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Resumen

El estudio del esparcimiento de luz por partículas coloidales es esencial para comprender y
controlar las propiedades ópticas de medios complejos. Las técnicas de esparcimiento de luz son
especialmente eficaces para caracterizar parámetros físicos clave como el tamaño, la forma y el índice
de refracción de las partículas. Estas mediciones son particularmente relevantes en sistemas fotónicos
desordenados, donde el transporte de luz está gobernado por eventos de esparcimiento múltiple. La
fotónica desordenada tiene diversas aplicaciones, incluyendo el desarrollo de recubrimientos ópticos y
sensores ultrasensibles. En estos sistemas, ajustar tanto la estructura coloidal como las propiedades
intrínsecas de las partículas, como el índice de refracción y la química superficial, es fundamental
para controlar las interacciones luz, materia.

En este contexto, las suspensiones de microgeles sensibles a estímulos, como el Poli(N-IsoPropil
Acrilamida) (PNIPAM) y las partículas núcleo-caparazón recubiertas con PNIPAM, representan
una estrategia prometedora. Estos sistemas permiten modificar sus propiedades estructurales y
ópticas mediante estímulos externos, como la temperatura. Sin embargo, la estructura interna de
los microgeles de PNIPAM da lugar a perfiles dieléctricos radialmente inhomogéneos. A pesar de
esta complejidad, su comportamiento frente al esparcimiento de luz se analiza comúnmente mediante
la aproximación de Rayleigh-Gans-Debye, principalmente por su simplicidad matemática, incluso
cuando sus condiciones de validez no son estrictamente válidos.

Esta tesis revisa la solución de esparcimiento de Mie para partículas esféricas homogéneas y
multicapa, proporcionando un enfoque exacto al problema del esparcimiento electromagnético. Se
desarrollan algoritmos numéricos para ambos casos, incorporando la polidispersidad para mode-
lar con mayor precisión los sistemas experimentales. Estas herramientas se aplican al estudio del
esparcimiento de luz por partículas de PNIPAM y partículas núcleo-caparazón recubiertas con PNI-
PAM. Hasta donde sabemos, esta es la primera vez que se describe el factor de forma de microgeles
de PNIPAM hinchados en el régimen de Mie utilizando un perfil radial de índice de refracción.
Los resultados demuestran que la teoría de Mie puede aplicarse con éxito a partículas coloidales
homogéneas y radialmente inhomogéneas, ofreciendo un marco riguroso y general más allá de las
aproximaciones tradicionales.
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Abstract

The study of light scattering by colloidal particles is essential to understanding and controlling
the optical properties of complex media. Light scattering techniques are particularly effective for
characterizing key physical parameters such as particle size, shape, and refractive index. Also,
measuring the scattering form factor is especially relevant in disordered photonic systems, where
multiple scattering events govern light transport. Disordered photonics has diverse applications,
including the development of optical coatings and ultrasensitive sensors. In such systems, tuning
both the colloidal structure and the intrinsic properties of the particles, such as refractive index and
surface chemistry, is critical to controlling light-matter interactions.

In this context, suspensions of stimuli-responsive microgels, such as Poly(N-IsoPropyl Acry-
lamide) (PNIPAM) and PNIPAM-coated core-shell particles, represent a promising strategy. These
systems enable the modulation of structural and optical properties via external parameters like tem-
perature. However, the internal structure of PNIPAM microgels results in radially inhomogeneous
dielectric profiles. Despite this complexity, their light scattering behavior is often analyzed using
the Rayleigh-Gans-Debye approximation, largely due to its mathematical simplicity, even in cases
where its assumptions are not strictly valid.

This dissertation revisits the Mie scattering solution for homogeneous and multilayer spherical
particles, providing an exact approach to the electromagnetic scattering problem. Numerical algo-
rithms are used for both cases, incorporating polydispersity to model experimental systems more
accurately. These tools are applied to study the light scattering behavior of PNIPAM and PNIPAM-
coated core-shell particles. As far as we know, this is the first time that the form factor of PNIPAM
microgels in the swollen state has been described using a radial refractive index profile in the Mie
regime. The results demonstrate that Mie theory can be successfully applied to both homogeneous
and radially inhomogeneous colloidal particles, offering a rigorous and general framework beyond
traditional approximations.
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Chapter 1

Introduction

Disordered photonics is a research field that studies the propagation of light through materials or
media whose structure does not have a periodic arrangement like that of crystalline solids. [1,2] Unlike
conventional photonics, where optical properties are defined by the Bragg condition for a crystal
lattice, among other intrinsic properties of crystalline materials, [1–4] disordered photonic media
exhibit multiple light scattering, which can lead to diffusive light transport. This behavior can give
rise to unusual photonic phenomena, often related to Anderson’s localization of the light. [1,2,5,6].
Anderson localization of light is a phenomenon where light transport through disordered media is
inhibited. Although it remains primarily a theoretical prediction, it has motivated intense research
into the role of the short-range correlations in disordered structures and how engineered correlated
disordered media can achieve bandgaps in light transmission or even angle-independent structural
colors. [1,2,6,7] Among these media, colloidal suspensions have emerged as versatile model systems
due to their capacity to synthesize colloidal particles with well-defined optical properties and their
relative ease of experimental manipulation. [2, 8–10]

Disordered photonics has applications spanning a wide range of technological areas. [1,2] Notably,
colloidal systems have been proposed for the development of efficient optical coatings, [6, 8] as well
as ultrasensitive sensors based on the modification of light transport. [11–13] Furthermore, the
possibility of controlling light scattering in these systems has led to their study in the fabrication of
random laser devices with potential applications in bioimaging. [1, 2]

Tuning both the structural properties of the colloidal system and the intrinsic characteristics
of the colloidal particles is essential to maximizing the performance of these systems in practical
applications. Parameters such as particle size, shape, refractive index, and surface functionalization
can significantly modify light-matter interactions. [2, 13–15] In this context, the use of stimuli-
responsive microgel suspensions, such as Poly(N-IsoPropylAcrylamide) (PNIPAM) and PNIPAM-
coated core/shell particle suspensions represent a promising strategy, as they allow simultaneous
modification of the structure of the colloidal system, given by the static structure factor, S(q), and
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2 CHAPTER 1. INTRODUCTION

the individual scattering properties of the colloidal particles, provided by the form factor function,
F (θ). [2, 14–17] Thanks to their ability to change size in response to external stimuli, such as
temperature, PNIPAM microgel suspensions provide an adaptable platform for engineering dynamic
and reconfigurable photonic media. [12,15,18] Given the broad scope of the problem of understanding
the photonic properties of colloids, this work focuses on studying the light scattering properties of
PNIPAM particles and PNIPAM-coated core/shell particles.

PNIPAM microgel suspensions are made of stimuli-sensitive gel particles obtained during cross-
linking N-IsoPropyl Acrylamide (NIPAM) polymerization. [19, 20] When PNIPAM microgels are
suspended in water, the microgel network could change their size with temperature; in warmed
PNIPAM suspension above cloud point, they undergo a reversible phase transition from a hydrated
state (expanded particles) to a dehydrated state (shrunk particles). This transition occurs at around
32 °C, known as the Lower Critical Solution Temperature (LCST). [19,20]

In the PNIPAM microgels synthesis, the polymers of NIPAM are intentionally cross-linked.
Otherwise, PNIPAM microgels cannot be colloidally stable. Polymer cross-linking uses covalent
bonds between PNIPAM strands using reagents such as Methylene Bis Acrylamide (MBA). Chemical
cross-linking is a non-equilibrium process in which MBA is consumed before NIPAM monomers.
Therefore, PNIPAM microgels do not have a uniform composition, leading particles with a non-
constant density cross-links profile. [19–21]

In the Stieger et. al. work, [22] is reported a study of the structural properties of PNIPAM using
the Small-Angle Neutron Scattering (SANS) technique. They found that the PNIPAM microgel
structure can be described with an inner constant dense region, also known as the core, and a fuzzy
shell, where the density decreases approximately as a Gaussian function. This model is known
as the fuzzy sphere model. Currently, this is the benchmark picture of the standard microgel
particles. [21,22] The fuzzy model used to describe the neutron scattering intensity data, where the
form factor is estimated as the convolution of the sphere scattering form factor with a Gaussian decay
function, is similar, under some approximations, to the Rayleigh-Gans-Debye (RGD) approximation
for light scattering. Therefore, under RGD approximation, the form factor function for a fuzzy
sphere particle can be written as: [18,22]

Ffs(q) = 3
sin(qR)− qR cos(qR)

qR3
exp

[
−(σq)2

2

]
. (1.1)

Here, R is the core radius, q is the magnitude of the scattering number, and the Gaussian width σ
measures the width of the smeared particle surface. [18,22]

When microgels like PNIPAM are studied with light scattering techniques, the RGD approxima-
tion for a fuzzy sphere is usually used to describe the light scattering intensity data as a function of
scattering angle. [18,23–25] A key aspect observed in this context is that, despite the Mie scattering
solution being the exact treatment for light scattering by spherical particles, the RGD approxi-
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mation has been predominantly used in the literature, even in cases where this approximation is
invalid. [18,24–26] One of the main arguments for using the RGD approximation in light scattering
experiments despite the microgel particles do not meet the RGD validity conditions is that cal-
culation of the form factor using the Mie scattering solution is impractical. [24] However, in this
dissertation, we demonstrate that the main obstacle to the widespread application of Mie scattering
solutions is not its complexity but rather the lack of knowledge regarding the dielectric properties of
spherical particles, particularly PNIPAM-based colloidal particles. While the RGD approximation
circumvents this issue, it also limits the ability to make accurate predictions about their optical
behavior.

To address this problem, this dissertation first reviews the Mie scattering solution for homoge-
neous and multilayered spheres in Chapter 2 and provides computational algorithms for applying
these solutions to spherically symmetric particles. Additionally, it discusses the problem of the
size particle polydispersity and how it must be accounted for to accurately describe the scattering
properties of colloidal suspension. Chapter 3 reviews the light scattering experimental techniques
used in this dissertation: Static Light Scattering (SLS) and Dynamic Light Scattering (DLS). In
Chapter 4, we successfully implement the Mie scattering solution for multilayered spheres to describe
light scattering properties of PNIPAM particles, incorporating a Refractive Index (RI) profile model
based on the Gaussian model of the PNIPAM cross-link density profile. We validate this approach
using static light scattering data reported in Ref. [18]. Chapter 5 presents the synthesis and char-
acterization of our PolyStyrene/PNIPAM (PS/PNIPAM) core/shell particles and the application of
the Mie scattering solution to describe their scattering properties. Finally, Chapter 5.4 explores the
descriptive capability of the RI profile model in describing PS/PNIPAM-co-AcrylicACid (PNIPAM-
co-AAc) core/shell particles, which differ in their cross-linking structure from conventional PNIPAM
microgels. We use static light scattering data reported in Ref. [15]. The conclusions of this disserta-
tion are presented in Chapter 6, and future research directions stemming from this work are briefly
outlined in Chapter 7.





Chapter 2

Theoretical Framework

The phenomenon of light scattering is related to the heterogeneities of the medium through
which a light beam is propagated. Consider, for example, a light beam that propagates through a
continuous medium that contains some heterogeneities with bulk properties different from those of
the surrounding medium. When the light beam hits the heterogeneities, the electromagnetic fields
of the beam and the heterogeneities’ electric charges interact, emitting electromagnetic energy in all
directions, known as secondary radiation or light scattering. [27,28]

The scattering of light depends on the shape and size of the heterogeneities, as well as on the
contrast between their dielectric properties and those of the surrounding medium. Consequently, the
measurement of the scattered light intensity, Is, can provide information about the heterogeneities
embedded within the medium. This is the underlying principle of all wave scattering experiments,
where, in general, the scattered intensity is measured in different directions with respect to the
incident wavefront and at various distances from the scattering volume, which can be in the near
field or the far field. The resulting data, recorded as a function of orientation and position, are then
analyzed using the most appropriate theoretical framework [27,29].

In particular, the static light scattering technique measures the scattering of light by particles
suspended in a liquid medium, with the scattered intensity recorded in the far-field region as a
function of the scattering angle, θ, typically ranging from 0° to 180°. Classical electromagnetic
theory provides a suitable theoretical framework for data analysis, and its review is the subject of
this chapter. Details of the experimental technique are presented in Chapter 3.

Throughout the history of electromagnetic theory, two main approaches to light scattering
have been developed: The Raleigh-Gans-Debye approximation (RGD) and the Mie Scattering so-
lution. [27] In both approaches, the most straightforward case consists of studying the scattering
of monochromatic plane waves by homogeneous spherical heterogeneities (which, from now on, will
be named in this thesis as particles), with linear dielectric properties embedded in a surrounding
medium with linear dielectric properties and without free charges (named in this thesis as solvent).

5



6 CHAPTER 2. THEORETICAL FRAMEWORK

Both approaches can be extended to more complicated cases, such as radially non-homogeneous
spherical particles. [27]

The two approaches differ in the following: RGD could describe light scattering only by tiny
particles compared to the light’s wavelength or particles whose refractive index almost matches that
of the surrounding medium. From an experimental point of view, these conditions are very restrictive,
but RGD can be used for particles of almost any geometrical shape. Instead, the Mie Scattering
solution is an exact solution of Maxwell’s electromagnetic equations for a plane monochromatic wave
scattered by spherical particles of any size. Still, the analytical solution involves series and special
functions that sometimes are awkward for numerical calculation. This limitation is, in many cases,
the experimentalists’ principal reason to use RGD instead of Mie solution, even for particles that
do not fully meet the RGD conditions, preferring to deal with the errors of the RGD approximation
rather than with cumbersome calculations of the Mie solution. [24,26,27,30]

One of the principal goals of this thesis is to show how to apply the Mie scattering solution to
nonhomogeneous colloidal particles with spherical symmetry. In this chapter, as a starting point,
we will review the Mie scattering solution and the RGD approximation of the light scattering for a
homogeneous sphere. Then, we explore the generalization of the Mie scattering solution for a non-
homogeneous multilayer sphere. Finally, we study the effect of polydispersity in particle size on the
scattered light intensity as a function of scattering angle. All the review done in this chapter follows
the theoretical development and notation of Bohren and Huffman’s book, [27], so in the following,
reference [27] will be omitted.

2.1 Scattering by Homogeneous Sphere

2.1.1 Mie Scattering Solution

As previously mentioned, the Mie Scattering Solution for light scattering by homogeneous spheres
is an exact solution of Maxwell’s electromagnetic (EM) equations for a monochromatic plane wave
propagating through a solvent with linear properties without free charges and scattered by particles
with linear properties.

For this case, the EM fields for a plane monochromatic wave are given by the following harmonics
equations:

Ei = E0 exp(ik · x− iωt), Hi = H0 exp(ik · x− iωt), (2.1)

where k is the wave vector that specifies the propagation direction of the wave, the wave vector
magnitude, also known as wavenumber, k, is related to wavelength, λ, as k = 2πn0/λ, with n0 the
solvent refractive index, and with the angular frequency, ω, as k = ω/v, with v the light speed in
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the solvent. The solvent and the scatterer particle have the constitutive relations given by:

B = µH, P = εE, (2.2)

Jf = σE, B1 = µ1H, P1 = ε1E, (2.3)

where µ and µ1, ε and ε1 are the solvent and particle’s magnetic permeability and electric suscep-
tibility, respectively, and σ is the conductivity of the sphere.

For the harmonics fields of Eq. (2.1) that propagate through a solvent with the constitutive
relations of Eq. (2.2), the Maxwell’s equations are:

∇ ·E = 0, ∇ ·B = 0,

∇×E = iωµH, ∇×H = −iωεE
(2.4)

For the continuity of the EM fields through the particle interface with the solvent, it is enough that
the boundary condition for the tangential components of the fields is fulfilled, which is:

(Ei +Es −E1)× êr = 0, (Hi +Hs −H1)× êr = 0, (2.5)

where subscript i, s, and 1 are for the incident, scattered EM fields, and the EM field inside the
sphere, respectively. From now on, we will describe the wavefront from its electric field, E. The
magnetic field, H, can be easily calculated with the relations of Eq. (2.4).

For particles with linear properties, and in the absence of absorption resonances, we can assert
that the light scattering by the particle is elastic, where the wavenumber of the incident and scattered
wavefront is the same: |k|i = |k|s = k0.

In this dissertation, we use the Mie scattering solution to describe the scattered electromagnetic
(EM) fields in the far-field region. In this regime, the observation distance, r, is much greater
than the characteristic size of the scattering object, and the source of the scattered light can be
considered to lie at the origin. Under these conditions, the scattered wavefront can be approximated
as a transverse spherical wavefront, whose asymptotic form is given by:

Es ∼
eikr

−ikr
A, kr ≫ 1. (2.6)

where A is the scattering amplitude function.

