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ABSTRACT

We applied to a one-dimensional system (1D) a recently developed diagrammatic
formalism, in order to calculate the effective dielectric response of a chain of polarizable
spheres embeded in an homogeneous host. The effective response is calculated within
the dipolar, quasi-static approximation, through the summation of selected classes of
diagrams. We compared our results with a numerical simulation, where the position of
each sphere was generated at random and the induced dipole moment of each sphere
was calculated by solving a set of linear equations through matrix inversion and using
periodic boundary conditions.

INTRODUCTION

The optical properties of a composite systems are determined through the knowl-
edge of its dielectric response. Here we are interested in composites with a separate-grain
topology and the simplest and most recurrent [1] 3D system is the one containing a ho-
mogeneous matrix within identical spherical inclusions. A pioneering work towards the
caleulation of the effective dielectric response of this system was done at the beginning
of this century by JC Maxwell Garnett [2!1 In his work he assumed that (i) only the
dipolar moment is induced at each sphere (dipolar-approximation) and that (ii) the local
field is the same in all the spheres and equal to its average (mean-field-approximation).
The objective of actual theories is to improve the mean-field-approximation, thus we
are interested in taking into account the fluctuations of the local field and exploring
their effects on the effective dielectric response. One source of these fluctuations is the
disorder in the position of the spheres and its mathematical treatment has been the
main subject of recently developed theories. An ample variety of procedures like multi-
ple scattering [3], cluster expansions [4], numerical simulations [5], renormalization (6],
diagrammatic techniques [7,8], etc., have been devised in order to calculate the effective
dielectric response of a disordered system.

On the other hand, the comparision with experiment has been a painful task
because the samples used by the experimentalist do not resemble properly the models
used in the theoretical work. Problems like clustering and distributions of shapes and
sizes of the inclusions make the interpretation of the absorption spectra more difficult.
Moreover until recently, the experimentalists have not been aware of the need to report
more information about microstructure of their samples. Therefore, the only fair test of
the present theories is the comparision of their results with recently reported numerical
simulations; as was done in Ref. [8].

In general, one-dimensional (1D) systems have been simpler to solve than those
in 3D. Moreover, the random 1D chain has been a classic test for models in different
fields of theoretical physics. Nevertheless, our main interest in dealing here with a 1D
chain is to suppress a strong assumption used in the diagrammatic approach of Ref. JS]
about the unsymmetrized factorization of the m—particle distribution function, in order
to test the validity of the summation of the different classes of diagrams.

FORMALISM

We consider a linear chain of length L of N >> 1 identical spheres located at
random positions {R;}. Each sphere has a radius a and dielectric function e,. The chain
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is within a homogeneous host medium with dielectric constant e,. We excite the system

with an external electric field E¢*(w) oscillating with frequency w and wavelength much
larger than a and the typical separation between the spheres. Under this conditions, the
interaction between the spheres can be taken in the quasi-static limit. In the dipolar
approximation, the local field induces an effective dipole moment given by

Filw) = a(@)[E? + Y T4 53], (1)
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where a{w) = a®(es(w) — en(w))/(es(w) + 2¢x(w)) is the polarizability of an isolated
sphere, E? = Ef* /¢, is the electric field induced in the medium at R; in the absence of
— e =
the spheres and t ;; = (1 — 6;;)ViVj(1/R;;) is the dipole-dipole interaction tensor. The
— -
macroscopic external susceptibility is defined by n < P >= x ., - E.z, where < P > is
the average dipole moment and n is the number density. Following the same approach as
in Ref. [8? the components of the effective macroscopic susceptibility along its principal
axis is given by
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where, v denotes the principal axis along the longitudinal and the transversal directions
with respect to the chain axis, f = 2Na/L is the filling fraction, & = a/a?,
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< +++ > means ensemble average. Here
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and At ;; =1 ;; — (? ). We use Eq. (4) and a series representation of its inverse, in order
to write

