Solución EXAMEN #2

Física atómica, molecular y materia condensada

1. Encuentra los valores de los momentos angulares S, L y J de los siguientes estados: 3S_1 , ${}^2P_{3/2}$, 3D_2 , 5F_5 y ${}^6H_{5/2}$.

$^{A}B_{c} = ^{2S+1}L_{J}$	S=(A-1)/2	L	J=c
$^{3}S_{1}$	(3-1)/2=1	S=0	1
${}^{2}P_{3/2}$	(2-1)/2=1/2	P=1	3/2
$^{3}D_{2}$	(3-1)/2=1	D=2	2
⁵ F ₅	(5-1)/2=2	F=3	5
$^{6}\mathrm{H}_{5/2}$	(6-1)/2=5/2	H=5	5/2

3. ¿Cuáles son las transiciones permitidas y cuántas y cuales líneas espectrales se observan en las transiciones a) $^{1}F \rightarrow ^{1}D$ b) $^{2}D_{3/2} \rightarrow ^{2}P_{1/2}$, c) $^{3}P \rightarrow ^{3}S$.

a)
$${}^{1}F \rightarrow {}^{1}D$$

¹F y ¹D S=(1-1)/2 →**S=0**. Por lo tanto se presenta **efecto Zeeman** Normal.

Reglas de Selección

F(L=3)
$$\rightarrow$$
D (L=2), Δ L=1 \rightarrow Permitida como S=0, entonces J=L, Δ J=1 \rightarrow Permitida

$$\Delta$$
 M_L=0,±1

¹F L=3,
$$M_L$$
=0,±1, ±2, ±3

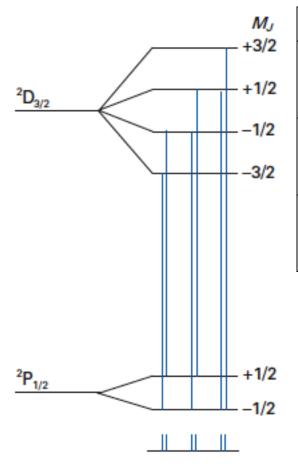
$$^{1}D$$
 L=2, M_L=0,±1, ± 2

Transiciones permitidas

	Transiciones Permitidas	Líneas espectrales correspondientes	
		$\epsilon + \Delta \ M_L \ \mu_B {f B}$ donde ϵ es la energía	
		correspondiente a F no degenerada	
$\Delta M_L=1$	${}^{1}F(M_{L}=1) \rightarrow {}^{1}D (M_{L}=2)$		
	${}^{1}F(M_{L}=0) \rightarrow {}^{1}D (M_{L}=1)$	Un grupo de 5 líneas coincidentes Que ocurren a $\epsilon + \mu_B \mathbf{B}$	
	${}^{1}F(M_{L}=-1) \rightarrow {}^{1}D (M_{L}=0)$		
	${}^{1}F(M_{L}=-2) \rightarrow {}^{1}D (M_{L}=-1)$		
	${}^{1}F(M_{L}=-3) \rightarrow {}^{1}D (M_{L}=-2)$		
Δ M_L =0	$^{1}F(M_{L}=2) \rightarrow ^{1}D(M_{L}=2)$	Un grupo de 5 líneas coincidentes	
	$^{1}F(M_{L}=1) \rightarrow ^{1}D(M_{L}=1)$	Que ocurren a ε	
	${}^{1}F(M_{L}=0) \rightarrow {}^{1}D (M_{L}=0)$		
	${}^{1}F(M_{L}=-1) \rightarrow {}^{1}D (M_{L}=-1)$		
	${}^{1}F(M_{L}=-2) \rightarrow {}^{1}D (M_{L}=-2)$		
Δ M_L =-1	${}^{1}F(M_{L}=3) \rightarrow {}^{1}D (M_{L}=2)$	Un grupo de 5 líneas coincidentes	
	${}^{1}F(M_{L}=2) \rightarrow {}^{1}D (M_{L}=1)$	Que ocurren a ε - $\mu_B \mathbf{B}$	
	${}^{1}F(M_{L}=1) \rightarrow {}^{1}D (M_{L}=0)$		
	${}^{1}F(M_{L}=0) \rightarrow {}^{1}D (M_{L}=-1)$		
	$^{1}F(M_{L}=-1) \rightarrow ^{1}D (M_{L}=-2)$		

b) $^2D_{3/2} \rightarrow {}^2P_{1/2} \;\; S=1/2$, por lo que se presenta **efecto Zeeman Anómalo**