With all the previous considerations, we can assert that the incident and scattered fields are
directly related. Since the Mie scattering solution assumes plane wavefronts, it is convenient to
describe this linear relationship in terms of the transverse components of the fields, defined by the
parallel, ê||, and perpendicular, ê⊥, transverse unit vectors. In Figure 2.1, we show a schematic of
a plane wavefront incident on a spherical particle. In the far-field region, the propagation directions
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of the incident and scattered wavefronts define a scattering plane, within which the transverse
components of both wavefronts must be linearly related. The transverse components of the incident
plane wavefront propagating along the êz direction are:

E||i = cosϕExi + sinϕEyi, E⊥i = sinϕExi − cosϕEyi, (2.7)

where ϕ is the azimuthal angle. Also, Exi and Eyi are the cartesian components of the incident
electric field. The scattered electric field at the far-field region is:

Es = E||sê||s + E⊥sê⊥s, (2.8)

where ê||s = êθ and ê⊥s = −êϕ. Observe that ê||s × ê⊥s = êr, where êr, êθ, and êϕ are the
spherical unitary vectors. The transverse components of the incident and scattered electric field are
in different sets of basis. Then, from Eq. (2.6), the linear relationship between Es and Ei can be
written in matrix form as: (

E||s

E⊥s

)
=

eikr

−ikr

(
S2 S3

S4 S1

)(
E||i

E⊥i

)
, (2.9)

where S is the change of the basis matrix, known as the scattering amplitude matrix, and [S]j is
the scattering amplitude coefficient. In the last equation, the scattering amplitude function of Eq.
(2.6) is A = SEi. In general [S]j depends on k, the scattering angle, θ, and azimuthal angle, ϕ.

In the problem presented here, solving Maxwell’s electromagnetic equations for a given incident
EM field, particle size, and the dielectric properties of both the solvent and the particle allows
us to determine the electromagnetic fields inside and outside the scattering particle, denoted by
E1 and H1, and Es and Hs, respectively. The solution is expressed, in both regions, as a series
expansion involving spherical Bessel and Hankel functions. Full details of the solution to Maxwell’s
electromagnetic equations for this problem can be found in the book by Bohren and Huffman [27].
After solving the equations, Eq. (2.9) reduces to:(

E||s

E⊥s

)
=

eikr

−ikr

(
S2 0

0 S1

)(
E||i

E⊥i

)
, (2.10)

where the coefficients S1 and S2 are:

S1 =
∑
n

2n+ 1

n(n+ 1)
(anπn + bnτn),

S2 =
∑
n

2n+ 1

n(n+ 1)
(bnπn + anτn).

(2.11)
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êy

êx

êz

k⃗i

k⃗s

êr

êθ, ê||s

êφ, ê⊥s

ε1, µ1

ε, µ

Figure 2.1: Sketch of a monochromatic plane wavefront elastically scattered by a spherical particle with
linear properties. The incident wavefront propagates along the direction êz. In the far-field region, the
scattered wavefront is approximated as a transverse spherical wavefront, where the azimuthal and polar
spherical unit vectors correspond to the perpendicular, ê⊥s, and parallel, ê||s, directions of the scattered
wavefront. The scattering plane is defined by the incident wave vector, ki, and the scattering wave vector,
ks. It is therefore possible to construct a change-of-basis matrix that relates the transverse components of
the incident and scattered wavefronts.
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Here, πn y τn are the angular functions defined as:

πn =
P 1
n(cos θ)

sin θ
, τn =

dP 1
n(cos θ)

dθ
, (2.12)

where P 1
n is the associated Legendre function of degree 1. Also, the coefficients an and bn are defined

by:

an =
mψn(mx)ψ

′
n(x)− ψn(x)ψ

′
n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′
n(mx)

, bn =
ψn(mx)ψ

′
n(x)−mψn(x)ψ

′
n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′
n(mx)

, (2.13)

and they are determined by boundary conditions. In the last equation, m is the relative refractive
index defined as m = np/n0, where np and n0 is the particle and surrounding medium’s refractive
index, respectively, and x is the size parameter defined by x = 2πn0Rp/λ, where Rp is the particle’s
radius. Also, in Eq. (2.13), the special functions ψn(η) and ξn(η) are the Riccati-Bessel functions
defined as ψn(η) = ηjn(η) and ξn(η) = ηh

(1)
n (η), where jn(η) and h

(1)
n (η) are the spherical Bessel

function of the first kind and the Hankel function of the first kind, with η the function’s argument.
Observe that the scattering amplitude coefficients, S1 and S2, are only a function of scattering angle
θ. It is essential to mention that the solvent and particle’s magnetic permeability, µ and µ1, have
been considered the same.

Now, it is possible to quantify the light scattered intensity that we can measure in some direction
at the far-field region. To do that, we introduce the differential scattering cross-section, dCsca/dΩ,
defined as the average scattered energy per unit of solid angle, normalized by the incident light
intensity, that is: [27, 28]

dCsca
dΩ

= lim
r→∞

r2r̂ · ⟨Ss⟩
|⟨Si⟩|

. (2.14)

Here, ⟨S⟩ = Re(E×H∗)/2 is the average of the Poynting vector, whose modulus gives the incident
and scattered light intensity, and the average in the angular parenthesis, ⟨· · ·⟩, are over measurement
time. From Eq. (2.6), the Eq. (2.14) could be written as:

dCsca
dΩ

=
1

k20

|ε̂||,⊥ ·A|2

|Ei|2
, (2.15)

where ε̂||,⊥ are the polarization components of light scattered, and |ε̂||,⊥ ·A|2 is the general expression
for the form factor function. The form factor function gives the angular distribution of the scattered
light. In our case, using Eq. (2.10), the form factor function for incident unpolarized light is:

F (θ) =
1

2

(
|S1|2 + |S2|2

)
, (2.16)
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and the scattering cross section is:

Csca =
1

k20

∫
Ω
F (θ)dΩ. (2.17)

Finally, the total scattered intensity measured at some scattering angle θ is proportional to the
total number of particles, N , in the scattering volume defined by the beam light’s spot size and
the detector’s solid angle. Then, for unpolarized light, the total scattered intensity as a function of
scattering angle θ is:

IT (θ) ∝ NIs(θ) = NF (θ). (2.18)

If the beam light is polarized, the total intensity is:

IT,⊥(θ) ∝ N |S1(θ)|2, IT,||(θ) ∝ N |S2(θ)|2, (2.19)

for vertical and parallel polarization, ε̂⊥ and ε̂||, respectively. In the last equations, we consider that
the particles are monodisperse in size, i. e., all the particles have the same size. The general case
for a polydisperse system will be reviewed in the section 2.3.2.

2.1.2 Computational aspects of the Mie scattering solution

For numerical calculation of the amplitude scattering coefficients of Eq. (2.11), it is necessary
to evaluate the special functions ψn(η) and ξn(η), and their derivatives for each n until the series
in the Eq. (2.11) converge at some cut term, nc. Historically, various algorithms for numerical
calculation of the coefficients S1(θ) and S2(θ) have been proposed, and Bohren and Huffman’s
algorithm (BHMIE) is one of the most used to characterize the scattering properties of spherical
colloidal particles. [2, 27, 31] In this work, we use the BHMIE algorithm to calculate the scattering
properties, and its source code, written in Fortran 77, can be found in Appendix A of Bohren and
Huffman’s book. Also, we coded a BHMIE algorithm version in Fortran 2008, available as open
source code in GitHub (https://github.com/Complex-Fluids-IFUNAM/Mie-Scattering).

The BHMIE algorithm uses the empirical Wiscombe’s cutoff criterion for the series computation
in Eq. (2.11), where the least first series terms to calculate, nstop, after the convergence is reached
are defined by: [32]

nstop = ⌈x+ 4x1/3 + 2⌉. (2.20)

Here, the parenthesis ⌈· · ·⌉ denotes the ceiling function and gives the least integer greater than the
function argument, and x = k0Rp is the size parameter.

Due to well-established recurrence relations for the special functions involved in Mie scattering
solution, [27,33] it seems that the calculation of angular functions, πn(θ) and τn(θ) in Eq. (2.11), and

https://github.com/Complex-Fluids-IFUNAM/Mie-Scattering
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the Ricatti-Bessel functions in Eq. (2.13), is straightforward. Indeed, this is true for the numerical
calculation of πn(θ) and τn(θ), where the recurrence relations are followed from the associated
Legendre function of degree 1, and can be computed by upward recurrence from the following
relations:

πn(θ) =
2n− 1

n− 1
πn−1(θ) cos θ −

n

n− 1
πn−2(θ),

(2.21)

τn(θ) = nπn(θ) cos θ − (n+ 1)πn−1(θ).

Here, the recurrence beginning with π0(θ) = 0 and π1(θ) = 1. On the other hand, the numerical
calculation of coefficients an and bn cannot follow straightforwardly from recurrence relations of
Riccati-Bessel functions. If we calculate the coefficients an and bn as defined in Eq. (2.13), the
roundoff numerical errors in the coefficients grow alarmingly with n. To avoid this, the BHMIE
algorithm rewrites the coefficients of Eq. (2.13), just for numerical calculations, in the following
form:

an =
[Dn(mx)/m+ n/x]ψn(x)− ψn−1(x)

[Dn(mx)/m+ n/x]ξn(x)− ξn−1(x)
,

bn =
[mDn(mx) + n/x]ψn(x)− ψn−1(x)

[mDn(mx) + n/x]ξn(x)− ξn−1(x)
,

(2.22)

where Dn(η) = d
dη lnψn(η), and to eliminate ψ′

n(x) and ξ′n(x) in Eq. (2.13) its have used the
recurrence relations:

ψ′
n(x) = ψn−1(x)−

nψn(x)

x
, ξ′n(x) = ξn−1(x)−

nξn(x)

x
. (2.23)

The logarithmic derivative, Dn(η), is calculated following a downward recurrence (lower orders are
generated from higher orders), defined by:

Dn−1(η) =
n

η
− 1

Dn(η) + n/η
. (2.24)

Notwhitstanding, the recurrence must beginning at nmax where Dnmax ≈ 0. The BHMIE algorithm
choose nmax as:

nmax = max(nstop, ⌈|mx|⌉) + 15, (2.25)

where the downward recurrence is begun with Dnmax = 0+ i0. Finally, the Riccati-Bessel functions
in Eq. (2.22) are computed by upward recurrence from the following relations:

ψn+1(x) =
2n+ 1

x
ψn(x)− ψn−1(x), (2.26)
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where ψn(x) and ξn(x) satisfy that ξn(x) = ψn(x) + iχn(x), and the recurrence begins with:

ψ−1(x) = cosx, ψ0(x) = sinx,

χ−1(x) = − sinx, χ0(x) = cosx.

In summary, for a given wavelength, λ, solvent’s refractive index, n0, particle’s size and refractive
index, Rp and np, where np ∈ C, and the scattering angles θi, the BHMIE algorithm makes the
following steps:

1. Calculates x = 2πn0Rp/λ and m = np/n0. Then, calculates nstop using Eq. (2.20).

2. Calculates nmax using Eq. (2.25). Then, calculates Dn(mx) for every n in [0, nmax] using the
downward recurrence relation of Eq. (2.24). All Dn(mx) values are reserved for those use.

3. Generates a table of scattering angles θi and starts the upward recurrences for angular func-
tions with π0(θi) = 0 and π1(θi) = 1.

4. Starts the upward recurrences for Riccati-Bessel functions with ψ0(x) = (cosx), ψ1(x) =

(sinx), χ0(x) = − sinx and χ1(x) = cosx. Then, ξn(x) is initialized with ξ1(x) = ψ1(x) −
iχ1(x).

5. Starting series iteration for S1(θi) and S2(θi) in Eq. (2.11), from n = 1 and to n = nstop. In
each iteration, the following steps are performed:

(a) Angular functions πn(θi) and τn(θi) are computed for all scattering angles θi following
the recurrence relations of Eq. (2.21).

(b) Special functions ψn(x) and ξn(x) are evaluated using Eq. (2.26).

(c) Coefficients an and bn are evaluated following Eq. (2.22), using the corresponding values
of Dn(mx), previously calculated.

(d) Computes next n + 1 term of all angular and Riccati-Bessel functions following the
recurrence relations of Eqs. (2.21) and (2.26). Then, restart the loop unless n + 1 is
greater than nstop.

6. Calculates |S1(θi)|2 and |S2(θi)|2 and the form factor function F (θi) as defined in Eq. (2.16).
Finally, the algorithm saves results files in a .dat format and stops the program.

2.1.3 Raleigh-Gans-Debye approximation

The Raleigh-Gans-Debye (RGD) approximation is another approach that describes light scat-
tering by dielectric heterogeneities. Still, it’s limited to tiny particles compared to the beam wave-
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length and for particles suspended in a solvent whose refractive index almost matches the solvent
one. Mathematically, these two conditions could be written as: [27,29]

|m− 1| ≪ 1, kd|m− 1| ≪ 1 (2.27)

where m = np/n0 is the relative refractive index, k = 2πn0/λ is the wavenumber and d is the
particle’s characteristic linear dimension. The RGD validity conditions could be interpreted in
the next way: the incident plane monochromatic wave is not appreciably reflected at the interface
between particle and solvent, and the incident plane monochromatic wave does not undergo an
appreciable phase change into the particle.

The RGD approximation estimates the field scattered by a particle, independently of its ge-
ometry, as the contribution of infinitesimal spherical volume elements. It can be shown that the
contribution of a spherical volume element, ∆v, to the field scattered by the particle is:(

∆E||s

∆E⊥s

)
=

eikr

−ikr
∆veiδ

(
s2 0

0 s1

)(
E||i

E⊥i

)
, (2.28)

where δ = kR·(êz−êr) with êz and êr the propagation direction of the incident and scattered waves,
respectively, and R is the vector that joins two volume elements into the particle that contributes to
scattering wave. Also, in Eq. (2.28), s1 and s2 are the amplitude scattering coefficients per volume
unit defined by:

s1(θ) := lim
x→0

S1(θ)

v
= − ik

3

2π
(m− 1),

(2.29)

s2(θ) := lim
x→0

S2(θ)

v
= − ik

3

2π
(m− 1) cos θ.

Here, v = 4/3πR3
p and S1(θ) and S2(θ) are the scattering amplitude coefficient given in Eq. (2.11).

The total electric field scattered is obtained by integrating Eq. (2.28) over the particle volume v.
Then, the expression for Es in Eq. (2.10) is recovery, redefined the amplitude scattering coefficients
as follows:

S1(θ) = − ik
3

2π
(m− 1)vf(θ, ϕ),

(2.30)

S2(θ) = − ik
3

2π
(m− 1)vf(θ, ϕ) cos θ,
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where, in the RGD approximation context, f(θ, ϕ) is the form factor function, defined by:

f(θ, ϕ) =
1

v

∫
v
eiδdv. (2.31)

Therefore, the RGD approximation can describe the light scattering for any particle whenever it is
possible to determine a phase function δ, independently of its geometry.

Now, we define the scattering vector, q, as q = ks− ki. For elastic scattering, the magnitude of
scattering vector, q, is related to the scattering angle, θ, as:

q = |ks − ki| = 2k sin (θ/2). (2.32)

For spherical dielectric particles, the phase function is:

δ = 2k sin (θ/2)ξ = qξ, (2.33)

where ξ = R · (êz − êr). Then, the form factor can be calculated over ξ as:

f =
1

v

∫
eiqξA(ξ)dξ, (2.34)

where A(ξ) is the area defined by R · (êz − êr) = R cos (R, êz − êr) = π(R2
p − ξ2). After integrating

Eq. (2.34), the form factor for a spherical particle in the RGD approximation is:

f(θ) =
3

(qRp)3
[sin (qRp)− qRp cos (qRp)]. (2.35)

Finally, the scattered intensity as a function of the scattering angle can be estimated with the same
relations introduced in Eqs. (2.18) and (2.19).

2.1.4 Mie solution vs RGD approximation

To discuss the differences between the Mie solution and the RGD approximation, let us
consider two cases that can be measured in a light scattering experiment: silica colloidal spheres
(SiO2) suspended in decalin and polystyrene colloidal spheres (PS) suspended in water. Also, we
consider that a red beam laser with λ = 632.8nm is used in both suspensions, and the light scattering
experiment is carried out with vertical polarization. Then, the scattering intensity predicted by the
Mie scattering solution and the RGD approximation is proportional to |S1(θ)|2 (see Eq. (2.19))
and particularly, for RGD approximation, |S1(θ)|2 ∝ f(θ)2, with f(θ) given by Eq. (2.35). To
quantify the differences between both predictions, we defined the quadratic difference between the
normalized scattering intensity predicted by the Mie scattering solution and RGD approximation as
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∆2
Mie,RGD =

∑
i[|SMie

1 (θi)|2 − f(θi)
4].

For the wavelength considered, the refractive index for SiO2 is nSiO2 = 1.457, while for decalin
is ndecalin = 1.47. we use the refractive index for PS and SiO2 reported by Bangs Laboratories Inc.
(USA). [34] Therefore, in the first case, we have a suspension in which the particles and solvent are
in an index-match regime with a relative refractive index of m = 0.991 and |m − 1| = 0.009. On
the other hand, for the wavelength considered, the refractive index for PS is nPS = 1.59, whereas
for water, it is nW = 1.331. Then, in the second case, we have a suspension where the particles and
the solvent have a relative refractive index of m = 1.195 and |m − 1| = 0.194, and it’s considered
far from an index match regime.

In Fig. 2.2(a), we show ∆2
Mie,RGD as a function of the size parameter x = (2πn0/λ)R for the

cases described above. In both cases, ∆2
Mie,RGD quickly increases with the size parameter x and

stabilizes after reaching a maximum. For SiO2 suspension (black solid line), the maximum difference
is reached at x = 2.014, and for PS suspension (blue dot-dashed line) at x = 1.865. ∆2

Mie,RGD is
remarkably low for SiO2 suspension compared to that of PS suspension, which is three orders of
magnitude larger.

