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Abstract. We extend a previously developed diagrammatic formalism for the cal-
culation of the effective diclectric response of composites, prepared as a collection
of small spherical inclusions embedded in an otherwise homogencous matrix. This
is done within the long wavelength, dipolar approximation for a low filling fraction
of spheres. We propose a new diagrammaltic approximation and we compare our
results with recently reported numerical simulations.

l. Introduction

The electromagnetic response of composite media has attracted the attention of many investigators
since the pioneering work of JC Maxwell more than a century ago. In his Treatise!, JC Maxwell poses
the problem, and advances an approximate solution, of calculating the effective dc conductivity of a
conductor with a well-defined volume fraction of small insulating inclusions. The main difficulty in this
problem is to find a proper way of averaging the fields and currents generated by the presence of the
inclusions. Furthermore, as the volume fraction of the inclusions increases, the system goes through a
metal-insulator transition which nowdays is being treated with percolation theory?. A well documented
review of the historical development of this problem can be found in the work of Landauer®. Here we
will be interested not in the dc response but rather in the electromagnetic response of the composite at
finite frequencies. We will consider an homogeneous matrix filled with identical spherical inclusions with
radius much less than the wavelength of the electromagnetic radiation. The effective dielectric response
of this system, as a function of frequency and filling fraction, was first calculated, within the mean
field approximation (MFA), by JC Maxwell Garnett* as early as 1904. His result becomes completely
equivalent to the Clausius-Mossotli or Lorentz-Lorenz relation®, which links the dieclectric response of

a fluid with the polarizability and density of its molecules, if the molecules are regarded as polarizable

spheres embedded in vacuum.

In the MFA one assumes that in the presence of a long-wavelength external electric field all the
spheres acquire exactly the same induced dipole moment which is taken equal to the average dipole
moment and is calculated self-consistently. Therefore any improvement upon MFA has to include, in some
way or another, the effect of the fluctuations around the average of the induced dipole moments. If the
spheres were arranged in a periodic lattice, then every sphere would have exactly the same surroundings
and all of them would acquire, in the long wavelength limits, the same induced dipole moment: there
would be no fluctuations. In this case, the MFA yields an exact result® and we conclude that it is the
disorder in the location of the spheres the source of the dipolar fluctuations.

The problem of considering Lhe effects of disorder and consequently the effects of dipolar fluctua-
tions in the diclectric response of a composite has also a long history. There have been many difle-
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rent types of approaches to this problem: density expansions®, linked cluster expansions’ perturbation
expansions®, integral equations®, multiple-scattering methods'?, intuitive arguments!1+12, diagrammatic
theories'3, location of bounds', numierical simulntions'™ ' cte. 1n order Lo decide the benelits of cach
of these approaches, one has to compare their results with the experimental ones. Due to the fact that
the experiments performed up to now. do not resemble properly the models used in the theoretical
work, the comparison between theory and experiment has been a painful process. The preparation of
homogencous and isotropic samples, with a well-defined filling fraction of identical spheres with radius
in the nanometer range, has not been an easy task. Problems like particle clustering, a distribution of
shapes and sizes, and an anomalous high density of dislocations in the small particles have obscured a
clear interpretation of the effects of disorder in the optical experiments. On the other hand, as pointed
out by several authors,?1? beyond MFA the eflective dielectric response of a composite depends not only
on the filling fraction of the spheres but also on the structure of their two-and three-particle distribution
functions. In other words, different types of disorder will lead to different results. Now, since most of the
experimentalist do not report the actual distribution functions of the inclusions in their samples, this
yields to another source of confusion; this might explain some of the discrepancies!” found in experiments
performed in differently prepared samples.