 $^2D_{3/2}$, J=3/2, M_J=±3/2, ± ½, L=2 factor de lande $g_{3/2}$ (2,1/2)=4/5 $^2P_{1/2}$, J=1/2, M_J=±1/2, L=1 factor de lande $g_{1/2}$ (1,1/2)=2/3 Entonces, separaciones para $^2D_{3/2}$ son de 4/5 μ_B B y para $^2P_{1/2}$ de 2/3 μ_B B Ver Ejemplo 7.7 del libro



	Transiciones Permitidas
$\Delta M_J=1$	$^{2}D_{3/2}(M_{L}=-1/2) \rightarrow ^{2}P_{1/2}(M_{L}=1/2)$
	$^{2}D_{3/2}(M_{L}=-3/2) \rightarrow ^{2}P_{1/2}(M_{L}=-1/2)$
$\Delta M_J = 0$	$^{2}D_{3/2}(M_{L}=1/2) \rightarrow ^{2}P_{1/2}(M_{L}=1/2)$
	$^{2}D_{3/2}(M_{L}=-1/2) \rightarrow ^{2}P_{1/2}(M_{L}=-1/2)$
$\Delta M_J = -1$	$^{2}D_{3/2}(M_{L}=3/2) \rightarrow ^{2}P_{1/2}(M_{L}=1/2)$
	$^{2}D_{3/2}(M_{L}=1/2) \rightarrow ^{2}P_{1/2}(M_{L}=-1/2)$

Las transiciones permitidas forman un patron de 6 líneas en dobletes, un doblete por cada $\Delta\,M_J$

c)
$$^3P \rightarrow ^3S$$

S=1 , por lo tanto se presenta el effecto Zeeman Anómalo Para 3P tenemos que L=1, S=1, dado que J=L+S, L+S-1, ... |L-S| J=2,1,0, por lo tanto tenemos 3 estados:

Para 3S tenemos que L=0, S=1, por lo que L+S=|L-S|=1, por lo tanto tenemos un estado 3S_1 con M_J =0,±1, con separaciones = $g_1(0,1)\mu_B$ **B**

Por lo tanto tenemos transiciones de los estados

$${}^{3}P_{2} \rightarrow {}^{3}S_{1,} {}^{3}P_{1} \rightarrow {}^{3}S_{1,} {}^{3}P_{0} \rightarrow {}^{3}S_{1}$$

Estados y líneas	$\Delta M_{ m L}$	Transiciones Permitidas
$^{3}P_{2} \rightarrow ^{3}S_{1}$		$^{3}P_{2} (M_{L}=0) \rightarrow ^{3}S_{1} (M_{L}=1)$
Líneas espectrales:	1	$^{3}P_{2} (M_{L}=-1) \rightarrow ^{3}S_{1} (M_{L}=0)$
3 tripletes, uno para		$^{3}P_{2} (M_{L}=-2) \rightarrow ^{3}S_{1} (M_{L}=-1)$
cada $\Delta M_{ m L}$		$^{3}P_{2} (M_{L}=1) \rightarrow ^{3}S_{1} (M_{L}=1)$
	0	$^{3}P_{2} (M_{L}=0) \rightarrow ^{3}S_{1} (M_{L}=0)$
		$^{3}P_{2} (M_{L}=-1) \rightarrow ^{3}S_{1} (M_{L}=-1)$
		$^{3}P_{2} (M_{L}=2) \rightarrow ^{3}S_{1} (M_{L}=1)$
	-1	$^{3}P_{2} (M_{L}=1) \rightarrow ^{3}S_{1} (M_{L}=0)$
		$^{3}P_{2} (M_{L}=0) \rightarrow ^{3}S_{1} (M_{L}=-1)$
$^{3}P_{1} \rightarrow ^{3}S_{1}$	1	$^{3}P_{1} (M_{L}=0) \rightarrow ^{3}S_{1} (M_{L}=1)$