In Fig. 2.2(b) and (c), we show the scattering intensity as a function of the scattering angle
for SiO2 suspension at size parameter x = 2.014 and x = 10, respectively. We can observe that
predictions made by the Mie solution and the RGD approximation are notably similar for both size
parameters considered. Note that x = Rp(2πn0/λ) = 10 corresponds to large particle sizes compared
to the wavelength of the light beam, and the RGD approximation is invalid. In Fig. 2.2d and e, we
show the scattering intensity as a function of the scattering angle for PS suspension at size parameters
x = 1.865 and x = 10, respectively. We can observe that the RGD approximation prediction deviates
from that of the Mie solution for both size parameters. For x = 1.865, the deviation is noticeable
at large scattering angles. For x = 10, the deviation is noticeable in almost all scattering angles,
where RGD approximation predicts fewer scattering minimum than the structure predicted by the
Mie solution.

From the above analysis, we can conclude that the RGD approximation can be applied to
suspensions in which the particles are index-matched with the solvent, even when the particle size
exceeds the laser wavelength. In such cases, it is sufficient that the RGD condition |m − 1| ≪ 1 is
satisfied. However, if the particles are not index-matched with the solvent, both conditions of the
RGD approximation (see Eq. (2.27)) must be fulfilled. In this context, the Mie solution provides the
most robust framework for analyzing the scattering intensity of particles, as it imposes no restrictions
on particle size or refractive index contrast in its formulation.
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Figure 2.2: (a) ∆2
Mie,RGD as a function of the size parameter x for silica SiO2 particles

suspended in decalin (red solid line) and PS particles suspended in water (blue dot-dashed
line). (b) and (c): scattering intensity as a function of the scattering angle for SiO2 in water
suspension at x = 2.014 and x = 10, respectively. (d) and (e): scattering intensity as a
function of the scattering angle for PS in water suspension at size parameter x = 1.865
and x = 10, respectively. In (b), (c), (d), and (e), the red dashed line gives the RGD
approximation form factor, and the black solid line gives the Mie scattering solution form
factor.



18 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.3: Sketch of the geometry of a multilayer sphere. The l layers are labeled from the inner, l = 1,
to the outer, l = L. The solvent is labeled as the L + 1 layer. The intensity of color refers to the radial
inhomogeneity of dielectric properties.

2.2 Mie Scattering Solution for a Multilayer Sphere

The scattering solution for a homogeneous sphere could be generalized for spheres made up
of radial concentric layers, each layer with linear dielectric properties. This generalization is almost
straightforward; all the conditions imposed for the Mie solution for a homogeneous sphere are used
in the Mie solution for a multilayer sphere (see subsec. 2.1.1). The main difference lies in the fact
that the boundary conditions for the continuity of EM fields apply at the interfaces between layers,
as well as at the boundary of the outer layer with the solvent. Therefore, the functional form of
the scattering amplitude coefficients, S1(θ) and S2(θ), and the form factor function, F (θ), are the
same as in the Mie solution for a homogeneous sphere (see Eq. (2.11) and (2.16)), but the scattering
coefficients an and bn for scattered EM fields are determined by the propagation of EM fields through
sphere’s layers.

In Fig 2.3, we sketch a sphere stratified in L concentric layers, where two adjacent layers have
different linear dielectric properties with spherical symmetry. The layers are labeled from the inner
sphere or core with l = 1 to the outer layer with l = L and surrounding media with l = L + 1.
Because the layers have linear dielectric properties, the l layer can be characterized by its refractive
index, nl, so the l layer has a relative refractive index ml = nl/nL+1, with nL+1 the solvent’s
refractive index. Each layer is characterized by the size parameter xl = 2πnL+1rl/λ = krl

As in the Mie solution for a homogeneous sphere, we can calculate the EM fields by solving
Maxwell’s equations, and the solution is written using spherical Bessel’s functions (see Appendix



2.2. MIE SCATTERING SOLUTION FOR A MULTILAYER SPHERE 19

A). In the Mie solution for a multilayer sphere, the EM fields in the core E1 and H1 are given by [27]

E1 =

∞∑
n=1

En

(
c1nM

(jn)
o1n − id1nN

(jn)
e1n

)
,

H1 = − k1
ωµ1

∞∑
n=1

En

(
d1nM

(jn)
e1n + ic1nN

(jn)
o1n

) (2.36)

and the scattered EM fields Es and Hs are given by

Es =
∞∑
n=1

En

(
iaL+1
n N

(h
(1)
n )

e1n − bL+1
n M

(h
(1)
n )

o1n

)
,

Hs = − k

ωµ

∞∑
n=1

En

(
−ibL+1

n N
(h

(1)
n )

o1n − aL+1
n M

(h
(1)
n )

e1n

)
.

(2.37)

In the last four equations En = inE0(2n+1)/n(n+1), M(zn)
e1n , M(zn)

o1n , N(zn)
e1n and N

(zn)
e1n are the vector

harmonic functions given in Eq. (A.1) (see Appendix A). The superscript zn in the vector harmonic
functions denotes the radial dependence determined by the spherical Bessel functions, jn(ρl) and
yn(ρl), or by the first kind of the spherical Hankel function, h(1)n (ρl), where ρl = klr.

Note that in Eq. (2.36) and (2.37) only jn(ρl) and h
(1)
n (ρl) is used, this is due to the need of

the convergence of the EM fields in the core and at the far field region. On the other hand, in the
intermediate layers, both spherical functions jn(ρl) and yn(ρl) are finite, and it’s not necessary to
use h(1)n (ρl) because the regions are bounded. Therefore, the EM fields for the layer l = 2, · · · , L is
given by

El =
∞∑
n=1

En[f
(l)
n M

(jn)
o1n − ig(l)n N

(jn)
e1n + v(l)n M

(yn)
o1n − iw(l)

n N
(yn)
e1n ],

Hl = − kl
ωµl

∞∑
n=1

En[g
(l)
n M

(jn)
e1n + if (l)n N

(jn)
o1n + w(l)

n M
(yn)
e1n + iv(l)n N

(yn)
o1n ].

(2.38)

The boundary conditions for different interfaces are given by

(El+1 −El)× êr = 0, (Hl+1 −Hl)× êr = 0, at r = rl, (2.39)

where l = 1, 2, · · · , L. Finally, all scattering coefficients in Eqs. (2.36), (2.37) and (2.38) can be
evaluated using Eq. (2.39).

Equations (2.36), (2.37), and (2.38) represent the general solution for light scattering by a multi-
layered sphere, first derived by Aden and Kerker [27,35,36]. As in the Mie solution for a homogeneous
sphere, it is commonly assumed that the magnetic permeability of the solvent, µ, is approximately
equal to that of all the sphere’s layers, i.e., µ1 ≈ · · · ≈ µL ≈ µL+1 = µ. Under this assumption,
the calculation of the scattering coefficients in Eqs. (2.36), (2.37), and (2.38) is simplified. However,
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this restricts the applicability of the solution to systems in which the permeabilities of the materials
involved are indeed approximately equal to that of the solvent.

Despite this simplification, the number of scattering coefficients increases significantly with the
number of layers composing the sphere. For an L-layered sphere, the boundary conditions yield a
system of 2L linear equations for 2L unknown coefficients. This system can, in principle, be solved
using matrix methods. Nevertheless, as the number of layers increases, matrix-based computation
becomes prone to round-off error propagation, which leads to numerical inaccuracies in the results.
Additionally, the computational time scales as L3 [36, 37]. To address this, various recursive al-
gorithms have been proposed to compute the scattering coefficients more efficiently, reducing the
computational time to scale linearly with L. However, many of these approaches still suffer from
unresolved round-off error issues [31,37,38].

Yang developed one of the most stable recursive algorithms to calculate the scattering coefficients,
where the numerical round-off errors issues are solved by the use of the first kind of the spherical
Hankel function, h(1)n (ρl), instead of the second kind of the Bessel function (see. Eq. (2.38)). [38]
h
(1)
n (ρl) is a linear combination of jn(ρl) and yn(ρl) defined as h(1)n (ρl) = jn(ρl) + iyn(ρl), therefore,

replacing yn(ρl) by h(1)n (ρl) in Eq. (2.38), it can be obtained a general expression for the EM fields
in any stratified sphere’s layer, and is given by:

El =

∞∑
n=1

En[c
(l)
n M

(jn)
o1n − id(l)n N

(jn)
e1n + ia(l)n N

(h
(1)
n )

e1n − b(l)n M
(h

(1)
n )

o1n ],

Hl = − kl
ωµ

∞∑
n=1

En[d
(l)
n M

(jn)
e1n + ic(l)n N

(jn)
o1n − ib(l)n N

(h
(1)
n )

o1n − a(l)n M
(h

(1)
n )

e1n ],

(2.40)

with l = 1, · · · , L+ 1. To recover EM fields of the sphere’s core, given in Eq. (2.36), the scattering
coefficients a(1)n = b

(1)
n = 0, and they are, indeed, the only two known scattering coefficients of the

problem.

Using the boundary conditions in Eq. (2.39) with Eq. (2.40), the following set of linear equations
for the adjacent layers, labeled with l and l + 1, is obtained:

d(l+1)
n mlψ

′
n(ml+1xl)− a(l+1)

n mlζ
′
n(ml+1xl)− d(l)n ml+1ψ

′
n(mlxl) + a(l)n ml+1ζ

′
n(mlxl) = 0, (2.41)

d(l+1)
n ψn(ml+1xl)− a(l+1)

n ζn(ml+1xl)− d(l)n ψn(mlxl) + a(l)n ζn(mlxl) = 0, (2.42)

c(l+1)
n mlψn(ml+1xl)− b(l+1)

n mlζn(ml+1xl)− c(l)n ml+1ψn(mlxl) + b(l)n ml+1ζn(mlxl) = 0, (2.43)

c(l+1)
n ψ′

n(ml+1xl)− b(l+1)
n ζ ′n(ml+1xl)− c(l)n ψ

′
n(mlxl) + b(l)n ζ

′
n(mlxl) = 0. (2.44)

Here, ψn(z) and ζn(z) are the Riccati-Bessel functions for the first kind of spherical Bessel function
and the first kind of Hankel function, defined by psin(z) = zjn(z) and ζn(z) = zh

(1)
n (z), respectively.

Using Cramer’s rule to calculate a(l+1)
n and d(l+1)

n from Eq. (2.41) and (2.42), and to calculate b(l+1
n
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and c(l+1)
n from Eq. (2.43) and (2.44), the following set of equations is obtained:

a(l+1)
n =

{
mlψ

′
n(ml+1xl)[d

(l)
n ψn(mlxl)− a

(l)
n ζn(mlxl)]

− ψn(ml+1xl)[d
(l)
n ml+1ψ′

n(mlxl)− a
(l)
n ml+1ζ ′n(mlxl)]

}
mlζ ′n(ml+1xl)ψn(ml+1xl)−mlψ′

n(ml+1xl)ζn(ml+1xl)
, (2.45)

d(l+1)
n =

{
mlζ

′
n(ml+1xl)[d

(l)
n ψn(mlxl)− a

(l)
n ζn(mlxl)]

− ζn(ml+1xl)[d
(l)
n ml+1ψ′

n(mlxl)− a
(l)
n ml+1ζ ′n(mlxl)]

}
mlζ ′n(ml+1xl)ψn(ml+1xl)−mlψ′

n(ml+1xl)ζn(ml+1xl)
. (2.46)

b(l+1)
n =

{
mlψn(ml+1xl)[c

(l)
n ψ′

n(mlxl)− b
(l)
n ζ ′n(mlxl)]

− ψ′
n(ml+1xl)[c

(l)
n ml+1ψn(mlxl)− b

(l)
n ml+1ζn(mlxl)]

}
mlζn(ml+1xl)ψ′

n(ml+1xl)−mlψn(ml+1xl)ζ ′n(ml+1xl)
. (2.47)

c(l+1)
n =

{
mlζn(ml+1xl)[c

(l)
n ψ′

n(mlxl)− b
(l)
n ζ ′n(mlxl)]

− ζ ′n(ml+1xl)[c
(l)
n ml+1ψn(mlxl)− b

(l)
n ml+1ζn(mlxl)]

}
mlζn(ml+1xl)ψ′

n(ml+1xl)−mlψn(ml+1xl)ζ ′n(ml+1xl)
. (2.48)

Note that there are eight coefficients to calculate, but we have a set of four equations. To have a
complete set of equations, it’s necessary to use the boundary conditions for the continuity of normal
components of EM fields across layer interfaces. It’s important to remember that our goal is to
determine the coefficients for scattered EM fields in Eq. (2.37). In this way, Yang avoided increasing
the number of equations to be solved by introducing the reduced coefficients, A(l)

n and B(l)
n , defined

as A(l)
n = a

(l)
n /d

(l)
n and B

(l)
n = b

(l)
n /c

(l)
n . [38] Therefore, making Eq. (2.45) over Eq. (2.46) and Eq.

(2.47) over Eq. (2.48), we obtain a set of two equations to solve given by

A(l+1)
n =

a
(l+1)
n

d
(l+1)
n

=
ψn(ml+1xl)

ζn(ml+1xl)

{
ml+1[ψ

′
n(mlxl)−A

(l)
n ζ ′n(mlxl)]

−ml
ψ′
n(ml+1xl

ψn(ml+1xl)
[ψn(mlxl)−A

(l)
n ζn(mlxl)]

}
{
ml+1[ψ

′
n(mlxl)−A

(l)
n ζ ′n(mlxl)]

−ml
ζ′n(ml+1xl
ζn(ml+1xl)

[ψn(mlxl)−A
(l)
n ζn(mlxl)]

} , (2.49)

B(l+1)
n =

b
(l+1)
n

c
(l+1)
n

=
ψn(ml+1xl)

ζn(ml+1xl)

{
ml[ψ

′
n(mlxl)−B

(l)
n ζ ′n(mlxl)]

−ml+1
ψ′
n(ml+1xl

ψn(ml+1xl)
[ψn(mlxl)−B

(l)
n ζn(mlxl)]

}
{
ml[ψ

′
n(mlxl)−B

(l)
n ζ ′n(mlxl)]

−ml+1
ζ′n(ml+1xl
ζn(ml+1xl)

[ψn(mlxl)−B
(l)
n ζn(mlxl)]

} . (2.50)

Hence, the reduced coefficients A(l+1)
n and B

(l+1)
n can be calculated recursively, provided that A(l)

n

and B
(l)
n are known. Yang takes advantage of the fact that the reduced coefficients are known for

the sphere’s core, where A(1)
n = B

(1)
n = 0 because a(1)n = b

(1)
n = 0. Therefore, a recursive algorithm
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that uses Eq. (2.49) and (2.50) can start at the core. For the EM fields that propagate in the
solvent, labeled with the layer number L + 1, the reduced coefficients must return the scattering
coefficients for scattered EM fields an and bn (see Eq. (2.37)). For that reason, an = a

(L+1)
n = AL+1

n

and bn = b
(L+1)
n = BL+1

n , where c(L+1)
n = d

(L+1)
n = 1. Consequently, the EM fields that propagate in

the solvent are given by

Ei +Es = EL+1 =
∞∑
n=1

En[M
(jn)
o1n − iN

(jn)
e1n + ia(L+1)

n N
(h

(1)
n )

e1n − b(L+1)
n M

(h
(1)
n )

o1n ],

Hi +Hs = HL+1 = − kl
ωµ

∞∑
n=1

En[M
(jn)
e1n +N

(jn)
o1n − ib(L+1)

n N
(yn)
o1n − a(L+1)

n M
(yn)
e1n ],

(2.51)

where the incident EM fields are Ei and Hi, given in Eqs. (A.2) and (A.3) of Appendix A, respec-
tively. Thus, the recursive algorithm terminates at l = L+1. In summary, Yang developed a general
formulation in which the solvent is treated as an additional layer, allowing the scattering coefficients
to be calculated recursively by taking advantage of the fact that the coefficients for the sphere’s core
are known.

Finally, we rewrite the Eq. (2.49) and (2.50) in a more readable version as

A(l+1)
n = Rn(ml+1xl)

ml+1H
a
n(mlxl)−mlD

(1)
n (ml+1xl)

ml+1Ha
n(mlxl)−mlD

(3)
n (ml+1xl)

, (2.52)

B(l+1)
n = Rn(ml+1xl)

mlH
b
n(mlxl)−ml+1D

(1)
n (ml+1xl)

mlHb
n(mlxl)−ml+1D

(3)
n (ml+1xl)

, (2.53)

where H(a)
n (z) and H(b)

n (z) are given by

H(a)
n (mlxl) =

Rn(mlxl)D
(1)
n (mlxl)−A

(l)
n D

(3)
n (mlxl)

Rn(mlxl)−A
(l)
n

, (2.54)

H(b)
n (mlxl) =

Rn(mlxl)D
(1)
n (mlxl)−B

(l)
n D

(3)
n (mlxl)

Rn(mlxl)−B
(l)
n

. (2.55)

Here, D(1)
n (z) = ψ′

n(z)/ψn(z) andD(3)
n (z) = ζ ′n(z)/ζn(z) are the logarithmic derivative of the Ricatti-

Bessel function of the first kind ψn(z) and the Hankel function of the first kind ζn(z), respectively,
and Rn(z) = ψn(z)/ζn(z). For the outer region, mL+1 = 1, then the scattering coefficients are given
by

an = A(L+1)
n = Rn(xL)

Ha
n(mLxL)−mLD

(1)
n (xL)

Ha
n(mLxL)−mLD

(3)
n (xL)

, (2.56)
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bn = B(L+1)
n = Rn(xL)

mLH
b
n(mLxL)−D

(1)
n (xL)

mLHb
n(mLxL)−D

(3)
n (xL)

. (2.57)

For this case, it’s convenient to develop the terms Rn(xL), D
(1)
n (xL) and D

(3)
n (xL) to obtain the

following equations:

an = A(L+1)
n =

Ha
n(mLxL)

ψn(xL)
mL

− ψ′
n(xL)

Ha
n(mLxL)

ζn(xL)
mL

− ζ ′n(xL)
, (2.58)

bn = B(L+1)
n =

mLH
b
n(mLxL)ψn(xL)− ψ′

n(xL)

mLHb
n(mLxL)ζn(xL)− ζ ′n(xL)

. (2.59)

Using the recurrence relationship for the Riccati-Bessel functions, given in Eq. (2.23), we can rewrite
the Eq. (2.56) and (2.57) as

an = A(L+1)
n =

[Ha
n(mLxL)/mL + n/xL]ψn(xL)− ψn−1(xL)

[Ha
n(mLxL)/mL + n/xL]ζn(xL)− ζn−1(xL)

, (2.60)

bn = B(L+1)
n =

[mLH
a
n(mLxL) + n/xL]ψn(xL)− ψn−1(xL)

[mLHa
n(mLxL) + n/xL]ζn(xL)− ζn−1(xL)

. (2.61)

After computing the scattering coefficients an and bn in Eqs. (2.60) and (2.61), the multilayered
sphere’s radiative properties can be evaluated using the same expressions of S1(θ), S2(θ) and F (θ)

deduced from the Mie solution for a homogenous sphere.