In this work, we reformulate a diagrammatic approach reported carlier,!® for the calculation of
the effective diclectric response of a composite prepared as mixture of identical spheres embedded in
an otherwise homogeneous matrix. This formalism is valid in the low-density regime where all the
m-th particle distribution functions of the spheres can be approximated by unsymmetrized products of
two-particle distribution functions. After sctting up the formalism, we extend a previously performed
diagrammatic summation!® by including an infinite set of diagrams which should be important at low
densities. Then we compare our results with the only “experiments” that, we believe, will give the fairest
possible comparison: the numerical simulations recently performed by Cichocki and Felderhof1® for a
collection of Drude spheres within the dipolar approximation. The structure of the paper is as follows:
in section IT we develop the theoretical framework and scction 111 is devoted to results, comments and

conclusions.

Il. Formalism

Lets consider an homogeneous and isotropic ensemble of N 3> 1 spheres of radius a and dielectric
function ¢m embedded in 2 host medium with diclectric function ¢;. The system is in the prescence of a
space- and time-dependent external clectric field which oscillates with frequency w and wave-vector q.

Furthermore, we assume that ga < 1 thus the induced interaction between the spheres can be taken in
the quasi-static limit. The local electric ficld induces an eflective dipole p; on the i-th sphere given by

Pi(w) = a(w)[E7 + Z: Tij - pi(W)), 1)
J

where E? is the electric field induced in the medium at R; in the absence of the spheres, a(w) =
a3 [em (W) — ¢ (W))/[em(w) + 2€4(w)] is the effective polarizability of an isolated sphere in the medium

and
Tij= (1= 6;5)ViV;(1/R;;) (2)

is the dipole-dipole interaction tensor in the quasi-static limit. Ilere Rij = |R; — Ry| and &;; is the

Kronecker delta.
The polarization is then defined as the average dipole moment per unit volume and it can be related

to the effective diclectric response €esy of the system through!?2

(w ez
(—;"!—035 =1 - drey(w)x g — 0,w), (3a)
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where ;?’(q,u) is the external susceptibility defined by
n<p>(qw)=%"(qw) E*(quw), (38)

and the superscript £ denotes longitudinal projection. Here E**(q,w) and n < p > (q,w) are the Fourier
transforms of the external field and the average polarization field, respectively, n is the number density
of spheres and <> means ensemble average. The appearance of the longitudinal projection, is only a
matter of convenience which takes advantage of the fact that the ¢ — 0 limit of either the longitudinal
or transverse response coincide. The limiting process (¢ — 0) is necessary in order to get around the
evaluation of a few non-convergent integrals.!?

We consider that the system is excited by a longitudinal external field of the form E* =
GE e (1wt and we rewrite Eq. (1) as

P; =0(EL+ZA?J' -P;), (4)
) i

where Ef, = §E°T/ej, + N < T > . < P > is the Lorentz field. Here

P;= p;e_q'n" and ’f,‘j = ?;‘;c—iq'(ni_nj) (5)

are so defined in order to get rid of irivial exponential factors, and N is the total number of spheres.

The formal solution of Eq. (4) is

Pi=ad (V) EL (6a)
i

where
V.; = 16; — aATy; (65)

and 1 is the unit matrix. We now define the Lorentz susceplibility as
r = ¥(q,w) - EX(g,w 7
n<P>(qw)=Y"(qw) B*(qw), (7)
and it can be easily shown that ihe efective dielectric response €ess is given by

1+2/a
IS =T e (8%)

where f = ndra®/3 is the volume fraction of spheres, &* = a*/a® and

na® = l'ff.(‘i‘ — 0,w) =limg_g < E(Vul)fj - (8b)
’ .

Eq. (8a) is an exact equation and it has the same functional form as the Maxwell Garnett
formula? (or Clausius-Mossotti relation®), except that the bare polarizability « is replaced by a dressed
polarizability & which is proportional to the dipolar response of the sphere to the Lorentz field rather
than to the local field.