 $^{^{3}}P_{2}$ con M_{J} =0,±1, ± 2, con separaciones = $g_{2}(1,1)\mu_{B}$ **B**

 $^{^{3}}P_{1}$ con M_{J} =0,±1, con separaciones = $g_{1}(1,1)\mu_{B}\mathbf{B}$

 $^{^{3}}P_{0} \operatorname{con} M_{J}=0$

$^{3}P_{2} \rightarrow ^{3}S_{1}$		$^{3}P_{1} (M_{L}=-1) \rightarrow ^{3}S_{1} (M_{L}=0)$
Líneas espectrales:		$^{3}P_{1} (M_{L}=1) \rightarrow ^{3}S_{1} (M_{L}=1)$
2 dobletes	0	$^{3}P_{1} (M_{L}=0) \rightarrow ^{3}S_{1} (M_{L}=0)$
correspondientes a		$^{3}P_{1} (M_{L}=-1) \rightarrow ^{3}S_{1} (M_{L}=-1)$
$\Delta M_L = \pm 1$, un triplete	-1	$^{3}P_{1} (M_{L}=1) \rightarrow ^{3}S_{1} (M_{L}=0)$
para $\Delta M_L=0$		$^{3}P_{1} (M_{L}=0) \rightarrow ^{3}S_{1} (M_{L}=-1)$
$^{3}P_{0} \rightarrow ^{3}S_{1}$	1	$^{3}P_{0} (M_{L}=0) \rightarrow ^{3}S_{1} (M_{L}=1)$
Líneas espectrales:	0	$^{3}P_{0} (M_{L}=0) \rightarrow ^{3}S_{1} (M_{L}=0)$
3 correpondientes a	-1	$^{3}P_{1} (M_{L}=2) \rightarrow ^{3}S_{1} (M_{L}=1)$
cada ΔM_L		

4. Para la molécula H⁺² evalua la densidad de probabilidad de un electrón en el punto medio del enlace R₀/2 y graficala en función de la separación entre iones R. Calcula la diferencia entre densidades,

$$\rho_{\pm} = \psi_{\pm}^2 - \frac{1}{2} \left(\phi^2(r_a) + \phi^2(r_b) \right), \quad (1)$$

a lo largo de la línea que une los 2 iones. Discute el resultado.

a)

$$\psi_{\pm} = \frac{1}{\left[2(1 \pm S)\right]^{1/2}} \left(\phi(r_a) \pm \phi(r_b)\right) \qquad (2) \text{ donde S es la integral de traslape}$$

$$S = \left\langle \phi_A \middle| \phi_B \right\rangle = \left[1 + \frac{ZR}{a_0} + \frac{1}{3} \left(\frac{ZR}{a_0} \right)^2 \right] e^{-ZR/a_0}$$
 (3)

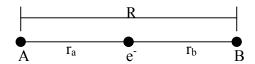
Por lo que la densidad de la probablidad de un electron es:

$$\psi_{\pm}^{2} = \frac{1}{2(1 \pm S)} \left(\phi^{2}(r_{a}) + \phi^{2}(r_{b}) \pm 2\phi(r_{a})\phi(r_{b}) \right), \quad (4)$$

para el estado 1S tenemos que:
$$\phi(r_a) = \left(\frac{Z^3}{\pi a_0^3}\right)^{1/2} e^{-Zr_a/a_0}$$
 y $\phi(r_b) = \left(\frac{Z^3}{\pi a_0^3}\right)^{1/2} e^{-Zr_b/a_0}$ (5)