2.2.1 Computational aspects of the Mie solution for a multilayer

sphere

Yang’s algorithm follows almost all steps for numerical calculation established in the Mie solution
for a homogeneous sphere (see Subsec. 2.1.2). Also, Yang’s algorithm uses the empirical Wiscombe’s
cutoff criterion for the series computation of scattering amplitude functions S1(θ) and S2(θ), given
in Eq. (2.11). For a multilayer sphere, the series computation is cut at nstop, defined in terms of the
sphere’s size parameter, xL, as:

nstop =


⌈xL + 4x

1/3
L + 1⌉, 0.02 ≤ xL ≤ 8;

⌈xL + 4.05x
1/3
L + 2⌉, 8 < xL ≤ 4200;

⌈xL + 4x
1/3
L + 2⌉, 4200 < xL ≤ 20000.

(2.62)

It’s important to note that the cutoff criterion is valid over a particle size parameter range between
0.02 and 20000. Considering a wavelength of 632 nm (red light) and particles suspended in water,
the abovementioned range corresponds to a particle size range of approximately 1 nanometer to 1
meter, which covers the mesoscopic scale (from a few nanometers to a few microns).
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The round-off numerical errors associated with the Riccati-Bessel functions are avoided, as in
the BHMIE algorithm, by introducing their logarithmic derivatives in Eqs. (2.52), (2.53), (2.60) and
(2.61). The logarithmic derivative D(1)

n is calculated following a downward recurrence. Therefore,
a enough large nmax must be choose to start the downward recurrence at D(1)

nmax(z) ≈ 0 + i0. Yang
uses a similar criterion used in the BHMIE algorithm to choose nmax, given by

nmax = max(nstop, ⌈|mlxl|⌉, ⌈|mlxl−1|⌉) + 15, l = 1, · · · , L. (2.63)

The logarithmic derivative D(3)
n (z), associated with the first kind of Hankel function, is calculated

by Yang using an upward recurrence that begins with D
(3)
0 = i. Both logarithmic derivative D(1)

n

and D(3)
n satisfy same recurrence expression given by

D(i)
n (z) = [n/z −D

(i)
n−1(z)]

−1 − n/z, i = 1, 3. (2.64)

The ratio Rn(z) = ψn(z)/ζn(z), used in Eqs. (2.52) (2.53), (2.60) and (2.61), can be evaluated
using the general recursive relation in Eq. (2.64), as follows,

Rn(z) =
ψn(z)

ζn(z)
=
ψn−1(z)

ζn−1(z)

[D
(3)
n (z) + n/z]

[D
(1)
n (z) + n/z]

. (2.65)

This recurrence can be upward evaluated beginning at

ψ0(z)/ζ0(z) =
1− exp (−2Re{z}i) exp (2Im{z})

2
, (2.66)

with z = mlxl, where ml is in general a complex number. However, R0(z) = ψ0(z)/ζ0(z) increases
exponentially with Im{z}, which may be the case for strongly absorbing spheres. The latter may
eventually cause a numerical overflow in the recurrence’s higher orders. Yang solved this problem by
introducing the ratio Q(l)

n = Rn(mlxl−1)/Rn(mlxl) in Eqs. (2.54) and (2.55), which can be upward
evaluated following the next relation:

Q(l)
n = Q

(l)
n−1

[D
(3)
n (z1) + n/z1]/[D

(1)
n (z1) + n/z1]

[D
(3)
n (z1) + n/z1]/[D

(3)
n (z1) + n/z1]

, (2.67)

with the starting ratio given by

Q
(l)
0 =

exp (−i2Re{z1})− exp (−2Im{z1})
exp (−i2Re{z2})− exp (−2Im{z2})

exp [−2(Im{z2} − Im{z1})], (2.68)

where z1 = mlxl−1 and z2 = mlxl. Therefore, the ratio Q(l)
0 is always bounded because Im{z2} =

xlIm{ml} > Im{z1} = xl−1Im{ml}, thus avoiding a numerical overflow in the computation of Ha
n
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and Hb
n.

To introduce the ratio Q(l)
n in Eqs. (2.54) and (2.55), observe that in Eqs. (2.54) and (2.55),

using Eqs. (2.52) and (2.53) we can find the terms A(l)
n and B(l)

n , and are given by

A(l)
n = Rn(mlxl−1)

mlH
a
n(ml−1xl−1)−mlD

(1)
n (mlxl−1)

mlHa
n(ml−1xl−1)−ml−1D

(3)
n (mlxl−1)

, (2.69)

B(l)
n = Rn(mlxl−1)

ml−1H
b
n(ml−1xl−1)−mlD

(1)
n (mlxl−1)

ml−1Hb
n(ml−1xl−1)−mlD

(3)
n (mlxl−1)

. (2.70)

Replacing Eqs. (2.69) and (2.70) in Eqs. (2.54) and (2.55), respectively, we can write the following
equations:

Ha
n(mlxl) =


Rn(mlxl)D

(1)
n (mlxl)

−
[
Rn(mlxl−1)

mlHa
n(ml−1xl−1)−mlD

(1)
n (mlxl−1)

mlHa
n(ml−1xl−1)−ml−1D

(3)
n (mlxl−1)

]
D

(3)
n (mlxl)


Rn(mlxl)−

[
Rn(mlxl−1)

mlHa
n(ml−1xl−1)−mlD

(1)
n (mlxl−1)

mlHa
n(ml−1xl−1)−ml−1D

(3)
n (mlxl−1)

] , (2.71)

Hb
n(mlxl) =


Rn(mlxl)D

(1)
n (mlxl)

−
[
Rn(mlxl−1)

ml−1Hb
n(ml−1xl−1)−mlD

(1)
n (mlxl−1)

ml−1Hb
n(ml−1xl−1)−mlD

(3)
n (mlxl−1)

]
D

(3)
n (mlxl)


Rn(mlxl)−

[
Rn(mlxl−1)

ml−1Hb
n(ml−1xl−1)−mlD

(1)
n (mlxl−1)

ml−1Hb
n(ml−1xl−1)−mlD

(3)
n (mlxl−1)

] . (2.72)

Thus, by factorization of the terms Rn(mlxl) and [mlH
a
n(ml−1xl−1 − ml−1D

(3)
n (mlxl−1)] in Eq.

(2.71), and Rn(mlxl) and [ml−1H
b
n(ml−1xl−1) − mlD

(3)
n (mlxl−1)] in Eq. (2.72), we can find a

numerically stable form for Ha
n(z) and Hb

n(z), given by

Ha
n(mlxl) =

G2D
(1)
n (mlxl)−Q

(l)
n G1D

(3)
n (mlxl)

G2 −Q
(l)
n G1

, (2.73)

Hb
n(mlxl) =

G̃2D
(1)
n (mlxl)−Q

(l)
n G̃1D

(3)
n (mlxl)

G̃2 −Q
(l)
n G̃1

. (2.74)

Here, G1, G2, G̃1 and G̃2 are defined by

G1 = mlH
a
n(ml−1xl−1)−ml−1D

(1)
n (mlxl−1),

G2 = mlH
a
n(ml−1xl−1)−ml−1D

(3)
n (mlxl−1),

G̃1 = ml−1H
b
n(ml−1xl−1)−mlD

(1)
n (mlxl−1),

G̃2 = ml−1H
b
n(ml−1xl−1)−mlD

(1)
n (mlxl−1).

(2.75)
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In summary, for a given wavelength, λ, solvent’s refractive index, n0, a sphere stratified in L-
layers, where each layer has radius rl and refractive index nl, with nl a complex number, and rl and
nl sorted in a table progressively from the sphere’s core, labeled with l = 1, to the sphere’s outer
layer, labeled with l = L, and the scattering angles θi, the Yang’s algorithm for the Mie solution for
a multilayer sphere makes the following steps:

1. For all layers l calculates xl = 2πn0rl/λ = krl and ml = nl/n0. Then, calculates nstop using
Eq. (2.62).

2. Calculates nmax using Eq. (2.63).

3. Generates a table of scattering angles θi and starts the upward recurrences for angular func-
tions with π0(θi) = 0 and π1(θi) = 1.

4. Compute series for S1(θi) and S2(θi) in Eq. (2.11), from n = 1 and to n = nstop. For each n
in the series, the next iterative loop is followed:

(a) Ha
n(mLxL) and Hb

n(mLxL) are calculated by upward recurrence using the recurrence
relations given in Eqs. (2.73) and (2.74) following the next steps:

i. The recurrence starts at the sphere’s core whereHa
n(m1x1) = Ha

n(m1x1) = D
(1)
n (m1x1),

andD(1)
n (m1x1) is computed following a downward recurrence, from nmax to n, using

Eq. (2.64) and starting with D(1)
nmax(m1x1) = 0 + i0.

ii. For the layers l = 2, · · · , L, the next iterative loop is followed:

A. Computes D(1)
n (ml, xl−1) following a downward recurrence, from nmax to n,

using Eq. (2.64) and starting with D(1)
nmax(mlxl−1) = 0 + i0.

B. Computes D(3)
n (mlxl−1) following an upward recurrence, from n = 1 to n, using

Eq. (2.64) and starting with D(1)
0 (mlxl−1) = i.

C. Evaluates G1, G2, G̃1 and G̃2 using Eq. (2.75).

D. Computes D(1)
n (ml, xl) following a downward recurrence, from nmax to n, using

Eq. (2.64) and starting with D(1)
nmax(mlxl) = 0 + i0.

E. Computes D(3)
n (mlxl) following an upward recurrence, from n = 1 to n, using

Eq. (2.64) and starting with D(1)
0 (mlxl) = i.

F. Computes the ratio Qln = Rn(mlxl−1)/Rn(mlxl) following an upward recur-
rence, from n = 1 to n, using Eq. (2.67) and starting by the evaluation of Eq.
(2.68). Note that the values of D(1)

n (ml, xl−1), D
(1)
n (ml, xl), D

(3)
n (ml, xl−1) and

D
(3)
n (ml, xl), computed in the previous steps, are used for the evaluation of Eq.

(2.67).
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G. Evaluates Ha
n(mlxl) and Hb

n(mlxl) using Eqs. (2.73) and (2.74), where values
of G1, G2, G̃1, G̃2, Q

(l)
n , D(1)

n (ml, xl) and D(3)
n (mlxl), computed in the previous

steps in the present loop, are used.

H. Save the computed value ofHa
n(mlxl) andHb

n(mlxl) asHa
n(ml−1xl−1) = Ha

n(mlxl)

and Hb
n(ml−1xl−1) = Hb

n(mlxl), where will be used for the evaluation of G1,
G2, G̃1 and G̃2 of the next layer.

I. Moves to next layer l = l+1 and restart the current iterative loop. If l+1 > L,
the loop is stopped.

(b) After evaluation ofHa
n(mLxL) andHb

n(mLxL), we can compute the scattering coefficients
an = a

(L+1)
n and bn = b

(L+1)
n using the Eqs. (2.60) and (2.61), where the Riccati-Bessel

functions ψn(x) and ζn(x) are evaluated using Eq. (2.26).

(c) Angular functions πn(θi) and τn(θi) are computed for all scattering angles θi following
the recurrence relations of Eq. (2.21).

(d) For all scattering angles θi, the n summand of S1(θi) and S2(θi) in Eq (2.11) is evaluated
and added to the previous n− 1 summands.

(e) Moves to the evaluation of the next n+1 summand of S1(θi) and S2(θi). If n+1 > nstop,
the loop is stopped.

5. Calculates |S1(θi)|2 and |S2(θi)|2 and the form factor function F (θi) as defined in Eq. (2.16).
Finally, the algorithm saves results files in a .dat format and stops the program.

Our version of Yang’s algorithm of the Mie solution for a multilayer sphere was coded in Fortran
and compiled with the GNU Fortran 2008 compiler. All code and executables are available in our
open-source GitHub repository (https://github.com/Complex-Fluids-IFUNAM/Mie-Scattering).

2.2.2 Luneburg’s lens: a case of light scattered by a multilayer

sphere

The Luneburg lens is a particular spherical lens with two focal points, one on the sphere’s surface
and the other at infinity. [36, 39] In Fig. 2.4a, we show two focus points on the sphere’s surface,
where two collections of light rays hit the sphere. All rays that hit a specific focus are deflected
in the sphere until they are parallel. In the same way, if two plane wavefronts come from different
directions, sketched as parallel rays, these plane wavefronts will be focused on a point on the sphere’s
surface. Rudolf Luneberg found that a spherical lens with the characteristics described above must
have a radially nonhomogeneous refractive index (RI) profile with spherical symmetry, n(r), which
depends on the radius, r, as

n(r) =
√

2− (r/a)2, (2.76)

https://github.com/Complex-Fluids-IFUNAM/Mie-Scattering
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with a the radius of the sphere. [36, 39] Observe that the RI profile goes to
√
2 when r → 0, and
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Figure 2.4: (a) Luneburg’s lens sketch. The lines are light rays deflected by the optical
properties of the lens. The radially blue shaded color depicts the lens’ refractive index
profile. (b) RI profile for a Luneburg lens with a size parameter of xL = 60 stratified in 500
layers. Inset: detail of the last 10 layers of the lens, where the red line is the discrete RI
profile, and the black line is the continuous Luneburg’s lens RI profile in Eq. (2.76)

is one when r = a. The RI profile is presented as a blue color gradient in Fig. 2.4a. This kind of
lens has been used in radar technology, and its possible applications have recently been explored in
photonics, where the main challenge is synthesizing microscopic-sized Luneburg lenses. [36, 39, 40]
Also, the Luneburg lens scattering properties have been studied using the Mie solution formalism,
whose analytic solution is written in terms of generalized confluent hypergeometric function, and the
solution for a multilayer sphere can describe, exactly, the scattering properties of such lens. [36] This
allows the algorithms for the Mie solution for a multilayer sphere to be tested, especially the effect
of the number of layers and their spacing on the discrete approximation of radially nonhomogeneous
continuous profiles. [36–38]

Yang tested his algorithm using several discrete RI profiles, proving it does not propagate numer-
ical errors. Yang’s algorithm can, in particular, describe the scattering properties of a Luneburg’s
lens stratified in thin layers without losing its numerical stability. We replicate the form factor of the
Luneburg lens to test our algorithm and verify that we can reproduce the same results as Yang. [38]

Fig 2.4b shows the RI profile for a Luneburg lens, used by Yang, with size parameter xL = 60

and stratified into L = 500 equidistant layers. Observe that the discrete character cannot be
distinguished because the layers are thin (∆x ≈ 0.12) compared to the size parameter of the sphere.
The RI profile in Eq. (2.76) is discretized as m(x̄l) =

√
2− (x̄l/xL), where x̄l = (xl−1 + xl)/2, with
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Figure 2.5: Form factor as a function of scattering angle (degrees) for a Luneburg lens with size parameter
xL = 60 and stratified in 500 layers. The circles were digitalized from Yang’s results. [38]

L = 1, · · · , 500, and x0 = 0, i. e., x̄l is the mean radius between the two interfaces that define a
layer. In the inset of Fig 2.4b, the RI profile of the last ten layers (red solid line) is compared with
the continuous RI profile in Eq. (2.76). Observe that the RI of the last layer is not equal to one.

In Fig. 2.5, we show the form factor in arbitrary units (a. u.) as a function of the scattering angle
θ for the Luneburg lens described above. Observe that the lens scatter light mainly in the forward
direction. Also, we can see that the scattered intensity has a rippled structure along all scattering
angles, with scattering intensity minima up to six orders of magnitude smaller than predicted in the
forward direction (θ → 0). Also, we show some digitalized points (white circles) from Yang’s results,
showing that our code version of Yang’s algorithm replicates his results successfully. [38]

Suppose the Luneburg lens, after described, is surrounded by air (n0 ≈ 1) and is illuminated by
a light beam with a wavelength of λ = 632.8 nm (red light). Therefore, for this case, the lens has a
radius of a ≈ 6043 nm, and the layers have a thickness of ∆r ≈ 12 nm. So, we can conclude that
Yang’s algorithm can describe the scattering properties of multilayer spheres whose layers have a few
nanometers of thickness. Nevertheless, we must be careful to set the thickness of the layers not only
due to numerical issues but also due to the consistency of the physical framework; choosing layers
with a thickness of less than a few nanometers could be outside the scope of classical electromagnetic
theory. This discussion is not the subject of this thesis dissertation, so care will only be taken not
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to force the theory beyond its known limits. [28]

2.3 Particles with size polydispersity

In light scattering experiments on colloidal suspensions, the laser’s beam and the solid angle of the
photodetector define a scattering volume with N scatterers. The multiple scattering is avoided if the
suspension’s colloid concentration is sufficiently diluted. For this case, the total scattering intensity
measured by the photodetector is, in principle, proportional to the scattering intensity of a single
particle, i. e., IT ∝ NIs(θ), as was discussed for Eqs. (2.18) and (2.19). However, this is only true
for suspensions with identical colloidal particles, also known as monodisperse suspensions. Because,
in practice, the particles embedded in a fluid are rarely monodisperse, the effect of scatterers’
polydispersity must be considered. The particles in the suspension can, in general, be polydisperse
in composition, shape, and size. In this dissertation, we will only consider that the particles are
polydisperse in size and identical in constitution and shape.

