what effect the presence of a halo 



232 M.E. Brandan, G.R. Satchler I Physics Reports 285 (1997) 143-243 

has on this transparency. It has been speculated that exotic nuclei like “Li would be associated with 
much stronger absorption due to break-up because of the weak binding of the excess nucleons. The 
scattering would then be diffractive, characteristic of strong absorption. However, this ignores the role 
of the halo in also enhancing the refractive property of the potential [ 1881. This question was studied 
carefully [90] in a comparison of the scattering at E/A N 60MeV of the exotic “Li and of the more 
normal “C by a 12C target for which some (poorly resolved) data exist [ 1181. 
opposing, effects were identmed in the scattering of “Li which are absent for 

Four, sometimes 
“C. These arise from 

both the real and imaginary parts of (i) the extended tails of the complex folded optical potential 
due to the halo in the density distribution, and of (ii) the complex polarization potential which 
embodies the effects of the enhanced break-up of the weakly bound halo. Semiclassical expressions 
were derived which allow one to make rough estimates of these contributions. The net effect of the 
halo depends upon the details of the interactions, but it was concluded in this particular case that the 
scattering of “Li would not reveal greatly enhanced refraction compared to “C, and that its elastic 
scattering cross sections are similar to, and may be smaller than, those for “C. These conclusions 
are not in disagreement with analyses of the present quasi-elastic data [ 1911. 

There have been many theoretical studies of exotic nuclei, especially directed at their structure 
and including attempts to explain their above-normal radii. The latter were first deduced from mea- 
surements of their reaction cross sections at intermediate energies, using the semiclassical scattering 
theory of Glauber [201]. These cross sections were found to be significantly larger than those for 
normal nuclei. 

Because of instrumental difficulties, so far there are rather few measurements of elastic scattering 
differential cross sections and those few tend to be contaminated by inelastic scattering because of 
the poor energy resolution obtained. This has impeded attempts to extract information on the optical 
potential, etc. We expect this situation to improve drastically in the near future, giving hope that 
the kind of information discussed in the rest of this review will become available. (Nonetheless, by 
their very nature, these measurements are difficult so that it seems unlikely that such experiments 
will achieve the precision obtained with normal beams.) 

The pioneering experiments of Kolata et al. [ 1181, conducted with beams of energy E/A N 60 MeV, 
compared the scattering from a ‘*C target of “Li with mean E =637MeV and of “C with mean 
E = 620 MeV. The energy resolution that could be achieved was poor so that the “elastic” data in- 
cluded inelastic scattering to a number of excited states. The contamination was least at the most 
forward angles because of the predominance of the elastic at those angles, but it is estimated to be- 
come comparable to, or larger than, the elastic cross section at the larger angles. Consequently, it has 
been difficult to reach more than qualitative conclusions about the properties of the optical potential, 
although many attempts have been made, both microscopic (see, for example, [202,66,105,46]), 
and phenomenological [146] (but see [191]). 

One conclusion, however, seems well established. It is that a good description of the ’ 'Li scattering 
can be obtained by using a folding model for the real potential, based upon the kind of interaction that 
we have seen to be successful for other, more normal light heavy-ions, provided a realistic density, 
with a halo tail, is used and some account is taken of the very important dynamic polarization 
potential (DPP) due to break-up. (This is analogous to the treatment of 6Li scattering described in 
Section 6.3.3.) 

One such treatment [ 1051 was based upon Khoa’s BDM3Y 1 density-dependent interaction and his 
treatment of the knock-on exchange. A phenomenological polarization potential, chosen to reproduce 
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Fig. 11.2. Real folded potential for “Li + 12C, also showing the separate contributions from the 9Li “core” nucleus and 

from the “halo” neutrons (from [46]). 

the results of an explicit calculation of break-up effects [207], was added. This had a repulsive 
real part, and an attractive imaginary part of comparable strength. The main imaginary potential was 
represented by a Woods-Saxon term in which only the radius was allowed to change. Some measure 
of the inelastic contribution to the measured cross section was estimated using the DWBA. Good 
agreement with the data was realised for both “Li and “C on i2C. 