S (VYL =1+ad At +a® Y AL A ... . (5)
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In order to take the ensemble average of Eq. (5) we require the knowledge of all the
m-particle distribution function p{™ [7]. Since in 1D p{™ can be expressed as an
unsymmetrized sequential products p(®’s [9], i.e. p®N Ry, Rz, R3) = p'®(R12)p'?(Ra3)
the ensemble average of Eq. (5) can be written as an infinite sum which can be expressed
in the language of diagrams through the followings definitions:

o =1 (6a)
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We obtain
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using the same rules given in Ref. [7]. Each diagram cannot be split into two independent
diagrams by cutting a single line. One might interpret each diagram as the contribution
to the polarization of a series of elementary processes in which cut;-;- propagates the
polarization from sphere i to sphere J. Since a diagram with r lines and s black dots
is proportional to a" f?, its relative importance in the series can be estimated among
the realtive magnitude of this factor. For example, in the low (high)-density regime the
most important diagrams will be those with the smallest (largest) number of dots for a
given number of lines.

While in 3D the unsymmetrized factorization of pt™) restricts the theory to the
low-density regime, here in 1D there is no such restriction and the only remaining test is
our ability to choose and sum the appropiate class of diagrams. If we take £Y = 0 = 1 we
recover the mean-field-approximation for this 1D system. Therefore the inclusion of any
other class of diagrams, will take account of the dipolar fluctuations in an approximate
way. Here we choose and sum the following diagrams

where L(r, s) are the sum of all graphs with r lines and s black dots which can be drawn
J

=0 + = + & + - - - (8a)
where

O=A"= o 4 v "'M*'@ g s (8b)
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Using the exclude volume two-particle distribution function, we can rewrite Eq. (8) as

e fo {3 1 (6% —4)2 _1 V3b?
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where b* = GAY and A7 is the solution of
Qaanr-ar+1=0. (10)

In Fig. (1) we show Imy?, as function of & for a Drude spheres with w,7 = 800, ¢, = 2.37
and f = 0.2 for (a) theoretical results and (b) numerical simulation.
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Figure 1 I'mx], as function of @ for f = 0.2, (a) we used Eq. (9) with the
approximation of Eq.(10) and (b) we used the result of the numerical simulation.
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NUMERICAL SIMULATION

We generate the position of each sphere along the chain with a particular type of
disorder. Then we calculate the induced dipole moment from Eq. (1? solving a set of
linear equations through matrix inversion. In order to remove effects due to lenght of
the chain, we consider periodic boundary conditions by closing the chain to itself.

(i) We consider an ordered distribution, i.e., the separation between the spheres is
the same and the induced average polarization per unit volume is calculated, given by

exza Eu-r

and we take the average of the induced dipole moment of the spheres. In Fig. (2) we
show Imy?, as function of & = w/w, for Drude spheres with w,7 = 800 embedded in
gelatin (e = 2.37), N = 40, different filling fractions and -y in the longitudinal direction.
In this Fig. we can see a red-shift of the peaks of absortion with respect to the one for
f = 0.2 as has been obtained from mean-field-approximation theories of 3D systems .

Figure 2 Imy], as function of & for f = 0.2, 0.4, 0.6 and 0.8 and 7 in the longi-
tudinal direction.

(i) We consider a disordered distribution where the position of each sphere is
generated as follows: we locate a sphere at each end of the chain and define N — 2
equidistant sites along the chain. The next sphere is random located between the first
sphere and the first site, if there is overlaping between the spheres we discard the sphere
and take another with random position, too. We do that until we will have the desired
filling fraction. Then, we solve the set of linear equations for this configuration and
calculate the average of the induced polarization per unit volume. We take the ensemble
average of Nm configurations, in order to obtain the susceptibility from Eq. (11). In
Fig. (3) we show I'mx], as function of & for the same Drude spheres, e = 2.37, f=03
and 7 in the longitudinal direction, where N = 40 and Nm = 1, 5,and 3000. From this
Fig. we can see a principal peak and secondary peaks, when Nm increases the peaks
disappear.
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Figure 3 Imx*®* as function of & for f = 0.3 and Nm = 1, 5, 100 and 3000 and

7 in the longitudinal direction.

CONCLUSIONS

We obtained the effective dielectric response of a chain of polarizable spheres em-

bedded in a homogeneous matrix within the dipolar approximation by the summation
of a selected class of diagrams. We found agreement between the theoretical results and
the numerical simulation in the low-density regime. We expect that by carrying out new
type of summations, we will be able to extend the agreement to higher-densities.
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