The effect of size polydispersity on the total scattering intensity can be evaluated by considering
that the total scattering intensity is the scattering intensity average over radii with a probability
density distribution (PDF) of size, ρ(R). Therefore, the scattering intensity by a single particle
now depends on the radius, R, and the scattering angle where it is measured, θ. Then, the total
scattering intensity by homogeneous particles can be calculated as

IT (θ) ∝ Īs(θ) =

∫
R
Is(R, θ)ρ(R)dR, (2.77)

and for core-shell particles can be calculated as

IT (θ) ∝
∫
Rs

∫
Rc

Is(Rc, Rs, θ)ρ(Rc)ρ(Rs)dRc dRs, (2.78)

where Rc and Rs are the core and shell’s radius whose size has been considered independent. The
PDF used for the average evaluation is chosen considering those where R > 0. For the case of
spherical colloidal particles, it’s common to assume that particles have a size distribution that
follows a lognormal distribution. [41–45] This assumption has been tested by direct measurement of
spherical particles’ sizes using techniques such as Scanning Electron Microscopy (SEM) and Atomic
Force Microscopy (AFM). [43] Some growth models in particle synthesis consider that the volume
change is a random process with an exponential drift, which causes a lognormal behavior in the
particles’ size. [42] Therefore, we assume that the particles studied in this thesis dissertation follow
a lognormal size distribution.

The lognormal distribution is defined as a continuous PDF of a random variable whose logarithm,
in this case, the radius’ logarithm, lnR, is normally distributed instead of R. The following equation
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gives the lognormal PDF: [41,46,47]

ρ(R) =
1

R
√
2π lnσstg

exp

−1

2

[
ln (R/R̃)

σ̃g

]2, R ∈ (0,∞) (2.79)

where σ̃g = lnσg, and σg is the geometric standard deviation. Note that σ̃g > 0, therefore σg > 1.
If σg = 1, then the particles are monodisperse. In this thesis dissertation, σg is used to measure
the size of polydispersity. On the other hand, in Eq. (2.79), R̃ is the median population value.
The lognormal distribution is not centered at the average value, R̄, which also differs from the most
probable value or mode, R0. It can be shown that the mean and modal value is related to the
average value as R̄ = R̃ exp (σ̃2g/2) and R0 = R̃ exp−(σ̃2g). For our purposes, it’s convenient to write
the lognormal distribution as a function of the modal value. After some algebraic operations, we
can show that Eq. (2.79) can be written in terms of R0 as

ρZOLD(R) =
exp (−σ̃2g/2)√

2πRσ̃g
exp

{
−1

2

[
ln(R/R0)

σ̃g

]2}
, R ∈ (0,∞) (2.80)

where is also known as the Zeroth-Order Logarithmic Distribution (ZOLD). [44, 46, 47] Fig. 2.6 is
shown the ZOLD PDF for the size polydispersity of a particle with modal radius R0 = 500 nm and
σg = 1.10. Note that a ZOLD PDF with the mentioned characteristics is similar to a Normal PDF.
Nevertheless, the average radius is R̄ = Ravg = 506.9 nm and the median radius is R̃ = Rmedian =

504.6 nm. Therefore, a slight positive kurtosis is observed.

Although Eq. (2.80) is defined for R ∈ (0,∞), the particle size is finite. Then, the integrals
in Eqs. (2.77) and (2.78) must be definite integrals, where the integration interval, [Rmin, Rmax],
should be chosen to cover most of the radii population. In our case, the integration interval is set
by Rmin = R0σ

−
√
18

g and Rmax = R0σ
√
18

g , that covers ∼ 99.7% of the population, similar to the
3σ rule for normal distribution. [45] For the case presented in Fig. 2.6, the Rmin = 333.7 nm and
Rmax = 749.2 are shown in red dashed-lines. Finally, the total scattering intensity for homogeneous
spherical particles can be calculated using the following equation:

IT (θ) ∝
∫ R0σ

√
18

g

R0σ
−
√
18

g

Is(R, θ)ρZOLD(R)dR (2.81)

and for core-shell spherical particles using the following equation:

IT (θ) ∝
∫ Rsmax

Rsmin

∫ Rcmax

Rcmin

Is(Rc, Rs, θ)ρZOLD(Rc)ρZOLD(Rs)dRc dRs. (2.82)
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Figure 2.6: Zeroth-order logarithmic distribution function for the size polydispersity of a
spherical particle with modal radius R0 = 500 nm and geometrical standard deviation σg =
1.10. Here, the integration interval for the average integral is shown with red dashed lines.
The nodes, αi, are shown in gray lines for the numerical evaluation of the average integral.
The latter is described in Subsection 2.3.1

2.3.1 Numerical evaluation of the average’s integrals for scattering

intensity by particles with size polydispersity

The evaluation of integrals in Eqs. (2.81) and (2.82) involves the computation of scattering
intensity for several radii along the integration interval [Rmin, Rmax]. Also, because the scattering
intensity could change their rippled structure with the size’s particle, the numerical evaluation of
Eqs. (2.81) and (2.82) by trapezoidal quadratures would require that the integration interval must
be partitioned into many subintervals to obtain accurate results, increasing the computation time.
Therefore, it becomes necessary to use a quadrature that allows us to get an estimation of the effect
of polydispersity on scattering intensity with the least amount of subintervals possible.

The Gaussian quadratures can approximate integrals using fewer nodes N than trapezoidal
quadratures by carefully choosing non-equally spaced nodes αi and weight coefficients wi. The
integral of a function g(x) = W (x)f(x) over the interval [a, b], can be approximated to a Gaussian
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quadrature as: [48,49] ∫ b

a
W (α)f(α)dα ≈

N∑
i=1

wif(αi), (2.83)

where W (α) is a given weight function. The theory of Gaussian quadratures with arbitrarily W (α)

uses the formalism of orthonormal polynomials to find the nodes αi and weight coefficients wi. A
more detailed introduction to these quadratures can be found in ref. [49].

In the literature, we can find algorithms for calculating the nodes and their weight coefficients
for well-studied weight functions. [48] Particularly, the Gauss-Legendre quadrature is defined with
W (x) = 1 in Eq. (2.83), where the nodes αi are the roots of Legendre’s polynomial function, PN (x),
and the following equation defines the weight coefficients: [48]

w(αi) =
2

(1− α2
i )[P

′
N (αi)]

2
. (2.84)

Extending quadrature for multiple integrals is easy if the integration interval is rectangular. The
product integration rule allows approximate two-dimensional (or more) integrals over a rectangular
region by the following Gauss-Legendre quadrature: [49]

∫ 1

−1

∫ 1

−1
f(α, y) dα dy ≈

Nx∑
i=1

wi

 Ny∑
j=1

wjf(αi, yj)

 . (2.85)

Gauss-Legendre quadrature is suitable for the evaluation of the average integrals in Eqs. (2.81) and
(2.82), where we can set W (α) = 1. Therefore, we can approximate the average integral in Eqs.
(2.81) by following Gauss-Legendre quadrature:

∫ Rmax

Rmin

Is(R, θ)ρZOLD(R)dR =

∫ 1

−1
f(α)dα ≈

N∑
i=1

w(αi)f(α). (2.86)

Here, a linear parametrization for R is proposed as R(α) = Rmα + Rb, where the sloop is Rm =

(Rmax +Rmin)/2 and the R-intercept is Rb = (Rmax +Rmin)/2. For the case presented in Fig. 2.6,
we can observe that if eight nodes are used for the numerical evaluation of the average integral, the
nodes are not centered at R0 (gray lines). Because ZOLD has a positive kurtosis, there will be a
higher node density for size above R0.

In the same way, for the evaluation of the average integral in Eq. (2.82), the following Gauss-
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Legendre quadrature is proposed:

∫ Rsmax

Rsmin

∫ Rcmax

Rcmin

Is(Rc, Rs, θ)ρZOLD(Rc)ρZOLD(Rs) dRc dRs =

∫ 1

−1

∫ 1

−1
f(α, y) dα dy ≈

Nx∑
i=1

wi

 Ny∑
j=1

vjf(αi, yj)

 , (2.87)

where a linear parametrization for Rc and Rs is proposed similarly to the proposal for Eq. (2.86).
In summary, for a given wavelength, λ, solvent’s refractive index, n0, the dielectric properties

of a homogeneous sphere with a modal size and a geometric standard deviation, R0 and σg, or
a stratified sphere whose characteristic sizes are the core and shell’s radius, with modal radius
values and geometric standard deviations, Rc0 and Rs0 , and σgc and σgs , respectively, and the
nodes’ number for the Gauss-Legendre quadrature, N , the algorithm for calculating of the average
scattering intensity due particles size’s polydispersity makes the following steps:

1. Calculates the integration limits for the average in Eqs. (2.86) and (2.87) as Rmax
min

= Rpσ
±
√
18

gp ,
where Rp and σgp are the modals radius and the geometric standard deviation for a homoge-
neous sphere, R0 and σg, or for a stratified sphere whose characteristic sizes are the modal
core and shell’s radius, Rc and Rs, with geometric standard deviations σgc and σgs .

2. In the loop from i = 1 to i = Nx, with Nx the nodes’ number, calculates the i-th node and
weight coefficient, αi and wi, following the next steps:

(a) Calculates the i-th root of the Legendre polynomial function of degree N , αi, using the
Newton-Raphson’s method. [48]

(b) Calculates the weight coefficient wi using the Eq. (2.84) with the previously calculated
roots, αi.

(c) For average integral in Eq. (2.87), the current loop is repeated for the shell’s radius
with nodes and weight functions yj and vj , and then the loop stops. For homogeneous
spheres, the loops stop.

3. Initializes quadrature with sums equal to zero. Note that if the scattering intensity is calcu-
lated for non-polarized light, I(R, θ) ∝ F (θ), or if it’s calculated for vertical-vertical polarized
light, I(R, θ) ∝ |S1(θ)|2. Therefore, the quadrature sums the functions F (Rsi , θ)ρ(Rsi) or
|S1(Rsi , θ)|2ρZOLD(Rsi), depending on the case.

4. If the average integral in Eq. (2.87) is calculating, follows the next steps:

(a) In a loop from i = 1 to i = Nx, with Nx the nodes’ number, the following steps are
performed:
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i. For the αi node, evaluates Rci in the integration interval [Rcmin , Rcmax ] according to
the core’s radius parametrization Rci = Rcmαi +Rcb .

ii. In a loop from j = 1 to j = Ny, where Ny are the nodes’ number for the shell’s
radius integration interval, following the next steps:

A. For the yj node, evaluates Rsj in the integration interval [Rsmin , Rsmax ] according
to the shell’s radius parametrization Rsj = Rsmxj +Rsb .

B. Using Yang’s algorithm for the Mie solution’s multilayer sphere, calculates
F (Rci , Rsj , θ) or |S1(Rci , Rsj , θ)|2.

C. Evaluates ZOLD PDF function for core and shell, ρ(Rci , Rc0 , σgc) and ρ(Rsj , Rs0 , σgs)
using Eq. (2.80).

D. Calculate S(i,j) =
∑Ny

j=1 vjF(Rci , Rsj , θ)ρ(Rci , Rc0 , σgc)ρ(Rsj , Rs0 , σgs), where vj
is the j-th weight coefficient. If j = 1, then the sum is starting.

iii. Evaluates the sum
∑Nx

i=1wi[S(i,j)], where wi is the i-th weight coefficient and the
term S(i,j) was calculated in the previous loop.

Else if the average integral for a homogeneous sphere in Eq. (2.86) is calculating, in a loop
from i = 1 to i = Nx, with Nx the nodes’ number, the following steps are performed:

(a) For the αi node, evaluates Ri in the integration interval [Rmin, Rmax] according to the
radius parametrization Ri = Rmαi +Rb.

(b) Using the BHMIE algorithm for the Mie solution’s homogeneous sphere, calculates
F (Ri, θ) or |S1(Ri), θ)|2.

(c) Evaluates ZOLD PDF function for the sphere’s radius, ρ(Ri, R0, σg) using Eq. (2.80).

(d) Calculates
∑Nx

i=1wjF (Ri, θ)ρ(Ri, R0, σg), where wi is the i-th weight coefficient. If i = 1,
then the sum is starting.

5. Return results in a table with columns defined as [θi, Fpoly(θi), |S1poly(θi)|2] and saves the
result file in a .dat format and stops the program

Implementing the algorithm to calculate the average integral due to size polydispersity for ho-
mogeneous spheres is straightforward. However, care must be taken in the case of core-shell spheres,
where the polydispersity values of the core and shell, given by σgc and σgs respectively, may cause
overlap at the extreme values of the core and shell sizes, which should be avoided. For spheres
with three or more layers, the algorithm implementation becomes more complex. Although Gauss-
Legendre quadrature can be generalized to account for polydispersity in the size of each layer, the
computation time increases considerably with the number of polydisperse layers. In our case, as will
be shown later, a multi-thread computing module was used to parallelize the most time-consuming
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part of the Gauss-Legendre quadrature, reducing the calculation time for polydisperse scattering
intensity curves of PNIPAM and core-shell PS-PNIPAM particles, whose refractive index profiles
are modeled with dozens of layers.

2.3.2 The effect of particle size polydispersity on light scattered

intensity

Generally, for systems with size polydispersity, we can observe that the rippled structure in the
average scattering intensity is damped compared to those in the monodisperse case. If the particle is
small enough this effect is not observed. Let us consider a system of spherical polystyrene particles in
water with R0 = 500 nm, illuminated by a non-polarized red light beam with (λ = 632.8 nm). Then,
the light scattered intensity is proportional to the form factor. Also, the particle’s size parameter
and relative refractive index are x ≈ 6.61 and m ≈ 1.194, respectively.

In Fig. 2.7, the form factor as a function of the scattering angle is shown for the system described
above, both for monodisperse particles (black dashed line) and for particles with size polydispersity
characterized by σg = 1.05 (red solid line), σg = 1.10 (green solid line), and σg = 1.20 (blue
solid line). We can observe a rippled structure along all scattering angles with five minima for
the monodisperse case. For particles with σg = 1.05 and σg = 1.10, the four first minima in the
monodisperse system are attenuated, as was expected. Still, the last minimum, located at θ ∼ 170°,
is more noticeable when σg increases. For particles with σg = 1.20, the two first minima in the
monodisperse system are lost. Still, the third and fourth minima in the monodisperse system are
more noticeable and shifted to low scattering angles compared to monodisperse and polydisperse
systems with σg = 1.05 and σg = 1.10. Note that an additional minimum is formed at θ ∼ 165°.

In the inset of Fig. 2.7 is shown the ZOLD for polydisperse particles with σg = 1.05 (red solid
line), σg = 1.10 (green solid line) and σg = 1.20 (blue solid line). Note that particles with σg = 1.05

and σg = 1.10 are similar to the Normal distribution function. However, the positive kurtosis is
appreciable for σg = 1.20. As was mentioned, σg is a measure of polydispersity. Therefore, at higher
polydispersity, the contribution of large particles than of small particles to the average scattered
intensity is more significant. The latter could cause, as observed in Fig. 2.7, the formation of
new minima in the average scattering intensity at large scattering angles concerning those in the
monodisperse case.

As we have seen, for spherical particles, the formation of a rippled structure in the light scattered
intensity as a function of the scattering angle depends mainly on the ratio between the size particle
and the wavelength of the scattered light (see Fig. 2.2). If the particles are small enough not to
scatter light with a rippled pattern along scattering angles, we can assume that a large polydispersity
could generate a rippled structure on the average scattering intensity as a function on scattering
angle.
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Figure 2.7: Form factor as a function of scattering angle for spherical polystyrene particles
in water with R = 500 nm. Here, λ = 632.8 nm (red light). Inset: ZOLD for polydispersed
particles. The cases shown correspond to the following: monodispersed particles in dashed-
line and polydispersed particles with σg = 1.05 (red line), σg = 1.10 (green line) and σg = 1.20
(blue line).

The rippled feature in the angle scattering intensity is also presented for multilayer spheres.
So we can expect the same damped effect on the rippled structure or the formation of a rippled
structure on the average scattering intensity.





Chapter 3

Experimental techniques

As mentioned in this dissertation’s introduction, our goal is to describe the light scattering
behavior of the colloidal particles using the Mie scattering solution for multilayer spheres. For this
reason, although other experimental techniques were used to characterize our synthesized particles,
in this chapter, we review the two Light Scattering (LS) techniques used in this dissertation: Static
Light Scattering (SLS) and Dynamic Light Scattering (DLS).