Another detailed discussion [46] made use of the M3Y interaction with a finite-range treatment 
of the exchange, as well as one based directly upon the G-matrix calculation of [95], using both 
real and imaginary parts and a Gaussian form factor. The interaction was checked against other 
data for c1 and 6Li scattering from “C and 28Si at various energies. An example of the real folded 
potential for “Li + 12C is shown in Fig. 11.2, illustrating the separate contributions from the halo 
and from the core of “Li. Fig. 11.3 indicates that this potential gives reasonable agreement with 
the measurements on “Li + i2C scattering after some estimate of the inelastic scattering was added. 
Attempts to fit the data for i1 Li + 28Si at E/A = 29 MeV [ 1271 were less successful. 

Both analyses just described emphasize (as had been stressed earlier [188]) the important role 
played by the reaction cross section in helping to determine the optical potential. 

One persistent failure appears in all attempts to reproduce these data using conventional potentials. 
Theoretically a sharp, deep minimum in the angular distribution is always predicted near 3” (see 
Fig. 11.3, for example) while the measurements indicate a peak near 2.5”. A fit to these forward 
angle data can be obtained, either phenomenologically [ 1461 or by inversion (Section 9.2) [57]. In 
both cases, it requires a real potential with a surprizingly large and long tail which can affect the 
scattering to small angles. This is much stronger than the folding models predict even with the density 
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Fig. 11.3. Scattering cross sections produced using the potential shown in Fig. 11.2. The dashed curve represents the 
true elastic scattering, the dotted curve is an estimate of the inelastic contamination, while the solid curve is their sum, 
compared to the measured cross sections of [118] (from [46]). 

distribution having a neutron halo. However, it seems possible that this apparent discrepancy at small 
angles is spurious, perhaps because some 9Li ions resulting from break-up have been included at 
these forward angles where it is more difficult to discriminate against them. 

A few other measurements have been reported. A popular target is “C, which has been used 
to scatter beams of 7Be and *B at E/A = 40 MeV [165], as well as 12,14Be at E/A N 57 MeV 
[208]. The results in both cases include contamination of the elastic scattering by inelastic events. 
A folding model has been applied to the first pair of measurements, using realistic Hartree-Fock 
density distributions folded with the M3Y interaction and taking account of the finite range in the 
knock-on exchange terms [66]. Only a phenomenological analysis has been applied to the second 
pair of measurements. 
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12. Quasi-molecular resonances 

The importance of this topic in the present context is that the observation of quasi-molecular 
resonances in a given l-wave, together with the (I-dependent) requirements imposed by the Pauli 
principle, demand a minimum number of radial nodes in the relative motion wavefunction. In turn, 
this requires that the potential be of a certain minimum depth. These depths turn out to correspond 
to the deep potentials that we have found are needed to describe the scattering at much higher 
energies, thus linking the two energy regions and providing a unified picture of the nucleus-nucleus 
interaction. Such a unification of bound states, resonances and continuum scattering has been achieved 
in a number of cases for a-particle plus target systems (for a recent example of 01+ 160, see [2]). 

The mean field U, as defined in the reaction theory of Feshbach (Section 4.4), which we have 
adopted to provide theoretical underpinning for our more intuitive models, sustains bound states 
(E < 0) as well as scattering states (E > 0). Correspondingly, our folded potentials, which represent 
the real first term of the Feshbach field (4.5), also sustain bound states. Quasi-bound states can be 
observed with E > 0 but will be confined to energies in the vicinity of the top of the (Z-dependent) 
barrier resulting from the combined nuclear plus Coulomb plus centrifugal potentials. Those which 
have energies significantly below the top of the corresponding barrier, so the barrier penetrability 
has become very small, have very narrow widths and are not easily observed in the scattering, 
but those with energies in the vicinity of the barrier top can manifest themselves as resonances. 
As the energy moves up, these shape resonances rapidly become broad and again are not easily 
observed. 