sustituyendo las ecs anteriores en (4) tenemos:

$$\psi_{\pm}^{2} = \frac{1}{2(1 \pm S)} \left(\frac{Z^{3}}{\pi a_{0}^{3}} \right) \left[e^{-2Zr_{a}/a_{0}} + e^{-2Zr_{b}/a_{0}} \pm 2e^{-Z(r_{a}+r_{b})/a_{0}} \right]$$
(6)



en el punto medio del enlace tenemos que r_a=r_b=R/2

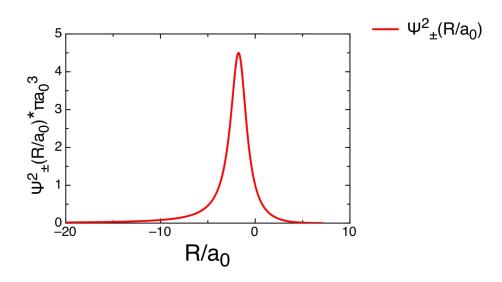
Sustituyendo r_a y r_b en 5 tenemos:

$$\psi_{\pm}^{2} = \frac{1}{2(1 \pm S)} \left(\frac{Z^{3}}{\pi a_{0}^{3}} \right) \left[e^{-2Zr_{a}/a_{0}} + e^{-2Zr_{b}/a_{0}} \pm 2e^{-Z(r_{a}+r_{b})/a_{0}} \right]$$
(7)

$$\psi_{\pm}^{2} = \frac{1}{2(1 \pm S)} \left(\frac{Z^{3}}{\pi a_{0}^{3}} \right) \left[2e^{-R/a_{0}} \pm 2e^{-R/a_{0}} \right]$$
 (8)

$$\psi_{+}^{2} = \frac{2}{(1+S)} \left(\frac{1}{\pi a_{0}^{3}} \right) \left[e^{-2Zr_{a}/a_{0}} \right], \quad \psi_{-}^{2} = 0 \quad (9)$$

Graficando ψ_+^2



$$\rho_{\pm} = \psi_{\pm}^2 - \frac{1}{2} (\phi^2(r_a) + \phi^2(r_b)),$$

A lo largo de la línea que une a los puntos tenemos $r_a + r_b = R_0$, Z=1

Sustituyendo ψ_{\pm}^2 del inciso anterior (ec. 4):

$$\rho_{\pm} = \frac{1}{2(1 \pm S)} \left\{ \phi^{2}(r_{a}) + \phi^{2}(r_{b}) \pm 2\phi(r_{a})\phi(r_{b}) \right\} - \frac{1}{2} \left\{ \phi^{2}(r_{a}) + \phi^{2}(r_{b}) \right\}$$

$$\rho_{\pm} = \rho_{\pm} = \frac{1}{2(1 \pm S)} \left\{ \mp S \left[\phi^{2}(r_{a}) + \phi^{2}(r_{b}) \right] \pm 2\phi(r_{a})\phi(r_{b}) \right\}$$

$$\rho_{\pm} = \frac{1}{1 \pm S} \left(\frac{Z^{3}}{\pi a_{0}^{3}} \right) \left\{ \mp \frac{S}{2} \left[e^{-2r_{a}/a_{0}} + e^{-2r_{b}/a_{0}} \right] \pm e^{-Z(r_{a}+r_{b})/a_{0}} \right\}$$

$$\rho_{+} = \frac{1}{1 + S} \left(\frac{Z^{3}}{\pi a_{0}^{3}} \right) \left\{ e^{-Z(r_{a}+r_{b})/a_{0}} - \frac{S}{2} \left[e^{-2r_{a}/a_{0}} + e^{-2r_{b}/a_{0}} \right] \right\}$$

$$\rho_{-} = -\frac{1+S}{1-S}\rho_{+}$$

La diferencia de densidad representa la modificación de la distribución del electrón causada por solapamiento (constructivo o destructivo).