SLS and DLS are complementary and powerful techniques for characterizing particles in solution.
In general, both techniques use the same experimental setup and measure the intensity of light
scattered by the particles in suspension. However, they differ in how the experimental data are
analyzed. While SLS relies on different theoretical approaches to light scattering phenomena, such
as those discussed in Chapter 2, to describe the scattering intensity as a function of the scattering
angle and thereby extract information such as particle shape, size, or even molecular weight, DLS
analyzes fluctuations in the scattered intensity over time at a fixed scattering angle to estimate
the diffusion coefficient, mean square displacement, and other dynamic properties of the suspended
particles [50].

3.1 Static Light Scattering (SLS)

The static light scattering technique is based on the principle that when a beam of light is
transmitted through a medium with dielectric heterogeneities, these heterogeneities scatter light in
different directions and with varying intensities. In our case, these heterogeneities are spherical
colloidal particles suspended in a solvent and, in general, could be any mesoscopic particles or
even the thermal fluctuations in the liquid phase. The light scattering intensity by a homogeneous
colloidal suspension is directly related to the particle concentration in the solvent (see sec. 2.3.2).

The SLS technique uses a laser source that emits a monochromatic and coherent light beam. The
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light beam’s size and the photodetector’s area at a given position used to measure the scattering
intensity define a scattering volume that encloses N colloids of the total number of particles in
the suspension. Therefore, only the light scattered by the N particles in the scattering volume
is detected by the photodetector at a given position (see Fig. 3.1). A data acquisition system
(DAQ) filters and digitizes the signal from the photodetectors, enabling subsequent mathematical
analysis. The acquired data are typically displayed as a histogram that relates the number of digital
counts, measured in Hz (i.e., counts per second) over a given time interval, to the detected light
intensity, accounting for the efficiency of the photo detector. Subsequently, the geometric mean
of the recorded counts is calculated and reported as the mean light scattering intensity Is of the
suspension, expressed in kHz, at a given scattering angle θ.

Figure 3.1: A schematic representation of a static light scattering experiment. Only the light scattered by
the colloidal particles in the scattering volume is measured by a photodetector. Then, the signal detected is
filtered and digitized by a DAQ system. The time-average digital counts are used to determine the sample’s
scattering intensity.

Specifically, we used an SLS setup designed by LS Instruments (Switzerland) and installed at
the Metropolitan Autonomous University, Iztapalapa campus, in Mexico City, Mexico. The de-
vice, the 3D-DLS LS Instruments, employs a He-Ne laser source (λ = 632.8 nm), with the laser
beam vertically polarized, and features the ability to split the captured scattered light and process
it using two separate detector modules in a cross-correlation configuration. This cross-correlation
configuration offers significant advantages over single-detector setups, as it effectively suppresses
spurious correlations arising from detector afterpulsing and stray light, thereby enabling more ac-
curate measurements, particularly in weakly scattering samples. Although the laser source operates
at a constant output intensity, the intensity incident on the sample can be adjusted by placing neu-
tral density filters along the optical path, allowing control over the illumination conditions without
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modifying the laser’s output power. Fig. 3.2 illustrates the general setup of the LS Instruments
device used in this dissertation.

Figure 3.2: A typical SLS setup consists of the following components: (a) a laser source that provides
a well-characterized monochromatic plane beam; (b) an optical system composed of mirrors, lenses, polar-
izers, and pinholes, which shape and direct the laser beam with proper alignment toward the sample. A
simple photodetector measures the intensity of the incident light beam; (c) a thermostatted optical-glass
sample chamber filled with a refractive index-matching liquid, such as decalin, which stabilizes the sample
environment and minimizes thermal fluctuations; (d) a cuvette made of high-precision, optically transparent
material, typically Pyrex glass or quartz, in which the sample is placed; (e) a goniometer that adjusts the
angular position of the detector; (f) a light detection module consisting of lenses, optical filters, beam split-
ters, and an optical fiber that transmits the light scattered by the sample to the photodiodes; and (g) a data
acquisition system that digitizes and processes the signal measured by the photodiodes.
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3.1.1 Absolute scattering intensity

Since our goal is to measure the form factor of the colloidal particles, it is necessary to subtract the
scattering intensity contributions from the solvent and the cuvette material, which are considered
background scattering. This correction is expressed as Is(θ) = I∗(θ) − Ib(θ), where Is(θ) is the
scattering intensity due to the colloidal particles, I∗(θ) is the total scattering intensity measured
from the suspension within the cuvette, and Ib(θ) is the background scattering intensity.

As reviewed in Section 2.1.2, the differential scattering cross-section, dCsca/dΩ, given in Eq. (2.14),
is defined as the ratio of the scattered to the incident light intensity. In SLS measurements, the
scattered light is collected within the geometrical plane defined by the goniometer and at a fixed
distance R from the scattering volume Vs. Therefore,

dCsca
dΩ

=
Is(θ)R

2

I0
(3.1)

where I0 is the intensity of the incident light beam, measured in milliwatts (mW). The scattering
intensity, measured as the mean count rate, is normalized by the incident light intensity, which is
adjusted using optical filters, since the laser operates at a constant output power. Thus, Is(θ) has
units of kHz/mW.

On the other hand, the scattering intensity by the colloidal particles in Vs is directly related to
the average form factor function ⟨F (θ)⟩ and the average static structure factor, ⟨S(θ)⟩, as: [51, 52]

Is(θ) ∝ ⟨S(θ)⟩⟨F (θ)⟩. (3.2)

In the last equation, the averages in ⟨· · · ⟩ are calculated here considering only the polydispersity
of the particle size. The static structure factor S(θ) gives the contribution of the scattering due to
the interaction between particles. When the suspension is sufficiently diluted to ensure the light is
scattered only once into Vs, S(θ) ≈ 1. Therefore, Eq. (3.2) can be written as:

Is(θ) ∝ ⟨F (θ)⟩, (3.3)

as was introduced by the Eq. (2.18) in sec. 2.1.2. Thus, using Eq. (3.1) in Eq. (3.3), a relation
between Is(θ) and F (θ) can given by the following equation: [52]

Is(θ)R
2

I0
= cKM ⟨F (θ)⟩, (3.4)

where c is the colloidal particle concentration, K is the optical contrast of the sample as a function of
the concentration c, and M is the molecular weight of the colloidal particles. In practice, estimating
the distance R is difficult, and the intensity of the incident light beam can fluctuate for various
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reasons. Therefore, the Eq. (3.4) is normalized using the scattering intensity of a reference sample.
A pure toluene sample is often used because its light scattering properties are well-behaved and
widely reported in the literature. [51–53] Finally, the Eq. (3.4) can be written after the normalization
as:

Is(θ)

Itol(θ)
Rtol

(
n0
ntol

)2

= κ⟨F (θ)⟩, (3.5)

where ITol(θ) is the scattering intensity measured for a pure toluene sample, Rtol = 1.02074 ×
10−5(1/cm) is the Toluene Raleigh ratio, n0 and nTol are the solvent and toluene RI, respectively,
and κ is a proportional constant that contains all information of cKM and other experimental
parameters and has units of (1/cm). The last equation allows the establishment of an experimental
protocol to obtain an absolute scattering intensity of the particles in the suspension using the SLS
technique and is given in the next subsection.

Finally, concerning the Eq. (3.5), it’s important to note that this equation is often written in
terms of q, quoting Ref. [51] verbatim, for historical reasons. Recall that q = 2k0 sin θ/2, where
k0 = 2πn/λ and θ is the scattering angle, so the use of Eq. (3.5) in terms of q or of the scattering
angle θ is equivalent.

3.1.2 Experimental protocol

SLS experiments in very dilute suspensions allow us to approximate the measured scattering
intensity to the form factor function, as given in Eq. (3.5). After properly calibrating the SLS
setup with a toluene reference sample, we follow the steps below to measure the absolute scattering
intensity of the suspended particles based on the key features of the protocol proposed in Ref. [51]:

1. Sample preparation. In this step, it is necessary to know the particle concentration in the
suspension. In this dissertation, a diluted suspension sample with a solids concentration of
0.005% w/w in filtered deionized (DI) water is prepared in a cylindrical NMR Pyrex cuvette.

2. Measurement of the scattering intensity of the diluted suspension. The SLS experi-
ment is conducted at a controlled temperature over a scattering angle range from 30° to 125°,
in steps of 1°. Ten one-second scattering intensity measurements are taken at each scattering
angle until the entire angular range is covered. This procedure is repeated six times, resulting
in 60 one-second measurements per scattering angle. The 60 measurements at each angle are
averaged and normalized by the incident light beam intensity. The final result previous any
correction is the suspension scattering intensity, I∗(θ), with units of kHz/mW.

3. Measurement of the background scattering intensity. A cylindrical NMR Pyrex cuvette
filled with filtered DI water is prepared. Then, an SLS experiment is conducted under the
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same conditions as in the previous step. The final result is the background scattering intensity,
Ib(θ), with units of kHz/mW.

4. Estimation of the particle scattering intensity. Equation (3.5) is evaluated using the
measurements from the last two steps. The following constant values are used: nwater = 1.332,
nTol = 1.494, and RTol = 1.02074×10−5 cm−1. Additionally, ITol(θ), obtained from the device
calibration, is used (see Fig. 3.3).

The result is reported as the particle scattering intensity, Is(θ), in arbitrary units (a.u.). These
results will be used to fit the Mie scattering solution for homogeneous or multilayer spheres (see
Section 4.2).

Finally, an example of SLS experiment results is shown in Fig. 3.3. The SLS experiment is
carried out for a diluted suspension of PS standard particles in filtered DI water, where the particles
are reported by the manufacturer (Bangs Labs Inc.) as monodisperse, with a nominal radius of
RPS = 50.1 nm. In this experiment, we follow the above experimental protocol at a controlled
temperature of 20 °C.

Figure 3.3(a) shows the mean scattering intensity for the three signals required to compute the
absolute scattering intensity of the PS standard particles: the suspension scattering intensity I∗(θ),
the background scattering intensity Ib(θ), and the toluene reference scattering intensity ITol(θ).
Note that the toluene scattering signal is almost a flat line (red squares), which ensures that the
SLS device has the proper optical and mechanical alignment to operate correctly. [51,52]

In Fig. 3.3(b), the absolute scattering intensity of the PS standard particles is reported as a
function of scattering angle, computed using Eq. (3.5). Also, the Mie scattering solution for a
homogeneous sphere for monodisperse PS particles is shown. Notably, the Mie scattering solution
for particles with the nominal radius value and for that one with a best-fit radius of 51.3 nm are
very similar. The details for the numerical fit scheme will be reviewed in Chapter 5. These results
confirm that the SLS setup is properly calibrated.

3.2 Dynamic Light Scattering

The Dynamic Light Scattering (DLS) technique measures the dynamic properties of mesoscopic
particles in suspension. As in the SLS technique, the intensity of light scattered by suspension is
measured at a given scattering angle and time interval in a DLS experiment. However, the scattering
intensity measured is not time-averaged; instead, the intensity fluctuations recorded over the time
interval are analyzed by computing the time correlation of the measured data. In mesoscopic particle
suspensions, the thermal agitation keeps the suspended particles in constant motion.

Fig. 3.4 shows a schematic representation of a DLS experiment, where the photodetector mea-
sures the light scattered by the colloidal particles in Vs. The photodetector signal is filtered and
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Figure 3.3: (a) Mean scattering intensity as a function of scattering angle for toluene reference sample
ITol (red squares), background scattering intensity Ib (blue triangles), and PS standard particles suspension
I∗ (black circles). (b) Is of the PS standard particles (black circles) and the Mie scattering solution for
homogeneous particles for nominal radius R = 50.1 nm (blue dashed line) and the best-fit Mie scattering
solution to the scattering intensity (black solid line). The best-fit radius is R = 51.3 nm.

digitized in a DAQ system, where the digital counts measure the light scattering intensity and have
units of kHz. Then, the intensity autocorrelation function against a delay time is computed using
the following equation:

g2(τ) =
⟨I(t) · I(t+ τ)⟩

⟨I(t)⟩2
, (3.6)

where I(t) is the scattering intensity at a time t, and I(t − τ) is the scattering intensity measured
at a delay time t + τ . The average in the angular parenthesis ⟨· · · ⟩, are over measurement time t.
The intensity autocorrelation function measures how similar is the intensity at time t compared to
the intensity after a delay τ .

The DLS experimental setup is usually similar to that of the SLS technique. In our case, we
use the same 3D-DLS device (LS instrument, Switzerland), described in Section 3.1 (see Fig. 3.2),
in one beam cross correlation setup, also known as pseudo-cross correlation setup. In this setup the
one beam light scattering is splitter and collected by two independent detectors, A and B. Then, the
detector test the same scattering volume but through different optical pats. Now, instead compute
the autocorrelation function given in equation (3.6), the intensity pseudo-cross correlation function
is computed using the signals from the two detectors as:

g2(τ) =
⟨IA(t)IB(t+ τ)⟩
⟨IA(t)⟩⟨IB(t)⟩

. (3.7)

Regardless the setup of the light scattering device, the intensity autocorrelation or the intensity
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Figure 3.4: A dynamic light scattering experiment cartoon at a scattering angle of 90°. The colloidal
particles are constantly in movement due to thermal agitation. Therefore, the light scattering intensity
fluctuates over time. The autocorrelation function for the scattering intensity signal could provide information
on the colloidal particle dynamics.

pseudo-cross correlation can be related to the dynamics of colloidal particles. Notably, if the solvent
is Newtonian and the particles are spherical, the suspended particles could describe a Brownian
motion, for which it is possible to find a relationship between the intensity correlation functions
given in Eq. (3.6) and (3.7) with the particle size. This is the subject of the next subsection.

3.2.1 DLS for noninteracting colloidal particles

The intensity correlation functions g2(τ), given in Eqs. (3.6) and (3.7), can be related to the
correlation function of the scattered electric field through the Siegert relation, given by the following
equation: [51,54]

g2(τ) = β|g1(τ)|2 +B = β

∣∣∣∣⟨Es(t)E∗
s(t+ τ)⟩

⟨|Es(t)|⟩

∣∣∣∣2 +B, (3.8)

where g1(τ) is the correlation function of the scattered electric field, β is a normalization constant,
B is the long-time value of g2(τ), also known as the baseline, and Es(t) and E∗

s(t+τ) is the scattered
electric field at time t and its complex conjugate at a delay time t − τ , respectively. The Siegert
relation is valid only when: (i) the system is ergodic, that is, the time-average is equivalent to
ensemble average; and (ii) the system must be stationary. [52,55,56]

As in the SLS technique, the static structure factor does not contribute to the scattering intensity
measured if the suspension is sufficiently diluted. Thus, we can assess that the colloidal particles
do not interact with each other and that the light is scattered only once in Vs. In this case, for
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monodisperse particles, it can be shown that g1(τ) is related to the mean squared displacement,
⟨∆r2(τ)⟩, by the following equation: [51,52]

g1(τ) = exp

[
−q

2⟨∆r2(τ)⟩
6

]
, (3.9)

where q = 2k0 sin (θ/2) is the magnitude of the scattering wave vector, q. Since the particles in the
suspension move due to thermal agitation, their motion is Brownian if they are immersed in a solvent
such as water. Thus, ⟨∆r2(τ)⟩ = 6Dτ , where D is the diffusion coefficient. The Stokes-Einstein
equation relates the diffusion coefficient to thermal energy and the dissipative drag force due to the
motion of the particles in the solvent and is given by:

D =
kBT

6πηRh
, (3.10)

where kB is the Boltzmann’s constant, T the system temperature, η is the solvent’s viscosity andRh is
the hydrodynamic radius of the colloidal particles. Using Eq. (3.9) in Eq. (3.8), the following relation
is obtained for the scattering intensity correlation function g2(τ) for monodisperse particles: [51,52]

g2(τ) = β exp [−2Γτ ] +B, (3.11)

where Γ = q2D. Therefore, the autocorrelation of the scattering intensity measured in a DLS exper-
iment decays exponentially with a characteristic decay time of 1/Γ; that is, in a DLS experiment,
the scattering intensity fluctuations are correlated to the time it takes for a colloidal particle to move
a distance similar to q−1 ∼ λ.

Nevertheless, as reviewed in Section 2.3.2, colloidal particles are rarely monodisperse in size.
Therefore, as in Eqs. (2.81) and (2.82), we must introduce a size distribution function, G(Γ), into
Eq. (3.11). Consequently, g2(t) is related to an average exponential decay, given by: [51, 57]

g2(τ) = β

[∫ ∞

0
exp (−Γτ)G(Γ)dΓ

]2
+B. (3.12)

Notably, the integral in the last equation matches the definition of the moment-generating function
of a real-valued random variable. Then, the integral in Eq. (3.12) can be expressed with a cumulants
series expansion as: [51,57]∫ ∞

0
exp (−Γτ)G(Γ)dΓ = exp

(
−⟨Γ⟩τ + 1

2
κ2τ

2 − 1

3
κ3τ

3 + · · ·
)
, (3.13)

where ⟨Γ⟩ is the first cumulant and describes the average decay rate of the distribution, κ2 is the
second cumulant and gives the variance of the distribution, and κ3 is the third cumulant and provides
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a measure of the skewness of the distribution. In this dissertation, we use a second-order cumulant
expansion. Finally, the autocorrelation of scattering intensity measured in DLS experiments can be
used to fit the next model: [57]

g2(τ) = β exp (−2⟨Γ⟩τ)
(
1 +

µ2
2
τ2
)2

+B. (3.14)

3.2.2 Sample preparation and experiment calibration

In this dissertation, the following experimental protocol was followed to carry out a DLS study:

1. Sample preparation. As in SLS experiments, a dilute suspension with a solid concentration
of 0.005% w/w in filtered deionized (DI) water is prepared in a cylindrical NMR Pyrex cuvette.