This part of the interaction only concerns the two nuclei while they remain in their ground states, 
the zoo part of the wavefunction (4.4). The couplings to other states of the system will manifest 
themselves in at least providing an imaginary, absorptive potential, part of the dynamic polarization 
potential. This provides another source of width to the resonances, making them unobservable if the 
absorption is strong. So we can anticipate seeing them only when the absorption is “weak”, which 
seems to be a characteristic of many of the light systems we are concerned with here, especially at 
the low energies corresponding to the barrier tops. Furthermore, if the couplings to a few particular 
excited states are strong, these must be considered explicitly and will result in the resonances having 
fine structure. In general, one must expect to see a group of resonances with a particular I value 
arising from each corresponding shape resonance in the bare potential. This l-value will track, within 
a few units, the peripheral 1 at a given energy. 

Antisymmetization between the two nuclei plays an important role in determining the form of 
the relative motion wavefunction of two clusters when bound (or quasi-bound). The number of 
quanta Q = 2n + I, where 1 is the orbital angular momentum and n is the number of radial nodes 
(excluding the origin and infinity), must exceed a certain threshold value, otherwise the states are 
Pauli-forbidden [87]. The allowed quantum numbers Q frequently are quite large. For example, 
Q 1 24 for the system I60 + I60 with both nuclei in their ground states. Relative motion with such 
a Q could not be sustained by a shallow potential, but can result from a deep potential af the kind 
discussed in the present review [ 116,117,149]. 

An interesting feature of these deep potentials is that the energies of the bound and resonant 
states are arranged into rotational bands (that is, the energies are proportional to 1( I + 1 )), each band 
characterized by the quantum number Q. An example is shown in Fig. 12.1 from [115], and the 
origin of this property is discussed in [43]. 
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Fig. 12.1. The band structure of resonances and bound states in the real part of a Woods-Saxon-squared potential that is 
compatible with the low-energy scattering of I60 + 160. States with Q = 22 or less are forbidden by the Pauli principle 
(from [115]). 

There is a very extensive literature on the subjects of cluster models and quasi-molecular res- 
onances. We shall not even attempt to review this material, but refer the reader to a few recent 
reviews and conference proceedings [ 128,92,86,87,3,6, SO]. Examples of applications to specific 
systems may be found in [44] (12C + 12C), [ 1521 ( 160 + 12C) and [ 1151 (160 + i60). 

13. Summary and discussion: What have we learnt? 

During the last decade or so, we have extended considerably our understanding of the potential 
of interaction between two heavy-ions, especially two light heavy-ions. This progress has been 
stimulated in no small measure by experimental developments in providing accurate measurements 
of cross sections that cover large ranges of scattering angles and are often extremely small in 
magnitude. These have often revealed dramatic refractive characteristics such as nuclear rainbows. 
At the same time, there has been remarkable progress in our theoretical understanding of these 
phenomena. This understanding has resulted in our learning about the ion-ion interaction when the 
two nuclei overlap, and not just when their surfaces touch. In this Report, we have reviewed both 
the experimental and theoretical achievements. 

An appealing physical picture, displaying overall consistency, has emerged. At its core is the 
concept of the folding model as accounting for the major part of the real potential (with theoretical 
justification arising from Feshbach’s theory of nuclear reactions), together with progress in our 
understanding of the effective interaction between two nucleons embedded in a nuclear medium. 
One result of this is to settle the old and oft (perhaps poorly) posed question whether the ion- 
ion potential is “deep” or “shallow”, in favour of the “deep” answer. One also concludes that the 
correction to the folding model (that is, the real part of the dynamic polarization potential (DPP) 
that accounts for couplings to other, nonelastic channels) is relatively small in most cases. (One 
exception occurs for the break-up of loosely bound nuclei like 6Li, where the correction has been 
shown to be significant.) Progress in understanding the imaginary, absorptive part of the potential 
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(the imaginary part of the DPP) has been more limited. This is still treated phenomenologically in 
most cases, although one has discerned clues that it depends more sensitively upon the structural 
characteristics of individual systems. However, one conclusion is clear; the imaginary potential must 
be “weak” in some sense, otherwise the important refractive features of the scattering cannot be 
observed. It is weak if the flux along scattering trajectories that penetrate to the interior of the 
potential is not completely extinguished by absorption. Then this interior region has some influence 
upon the scattering, revealed by the observation of the refractive features. 