According to Eq. (8b) the calculation of a* requires the evaluation of the ensemble average of
the inverse of matrix 'E?,-J-, defined in q. (6b), which in the thermodynamic limit becomes an infinite
matrix with stochastic clemenls. This is obviously a complicated problem. We perform instead a series

representation of the inverse of V’;_,- in powers ornA‘F.-j, that is
-1 e P
Y (VT )ij=14+a AT +a?) ATy ATy + .., ()
b b ik

we then take an ensemble average assuniing Lhat in the low-density regime the s-particle distribution
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function can be factored as unsymmetrized sequential products of two-particle distribution functions,

that is
p(")(]},ll__,ln,,)_—.. H prz}[fi,'j). (10)
ij
(G=i+1)

The end result is a series representation of a* which can cast in a diagrammatic form as

65%.—_- o +D+%+V+..., (11)

where each diagram in this series is irreducible; this means that it cannot be split into two independent
diagrams by cutling a single line. The precise definition of cach diagram is given in Ref. 13; here we will
only say that in order to draw a diagram one cannot lift the pencil from the paper, that each line carries
a factor a, each black dot carries a factor n, the other factor is an integral over the coordinates of the
particles depicted by black dots, being the white dot the reference sphere. The integrand contains the
longitudinal projection of the scalar product of r tensors T;; and the s-particle distribution functions
where r is the total number of lines and s is the total number of dots (blacks and white),

In this work we propose the following diagrammatic approximation:

£= © DS 120
A=@®= o + W+V+W+..., (126)
1;=v= @+ @+®+.... (12¢)

This is an extension of the renormalized polarizability theory (RPT) developed in Ref. 13, which

E=A and g= @ . (13)

Here we are including diagrams that, we believe, should be important in the low-density regime because

where

and

only considered

they take full account of the interaction between only two renormalized dots. For example, il we replace
the renormalized dots by unrenormalized ones, we then recover the two-particle-linked-cluster-expansion

results of Felderhof, Ford and Cohen?8,

The solution of the system of diagrammatic equations given by Eq. (12) yields to

.EA
E=A+= faAza‘og(m) (14a)
and
A- __1__4‘,“\/—-!0 (1+ VA8 + 6 VA) (115)

(4—af)(a-(.f}

which have to be solved self-consistently. llcre & = a/a®.

I1l. Results and Discussion

We present our results in terms of the Bergman'’s spectral representation of the effective dielectric

function. It has been shown!? that €ess can be writlen as
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1
Cefy = l—f/ i(—u—)--d’:.t, (15a)

{l—u

h
where ,

¢ (15b)

= em/en
The spectral representation is a normal-mode representation in a normal-mode variable u, where the
frequency of the modes is determined by the pole location (f = u) and g(u) is their strength. The main
advantage of this representation is that g(u) does not depend on the physical nature of the elements
which constitute the composite but only the geometrical location of the spheres.

In Fig. 1 we show the spectral function g(u), as a function of u, for volume\ fractions of 0.1,
0.2 and 0.3, calculated with Eq. (14) (solid line), with RPT as defined in Eq. (13) (broken line) and
the “experimental” results of Cichocki and Felderhof!® (dotted line). For the two-particle distribution
function, here we used a simple step function 0(Ryp — 2a) which should be valid in the low density
regime. We can see that for f = 0.1 we obtain an excellent agreement with “experiment” and the
difference between these new results and RPT clearly demonstrates the importance of the additional
class of diagrams contained in the present approximation. For f = 0.2 the agreement between theory
and experiment is not so good and our new results lie now something in between the “experiment” and
RPT. Finally for f = 0.3 our new results resemble very much RPT but the agreement with experiment
is far from being good. Therefore, for such high filling fractions the effect of the additional class of
diagrams is indeed negligible. These corroborates our earlier assertion about the importance of this class
of diagrams in the low-density regime. The disagreement between theory and “experiment”, at higher
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Fig 1. The spectral function g(u) as a function of u for volume fractions of 0.1, 0.2 and 0.3,

caleulated with Fq. (14) (solid line), with RPT as defined in Eq. (13) (broken line) and
the “experimental” resultsof Cichocki and Felderhof (dotted line).
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volume fractions, can be explained by noticing that in this regime the factorization of the distribution
functions, as given by Eq. (10), is no longer valid. Also, at high filling fractions, p(?)(Ry3) is not a
simple step function any more and betler approximations, something like Percus-Yevick??, should be

used. Work along these lines is now in progress and it will be reported elsewhere.
g 5 I
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