2. Measurement of the scattering intensity of the diluted suspension. The DLS exper-
iment is conducted at a controlled temperature over a scattering angle range from 60° to 120°,
in steps of 5°. At each scattering angle, 120-second scattering intensity measurements are
taken until the entire angular range is covered. The DAQ system automatically performs the
autocorrelation of the measured scattering intensity data, so the result for each measurement
angle is its corresponding g2(τ).

3. Estimation of the size particle. We use the Frisken cumulant model, given in Eq. (3.14),
to fit the DLS data. One of the fit parameters is the baseline B. The LS Instruments software
reports g2(τ) − 1, implicitly assuming a baseline of B = 1. Therefore, we add 1 to the data
exported from the LS Instruments software before analysis. The processed data are then
imported into OriginPro 9, a software package specialized in scientific data analysis. Using
the nonlinear fitting tools in OriginPro 9, the imported data are fit to Eq. (3.14).

Subsequently, ⟨Γ⟩ is plotted against q2, and a linear model is applied. The slope of this fit
corresponds to the diffusion coefficient D. Finally, the hydrodynamic radius is estimated using
the Stokes-Einstein relation, Eq. (3.10). Since ⟨Γ⟩ = ⟨D⟩q2, it is also possible to compute the
hydrodynamic radius for each scattering angle and report the mean hydrodynamic radius.

The polydispersity index (PDI) is estimated as the ratio of the second cumulant to the first
cumulant in Eq. (3.14), i.e., the second cumulant divided by ⟨Γ⟩. The PDI provides a measure
of the heterogeneity in the sample’s hydrodynamic radius. As a general guideline, PDI <
0.05 indicates a highly monodisperse system, 0.05 ≤ PDI < 0.1 corresponds to a narrow
distribution, and PDI ≥ 0.1 denotes a polydisperse system [58].

In DLS experiments, the solvent must be appropriately filtered; otherwise, the autocorrelation of
the scattering intensity could present an intermediate plateau due to impurities like dust, which
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would prevent the data from being analyzed with the cumulant model given in Eq. (3.14). Suppose
the solvent of the colloidal suspension was correctly filtered, but there are one or more intermediate
plateaus in the autocorrelation of the scattering intensity data. In that case, it is an unequivocal
sign that there is more than one population of particle sizes or the solvent is a non-Newtonian fluid,
so the results cannot be analyzed with the model in Eq. (3.14).

As mentioned, we will use the same LS Instrument device for DLS experiments. Additionally,
a DLS experiment on standard monodisperse particles is carried out to ensure that the procedure
followed allows the reproduction of the size estimation reported by the manufacturer. For DLS
calibration, PS standard particles with 100.2 nm of nominal diameter were used (Bangs Laboratories,
Inc.), and the experiment was carried out at a controlled temperature of 291 °K (18.25 °C). Fig.
3.5(a) g2(τ) versus delay time τ for the standard sample is shown. Although all the angles mentioned
in the above protocol were measured, we only show in Fig. 3.5 the results for scattering angles θ of 60°
(black boxes), 90° (red circles) and 120° (blue triangles) to have a clear presentation of the results.
The solid lines are the best-fit result for the cumulants model given in Eq. (3.14). Fig. 3.5(b)
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Figure 3.5: (a) Intensity autocorrelation function as a function of time for a diluted suspension of PS
standard particles, measured at scattering angles of 60° (black squares), 90° (red circles), and 120° (blue
triangles). The solid lines are their second-cumulant fit for the scattering intensity autocorrelation functions,
respectively. (b) Inverse of the characteristic decay time Γ as a function of q2 (black circles) from the DLS
experiment at different scattering angles. The red line represents the linear best fit.

shows Γ as a function of q2 for all the scattering angles described in the protocol above, where
q = (4πn0/λ) sin(θ/2). The data exhibit an excellent linear fit, yielding a diffusion coefficient of
D = 3.49813 × 106 ± 20082 nm2/s. From this value, the hydrodynamic radius is estimated to be
Rh = 58.3± 0.3 nm.

The percentage deviation from the nominal radius reported by the manufacturer, Rn = 50.1 nm,
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is calculated as ∆% = (|Rh − Rn|/Rn) × 100 = 16%. Since the hydrodynamic radius is typically
larger than the geometric radius, we consider our estimate of Rh and its deviation from the nominal
value to be acceptable [59].

Additionally, we estimate a polydispersity index of PDI = 0.03± 0.01, which indicates a highly
monodisperse particle size distribution [58], consistent with the manufacturer’s specifications. In
conclusion, we consider the 3D-DLS device used in this dissertation to be calibrated appropriately.



Chapter 4

Light scattered by spherical PNIPAM
microgels

In this chapter, we apply the Mie scattering solution for a multilayer sphere to describe the static
light scattering of PNIPAM microgels, demonstrating that its implementation is not impractical as
long as the dielectric properties of the microgels are known. For this purpose, we use the experimental
data reported by Reufer et. al., [18] who, in turn, used the RGD approximation to analyze their
reported data. This allows us to compare the predictive capability of the Mie scattering solution for
a multilayer sphere with that of the reported RGD fuzzy sphere approximation.

4.1 PNIPAM refractive index profile model

The PNIPAM microgels don’t have a constant cross-link density profile, so it’s to be expected
that the refractive index (RI) profile will not be either. PNIPAM microgels in water has a core-shell
structure, and there’s expected to be a higher mass proportion of cross-linked PNIPAM concerning
water mass in the dense core region of the microgel, which decreases, according to the fuzzy sphere
model, with a Gaussian decay, increasing in the same proportion the water’s mass quantity. Some
authors suggest that in PNIPAM, the RI profile is proportional to its density cross-links profile, and
the shell RI profile could be modeled as: [23]

n(r) = (nc − n0) exp

[
−(r −Rc)

2

σ2

]
+ n0, Rc < r ≤ Rs, (4.1)

with Rc being the core radius with a constant RI, Rs is the shell radius, and nc and n0 are the core
and solvent refractive indexes, respectively. Although the RI is not necessarily proportional to the
density of the microgel, this model has given good results for determining the effective refractive

51
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index of PNIPAM suspensions in water. [23] However, the refractive index profile given in Eq. (4.1)
had not previously been used to describe the scattering intensity as a function of the scattering angle
for PNIPAM particles until the doctoral research presented in this dissertation.

As was mentioned in sec. 2.2.2, the Mie scattering solution for multilayer spheres can also
determine the scattering properties of materials with a continuous radially nonhomogeneous RI
profile if some adequate discretization of the sphere is proposed. We discretize the proposed PNIPAM
RI profile model in Eq. (4.1) with the first layer l = 1, the core, whose size parameter and relative
RI is x1 = k0Rc and m1 = nc/n0, respectively. The successive L − 1 layers are equally spaced as
∆x = (Rs −Rc)/(L− 1); each layer has a relative RI ml = n(x̄l)/n0 where x̄l = (xl−1 + xl)/2 with
xl = Rc+(l−1)∆x, for l = 2, · · · , L−1. For the last layer, where xL = k0Rs, we require that the RI of
PNIPAM and the medium almost match. By numerical convenience, we set mL = (n0+0.0001)/n0.
Therefore, with the given Rc, Rs, nc, and n0, the value of the Gaussian width σ in Eq. (4.1) can
be calculated.

We follow two criteria to choose the L number of layers to discretize Eq. (4.1). The first one
considers the accuracy between the scattering intensity curves generated by RI profiles discretized
with a large L number of layers (as many layers as the discrete RI profile and the continuous RI
profile in Eq. (4.1) are essentially indistinguishable) and that discretized with few layers. The second
one considers using a practical computing time which increase with L. For the first criterium, we
assume that L = 500 layers, as in the Luneburg lens (see sec. 2.2.2), can mimic the continuous case.
We measure how different both scattering intensity curves are by the quadratic differences between
them as: ∆2 =

∑N
i [F500(θi) − FL(θi)]

2, where F500(θi) is the form factor for the RI profile in Eq.
(4.1) discretized with 500 layers and FL(θi) is the form factor generated by few L number of layers.

In Fig. 4.1(a) is shown, for a monodisperse PNIPAM microgel with Rc = 290 nm, Rs = 437 nm,
nc = 1.45 and n0 = 1.332, ∆2as a function of L (black squares). We consider that a ∆2 ≤ 10−3 gives
enough accuracy between the quasi-continuous RI profile and the RI profile discretized with few
layers. Also, in Fig. 4.1(a) is shown ∆2 for the same PNIPAM microgel but with polydispersity in
Rc and Rs, whose polydispersity was set as σgc = 1.13 and σgs = 1.01, respectively, calculated with
an without the multi-thread computing module OpenMP (red circles and green asteriscs, respec-
tively). Remember that OpenMP is a module that reduces the computing time in the polydispersity
average integrals, so the results achieved with and without OpenMP must be equal. Note that, in
monodisperse and polydisperse cases, we can achieve a ∆2 < 10−3 with L = 30.

In Fig. 4.1(b) is shown the computing time for the same cases in Fig. 4.1(a). Observe that
for L = 30, the computing time in monodisperse and polydisperse calculated with OpenMP cases
is below one second. Therefore, we consider L = 30 met the two criteria we have established to
discretize the RI profile in Eq. (4.1). These parameters were chosen based on the results reported
in ref. [18].
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Figure 4.1: (a) Quadratic differences as a function of the number of layers L for monodisperse
and polydisperse PNIPAM microgels, with a refractive index profile modeled by Eq. (??).
(b) Computing time for form factor calculation as a function of L for the same monodisperse
and polydisperse PNIPAM microgels shown in (a).

Finally, regarding the discretization of the RI profile model proposed for PNIPAM microgels in
the inset of Fig. 4.2, we show the RI profile proposed for a PNIPAM microgel with parameters
after mentioned, discretized with three layers, 30 layers, and 500 layers. While the RI profile for
3 and 30 layers is a rough approximation, the RI profile for 500 layers approximation is almost a
smooth curve. Fig. 4.2 shows the form factors for the three cases, which are similar despite the
roughness approximation with 3 and 30 layers. Notably, the form factors for the 30- and 500-layer
approximation are essentially the same. Therefore, we consider a 30-layer discretization an excellent
approximation of the continuous case.

4.2 Fitting numerical scheme

To assess the PNIPAM refractive index (RI) profile model using the Mie scattering solution for a
multilayer sphere, we fit the calculated scattering intensities to experimental data as a function of the
scattering angle using least-squares minimization. Our numerical method requires eight parameters:
λ, n0, Rh, Rc, nc, σgc , Rs, and σgs , where σgc and σgs are the geometric standard deviations of
the core and shell radii, respectively. Among these, n0, Rh, and λ are fixed parameters defined by
the scattering experiment.

The numerical method proceeds through the following steps:

1. Read the input experimental variables: λ, n0, Rh, and other system-specific parameters,
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Figure 4.2: Form factor function for a mesoscopic particle (Diam. = 2Rs > λ) vs angle for
the three radial RI profiles given in the inset. The core RI is the same in all the cases. Inset:
radial RI profile model for a PNIPAM microgram approximated as a multilayer sphere with
three layers (dashed blue line), 30 layers (dotted black line), and 500 layers (solid red line).

namely Rc and nc, along with the number of layers L used to define the multilayer sphere.

2. Read the experimental scattering intensity data, provided as a table with three columns: angle
in degrees θi, intensity in arbitrary units I(θi), and the experimental standard error αi.

3. Perform the numerical fitting procedure. We implement an iterative grid search method using
nested loops to minimize the chi-square goodness-of-fit parameter, χ2 =

∑
i(yi−ŷi)2/α2

i , where
yi and ŷi represent the experimental and calculated values, respectively. The calculated quan-
tities (indicated with a circumflex) are derived from the fitting parameters. For each scattering
angle θi, we compute the form factor F̂ (θi) or |Ŝ1(θi)|2, depending on the polarization setup,
using the Mie scattering solution for a multilayer sphere as described in Section 2.2.1. For
each set of trial values within the search intervals of Rc, nc, Rs, σgc , and σgs , the algorithm
performs the following steps:

(a) Compute the Gaussian decay width σ in Eq. (??) and generate a discretized RI profile
table with L entries.
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(b) Calculate F̂ (θi) or |Ŝ1(θi)|2 using Yang’s algorithm for the monodisperse case (see Sec-
tion 2.2.1) or the size-polydispersity algorithm (see Section 2.3.1).

(c) Evaluate χ2 and update the minimum value χ2
min whenever a lower value is found.

(d) Continue iterating through the parameter space, scanning all values of nc for a given Rc,
then all values of Rs for each nc, and so on, until all combinations within the Rc interval
have been evaluated.

The set of parameters corresponding to the minimum χ2 defines the best-fit solution. Since
the grid search method may converge slowly, we rely on prior knowledge of the system, such as the
hydrodynamic radius or the bulk refractive index of PNIPAM, to define appropriate search intervals.
Otherwise, the computation time increases considerably.

4.3 Results and discussion

As mentioned earlier, some authors suggest that the PNIPAM RI profile could be modeled by
Eq. (4.1). Nevertheless, although the proposed RI profile was successfully compared with effective
refractive index measurements of PNIPAM microgel suspensions in water, it had not been previously
validated by fitting scattering intensity data as a function of the scattering angle for PNIPAM
microgels. To this end, we will use the experimental data reported by Reufer et. al.. [18] These
authors studied the light scattering of PNIPAM microgel suspension in water over a temperature
range of 10 °C ≤ T ≤ 40 °C, and the SLS results are shown in Fig. 4.3. Also, they used a
red light beam (λ = 680.4 nm) without specifying its polarization, so we will consider that the
experiment uses unpolarized light. They synthesized their PNIPAM microgels by free radical cross-
linking polymerization of NIPAM with MBA using potassium persulfate (KPS) as the polymerization
initiator. The hydrodynamic radius Rh reported by the authors is presented in Table 4.1.

Reufer et. al. ranged the size of particles from 468 nm at 10 °C (swollen state) to 271 nm at
40 °C (shrunk state). Note that the size of the particles is typically in the Mie scattering regime.
However, they used the RGD fuzzy sphere approximation to fit the experimental scattering intensity
to estimate the fuzzy sphere parameters. They argued that the RGD approximation is valid because
the particles have a large amount of water inside them, making the optical contrast of the particles
with the water within the RGD approximation’s validity conditions. These fits are also shown in
Fig. 4.3. We can observe in Fig. 4.3 that the RGD approximation fits the experimental data with an
acceptable agreement for temperatures below LCST, reproducing the first form factor minimum in all
cases but not for the second minimum. For temperatures above LCST, the RGD approximation fit is
far from the experimental scattering intensities. The authors admit that particles at a temperature
higher than the LCST (in a shrunk state) must have a high enough optical contrast with water
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not to meet the validity conditions of the RGD approximation. Also, the authors consider that
PNIPAM microgels in a shrunk state are like homogeneous spheres. They used the Mie scattering
solution for a homogeneous sphere to fit the experimental data for 35 and 40 °C (cyan dash-dot
line), which allowed them to estimate the RI of the particles at these temperatures at np = 1.46. In
all cases, they estimated a size polydispersity of 9.5%, but they did not mention the PDF used. All
the best-fit parameters estimated by the authors are summarized in Table 4.1.

Our results, shown in Fig. 4.3, correspond to fits of the same experimental data provided by
Reufer et al. To perform these fits, we require the proportionality constant κ in the relationship
IT (θ) ∝ F (θ) for each case, which depends on specific experimental details of the measurement
setup. Since the authors did not report the value of κ, we implemented two different fitting routines
to align our calculated form factors with the experimental data. We refer to these approaches as
Multilayer Sphere Approximations (MSAs).

In the first routine (MSA1), we estimate κ as the average of the ratios at the first and last
experimental angles: κ = 0.5

[
I(θ1)

F̂ (θ1)
+ I(θN )

F̂ (θN )

]
, where θ1 and θN are the first and last experimental

angles, and F̂ (θi) and I(θi) are the calculated form factor and the experimental intensity, respectively.

In the second routine (MSA2), we estimate κ as the average over all data points: κ = 1
N

∑N
i=1

[
I(θi)

F̂ (θi)

]
.

In both cases, the predicted scattering intensity is calculated as Î(θi) = κF̂ (θi). It is important to
note that the MSA1 routine is a relaxed version of MSA2, and we apply it in cases where the
experimental data are particularly noisy.

We minimize the chi-square goodness-of-fit parameter, χ2, to determine the best-fit model pa-
rameters for both MSA1 and MSA2, using the numerical scheme described in Section 4.2. For the
core refractive index, we set the fitting range between 1.332 (the RI of water) and 1.46 (the expected
maximum in the collapsed state). For the core and shell radii, we set an upper limit equal to the
hydrodynamic radius reported by Reufer et al. (see Table 4.1) [18].

The polydispersity parameters are constrained to avoid overlap, such that Rc < Rs. The step
sizes used in the fitting procedure are ∆Rc = ∆Rs = 1 nm for the radii, ∆nc = 0.01 for the core
refractive index, and ∆σc = ∆σs = 0.01 for the polydispersity parameters. The resulting best-fit
parameters obtained from the MSA1 and MSA2 routines are presented in Table 4.1.