The semiclassical decomposition of the observed angular distributions for elastic scattering has 
proven to be a powerful tool for understanding the physical characteristics underlying them. The 
nearside-farside (“Fraunhofer”) interference oscillations at forward angles give us information about 
the potential experienced in peripheral collisions. At larger angles, farside scattering dominates if 
the absorption is not too strong, corresponding to somewhat closer collisions. If the absorption is 
sufficiently weak, two trajectories contribute to the farside scattering, which then exhibits rainbow 
features, namely Airy maxima and minima. These are influenced by the potential in the interior, and, 
given data of sufficient extent that the order of the Airy pattern can be determined, the potential 
family can be found without ambiguity. 

One consequence of this kind of interpretation is to determine that the effective nucleon-nucleon 
interaction required for use in a folding model of the potential should be weaker in the nuclear 
interior than it is in the surface. This property is conveniently represented by making it dependent 
upon the density of the surrounding nuclear material. The effective, attractive interaction becomes 
weaker as the density increases, a requirement already anticipated in order for nuclear matter to 
saturate. The need for such a property was already evident from the analysis of the scattering of 
medium energy alpha particles which displayed similar rainbow characteristics, and culminated in 
the construction of effective interactions constrained to reproduce the saturation parameters (binding 
energy and saturation density) of nuclear matter in a Hartree-Fock calculation. These interactions 
differed in the degree of density-dependence, and hence in the values of the incompressibility of 
nuclear matter associated with them. However, they could be further constrained when applied to 
the scattering of a-particles and light heavy-ions, thus providing evidence for the appropriate value 
of the incompressibility. 

The refractive phenomena just discussed only appear clearly when certian dynamic conditions are 
met. In particular, there is an energy window. If the energy is too low, the scattering is dominated 
by the Fraunhofer pattern, and any rainbow features remain in the unphysical region (angles greater 
than 180’). As the energy is raised, the refractive features move forward where they can be observed. 
However, if the energy increases too much, they move even further forward and become superim- 
posed on the Fraunhofer pattern, where they become more difficult to interpret. Thus observations 
in the intermediate region are more likely to be profitable in revealing this kind of information, al- 
though careful analysis at lower and higher energies, accompanied by a requirement that the results 
should how a reasonable continuity in energy, can extend the energy range significantly. 

“Continuity” plays an important role in another context, namely that too much weight should not be 
placed upon results obtained from just one set of data. Besides the possibility that some idiosyncracy 
of the data may be biassing the analysis, almost inevitably there remains some ambiguity associated 
with a single set of data. Consequently, we believe that an interpretation based upon data for a range 
of energies and/or a number of similar nuclear systems may contain more “physical” truth than a 
very good fit to one specific data set. 
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The real potentials that have been inferred for these light heavy-ion systems also have about the 
correct depth to sustain “molecular” bound states and resonances with the proper number of radial 
nodes to be consistent with the Pauli exclusion principle. Many such quasi-molecular resonances 
have been observed at low energies. A few applications of the potential model have been made, but 
much work remains to be done. These deep potentials also describe the low energy elastic scattering 
and fusion data measured at Yale and Saclay in the 197Os, as well as the more recent measurements 
at higher energies that have been discussed in this review. Thus we see an example of “continuity” 
over a wide range of energies for applications of the models discussed here. 

The kind of refractive effects discussed here will also have their counterparts in nonelastic reac- 
tions. A few applications of these ideas have been made, but we leave those for the future. 
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