Fig. 4.3 shows the results for both MSA1 and MSA2 fit from 10 to 40 °C. MSA1 and MSA2
present an excellent agreement up to 30 °C. MSA1 at 10 and 20 °C slightly shifts the first form factor
minimum to small angles, whereas MSA2 replicates the first form factor minimum very well but not
the second minimum. This may be due to a deficient weighted error evaluation of the experimental
points at high scattering angles with smaller intensity values. MSA1 and MSA2 produce better fits
than RGD approximation because RGD cannot replicate the second form factor minimum. MSA1
and MSA2 fit at 25 °C are very similar and give a better description of the experimental data than
RGD approximation. At 30 °C, MSA1, MSA2, and RGD approximation fits are practically the same.
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Figure 4.3: Scattering intensity (arbitrary units) vs scattering angle (degrees). Experimental
temperature-dependent scattering intensities as a function of scattering angles (circles from
ref. [18]). The best fit for MSA1 and MSA2 is represented by the solid red lines and blue
dashed lines, respectively, up to 40 °C. At 35 and 40 °C, HSPH fit is indicated by the cyan
dashed-dotted lines. Regarding ref [18], in solid green lines, RGD approximation fit with a
polydispersity of 9.5% is indicated.
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Reufer et. al. mentioned this is a limit case because even a homogeneous sphere fit can describe the
experimental data well but underestimate the microgel radius.

At 35 and 40 °C, the PNIPAM refractive index profile model given by Eq. (4.1), combined with
our polydispersity model, fails to accurately describe the experimental data. In this temperature
range, the microgel is in a collapsed state and behaves like a solid, homogeneous sphere. Conse-
quently, above the lower critical solution temperature (LCST), the PNIPAM microgel can no longer
be accurately described as a core-shell particle with a fuzzy shell using the complete model em-
ployed in this dissertation, that is, the refractive index profile given by Eq. (4.1) combined with
a polydispersity model in which the core and shell polydispersities are treated independently. As
a future direction, it would be valuable to explore how variations in parameters such as core and
shell polydispersity influence the form factor. Above the LCST, the Mie scattering solution for a
homogeneous sphere provides a more appropriate model for describing the scattering behavior of
the microgel. However, even this model exhibits deviations from the experimental data, as shown
in Fig. 4.3 [18,21].

Fig. 4.4(a) shows the radial refractive index profiles obtained from the MSA1 fits presented in
Table 4.1, and Fig. 4.4(b) displays a comparison between the measured and fitted particle radii using
different theoretical methods. At 10 °C, the fitted refractive index of the microgel core is nc = 1.44.
For temperatures above 10 °C, the fitted core refractive index remains nearly constant at nc = 1.46.
This latter value coincides with the maximum estimated refractive index reported by Reufer et
al. [18]. These results suggest that the core of the PNIPAM microgel retains approximately the
same amount of water in the swollen state, even as the suspension approaches the LCST. In future
work, it will be important to investigate why our refractive index results do not show a monotonic
trend.

Table 4.1: Parameters obtained using different approximation parameters for the best-fit val-
ues using MSA1 and MSA2, as well as the results by ref. [18] for experimental hydrodynamic
radius Re

h as a function of temperature T and their best-fit parameters using RGD approxi-
mation. All the radius values are in nanometers, the temperature in °C, and κ in arbitrary
units.

RGD MSA1 MSA2

T Re
h R Rc nc σc Rs σs κ Rc nc σc Rs σs κ

10 468 335 292 1.44 1.13 432 1.01 33.09 255 1.44 1.13 468 1.01 42.46
20 433 321 257 1.46 1.13 433 1.00 42.10 242 1.45 1.15 440 1.00 51.29
25 416 308 229 1.46 1.15 415 1.00 69.02 229 1.46 1.15 416 1.00 61.39
30 383 290 242 1.46 1.09 349 1.00 118.04 242 1.46 1.09 349 1.00 131.5
35 299 262 243 1.46 1.05 299 1.00 203.42 242 1.46 1.05 298 1.00 270.6
40 271 257 249 1.46 1.02 271 1.00 623.35 246 1.46 1.05 268 1.00 380.5
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Figure 4.4: (a) Radial refractive index profile of MSA1 fitted for the microgel in the swollen
state. (b) Comparison of particle hydrodynamics radius (experimental DLS data in blue
squares) as a function of the temperature with our model predictions. We included the RGD
fits from the work by Reufer et. al., [18] and the particle radius from the solid sphere model
at 35 and 40 °C.

Fig. 4.4(b) shows that the MSA1 approach slightly underestimates the particle radius at 10°C
and 30°C. At other temperatures, the MSA1 fits agree well with the hydrodynamic radius measured
by Reufer et al., even for microgels in the collapsed state. An important observation in Fig. 4.4(b)
is that, despite the RGD fit showing excellent agreement with the data at 30 °C, it results in
a significant error when evaluating the transition temperature between the swollen and collapsed
states of the microgel (around 32 °C), with a percentage deviation of 21.7% from Rh. In contrast,
the MSA1-fitted radius at 30 °C shows a smaller percentage deviation of 8.9% from Rh. At 35 °C
and 40 °C, the HSPH model underestimates the hydrodynamic particle radius, despite providing a
better description than the PNIPAM refractive index profile model combined with our polydispersity
approach. This suggests that the actual radial refractive index profile in the collapsed state is more
complex than a homogeneous profile, or that the polydispersity model requires further refinement.

To the best of our knowledge, this is the first time that the form factor of PNIPAM microgels
in the swollen state has been described in the Mie scattering regime using a radial refractive index
profile.





Chapter 5

Light scattered by PS/PNIPAM
core/shell particles

This chapter presents a comprehensive study of the light scattering properties of PS/PNI- PAM.
We begin by describing the synthesis protocol for PS/PNIPAM core/shell particles, carried out via
free radical polymerization using AIBN to obtain neutral PNIPAM shells. The resulting particles
are characterized through thermal analysis, morphological examination, and measurements of the
hydrodynamic radius as a function of temperature. We then analyze the angular-dependent light
scattering intensities using the Mie scattering solution for a multilayer sphere, comparing the results
with experimental data to evaluate the accuracy of the refractive index profile model in describing
the angular-dependent scattering behavior of the synthesized particles. Finally, we extend our
analysis to core/shell particles in which the PNIPAM shell is functionalized with acrylic acid (AAc),
PS/PNIPAM-co-AAc core/shell particles, and discuss how the refractive index profile model used in
this dissertation for PNIPAM microgels may fail to describe the scattering behavior when synthesis
conditions are modified.

5.1 Synthesis of PS/PNIPAM core/shell particles

Currently, several reported protocols for synthesizing PNIPAM microgels exist, and one of the
most used is the free radical polymerization of NIPAM monomers cross-linked with MBA, where
AzobisIsoButyroNitrile (AIBN) is used as the radical initiator. [19, 20] One of the reasons why
protocols using AIBN as a radical initiator are preferred is that this route allows the production
of neutrally charged PNIPAM microgels. In other reported works, such as the one reported by
Reufer et al. (see 4.3), [18], potassium persulfate is used as a radical initiator, causing the PNIPAM
bearing negatively charged end groups, which must be taken into account depending on the intended

61
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use. [19, 20]

Because AIBN is a hydrophobic reagent, when the polymerization by AIBN radical initiator
occurs in water, the growing radical chain becomes insoluble. Also, when a solution of NIPAM
and MBA in water is heated to above 70 °C, the NIPAM and MBA molecules in water acquire
a hydrophobic character. [19, 20, 60] Therefore, if the polymerization by AIBN radical initiator is
carried out in water, a higher concentration of PNIPAM chains is expected in the center of the
microgel. [20] In Fig. 5.1, the chemical equation for the free radical polymerization of PNIPAM
cross-linked with MBA using AIBN as radicals initiator carried out in water is shown. Note that
water doesn’t participate in the chemical reaction, and the NIPAM, MBA, and AIBN water solution
is heated to 76 °C. [18–20, 23] In the inset of Fig. 5.1 is shown a cartoon of the PNIPAM microgel
structure where the MBA cross-linking PNIPAM polymers as steps on a ladder. [19,20,61,62]

On the other hand, several chemical protocols were also reported in the literature to produce
core/shell particles where the PNIPAM could be the core or the shell, taking advantage of the
physical-chemical properties of the PNIPAM and the complementary material in the core/shell
particle. [15–17,19,63–67] One of the synthesis’ protocol proposal that presents a possible technical
advantage for this PhD dissertation is the one reported by Zhu et al. [67]

In the protocol of Zhu et al., [67], the synthesis of core/shell particles composed of a solid
PolyStyrene (PS) core coated with PNIPAM microgel is reported. To this end, the authors take
advantage of the hydrophobic character in the polymerization of PNIPAM described above to coat
the PS cores without the need for previous chemical treatment on the PS cores. This is achieved
because PS is a hydrophobic polymer. For this reason, the PNIPAM structure that coats the core
is expected to decrease in its cross-linking density as a function of the final shell radius. Also,
this represents a technical advantage for this dissertation since it’s possible to use commercially
available PS particles whose size polydispersity is low concerning the nominal size reported by the
manufacturer. However, using particles manufactured by a third party could have the disadvantage of
not knowing the procedures and reagents in their production of PS particles for reasons of industrial
secrecy, which could modify the known general properties of the PS particles. Synthesizing solid
particles with low polydispersity could be technically challenging, but the synthesis of polystyrene
particles is beyond the scope of this dissertation. Therefore, we have decided to deal with the possible
disadvantages of purchasing PS cores manufactured by a third party to synthesize PS/PNIPAM
core/shell particles following the protocol reported by Zhu et al. [67]

The protocol of Zhu et al. can be summarized in three steps. [67] In the first step, AIBN is
dissolved in ethanol (EtOH), and then the PS cores are added. AIBN is initially crystalline and
can dissolve in organic liquids such as EtOH. A three-neck flask containing degassed DeIonized (DI)
water is prepared in the second step. The solution of AIBN and PS cores in EtOH is added, along
with NIPAM and MBA, which have been dissolved in degassed DI water from the three-neck flask.
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Figure 5.1: Chemical equation for the free radical polymerization of NIPAM monomers cross-
linked with MBA, where AIBN is used as radical initiator. Inset: a sketch of PNIPAM mi-
crogel structure. The square in red dashed lines encloses a block of the PNIPAM polymer
cross-linked with MBA, indicating its corresponding chemical formula in the chemical equa-
tion.

At this stage, the dissolved AIBN molecules tend to accumulate in hydrophobic regions within the
aqueous medium, specifically around the PS cores, which are also hydrophobic. In the last step,
the reaction mixture is heated to a temperature of 76 °C in a N2 atmosphere with constant stirring.
When the temperature exceeds 40 °C, AIBN releases radicals. Above 70 °C, NIPAM and MBA
molecules exhibit hydrophobic behavior, preferentially localizing around the PS cores, where AIBN
is also concentrated. This facilitates free radical polymerization around the PS cores. Finally, after
four hours of reaction at 76 °C, the product is cooled overnight at room temperature with constant
stirring. Then, the PS/PNIPAM core/shell particles are cleaned by dialysis and stored. Fig. 5.2
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illustrates the main steps followed by Zhu et al. to synthesize PS/PNIPAM core/shell particles
described above. Additionally, the figure includes red-boxed cartoons depicting reagent molecules’
behavior at different synthesis stages.

Figure 5.2: Cartoon of the synthesis route followed to produce PS/PNIPAM core/shell par-
ticles using the protocol proposed by Zhu et al. [67]

In the Zhu et al. synthesis, 160 mg of dry PS particles with 210 nm of diameter are mixed with
20 mL of EtOH, dispersing the suspension by sonication for 30 minutes. Then, 10.17 mg of AIBN
is added to the PS particle suspension, and the AIBN is dissolved by sonication for 20 minutes.
After that, the solution is transferred to a three-neck flask containing 160 mL of degassed DI water,
followed by the addition of 702 mg and 96 mg of NIPAM and MBA, respectively.

In our case, to synthesize PS/PNIPAM core/shell particles, we used PS particles with a di-
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ameter of 99 nm (10.02% w/w water suspension, Bangs Laboratories Inc.). Also, the reagents
were used as received: N-IsoPropylAcrylaMide (NIPAM) (≥ 99%, Sigma-Aldrich, USA); N, N’-
MethyleneBis(Acrylamide) (MBA) (99%, Sigma-Aldrich, USA); and AzoBisIsoButyroNitrile [AIBN,
2,2’-Azobis(2-methylpropiNitrile)] (99%, Sigma-Aldrich, USA). Because our PS particles have a dif-
ferent size than the ones of Zhu et al., and the manufacturer supplies PS particles suspended in water
with surfactant (≤ 0.5% in product) and sodium azide (≤ 0.09% in product) that helps prevent par-
ticle aggregation and bacterial growth in the suspension, [68] adapting the Zhu et al. protocol to
our needs will be necessary.

Due to the difference between the PS cores’ size used by Zhu et al. concerning the used by
ours, it’s necessary to change the reagent quantity to use in the synthesis. To this end, we proposed
a linear relation between cores’ size and shells’ size, defined as Rs = yRc and R′

s = y′Rc, where
the primed variables correspond to the dimensions of our particles. Therefore, the volume of the
PNIPAM shell in both syntheses can be related to the PS core radius as Vs = (4/3)π(y3 − 1)R3

c

and V ′
s = (4/3)π(y′3 − 1)R′3

c , respectively. Suppose the NIPAM density in both syntheses is equal
between them. In that case, we can relate the number of molecules of NIPAM, (#NIPAM), necessary
in our synthesis with the number of molecules of NIPAM used by Zhu et al. and with the cores’ radii
ratio used in each synthesis as (#NIPAM) = (#NIPAM)′[(y′3 − 1)R′3/(y3 − 1)R3

c ]. Consequently, if
we know the cores’ radii and their proportions with the shells’ sizes, we can estimate the quantity
of reagents for our synthesis.

From work reported by Zhu et al., we can calculate the ratio of the number of molecules of NIPAM
over the number of PS particles, (#NIPAM)/(#eps), in (#NIPAM)/(#eps)=2.138 × 107, and also
the ratio of NIPAM with MBA and AIBN in (#NIPAM)/(#MBA)∼ 10 and (#NIPAM)/(#AIBN)∼
100, respectively. The proportionality constant between the shell and core’s size of the PS/PNIPAM
particle synthesized by Zhu et al. at collapsed state is y = 4/3. In our case, we established a
proportionality constant between the shell and core size of the PS/PNIPAM particle to synthesize
by us in y′ = 3/2. Thus, we expect a shell 3/2 bigger than our PS cores, that is, R′

s ≈ 75 nm
at collapsed state. The mass amount of reagents used by Zhu et al. and by us to synthesize
PS/PNIPAM core/shell particles are given in Table 5.1.

Finally, the protocol followed to synthesize our PS/PNIPAM core/shell particles, based on Zhu
et al. work, [67] consists of the following steps:

1. Cleaning of PS solution by dialysis in DI water. The DI water was changed daily for 2 days.
A membrane with MWCO of 300 kDa (pores ∼ 11 nm2) was used. In this step, the additives
from the original suspension provided by the manufacturer were removed.

2. AIBN is dissolved in 25 mL of EtOH by sonication for 30 minutes. Ice is used to prevent the
AIBN solution from overheating.
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3. The cleaned PS particle solution in water is poured into the AIBN solution in EtOH. At this
stage, AIBN molecules tend to accumulate around the PS particles.

4. A three-neck round-bottom flask is prepared with 250 mL of DI water. The central neck and
one of the side necks are sealed with a septum, while the other side neck is closed with a
glass stopper. Then, N2 is bubbled into the DI water through the side septum, and the air
is purged using a needle inserted into the septum in the central neck for 30 minutes at 35 °C
under constant stirring.

5. The NIPAM and MBA are weighted and placed in separate flasks. The flasks are sealed with
a septum, and the air is replaced with N2.

6. Using a syringe, degassed water is withdrawn from the three-neck flask and transferred into
the flasks containing NIPAM and MBA, with 50 mL added to each flask.

7. The AIBN and PS particles solution in water and EtOH is poured into the three-neck flask
containing degassed DI water, and N2 gas is bubbled into the solution for 15 minutes under
constant stirring. Then, the side neck is sealed with a septum.

8. The solutions of NIPAM and MBA are withdrawn into a syringe and poured into the three-
neck flask containing the AIBN and PS particles solution under an N2 atmosphere.

9. The final solution is heated to 76 °C under constant stirring. The needle used to purge the air
is sealed with a balloon filled with N2. The reaction is maintained at a constant temperature
for 4 hours.

Table 5.1: The mass amount of reagents used by Zhu et al. and by us to synthesize
PS/PNIPAM core/shell particles. Also, the reagents’ molecular mass M is reported.

Zhu et al. synthesis
PS cores NIPAM MBA AIBN

Rc = 105 nm M = 113.16 g/mol M = 154.17 g/mol M = 164.21 g/mol

m = 160 mg m = 702 mg m = 96 mg m = 10.72 mg
#ePS = 3.14× 1013 #NIPAM = 3.736× 1021 #MBA = 3.75× 1020 #AIBN = 3.931× 1019

In our synthesis
PS coresa NIPAM MBA AIBN

Rc = 49.5 nm M = 113.16 g/mol M = 154.17 g/mol M = 164.21 g/mol

m = 209.6 mg m = 1584.2 mg m = 215.0 mg m = 22.9 mg
#ePS = 3.93× 1014 #NIPAM = 8.402× 1021 #MBA = 8.405× 1020 #AIBN = 8.402× 1019

a Mass of PS suspension at 10.02% w/w of water.
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10. Allow the reaction to cool overnight at room temperature.

11. The final product is evaporated under reduced pressure until the volume is approximately 30
mL. At this stage, the EtOH is removed from the product.

12. The evaporated product is cleaned by dialysis with DI water. The DI water was changed daily
for 4 days. In this stage, the product is purified from AIBN and the remnants of reagents that
did not participate in the polymerization.

13. The product is characterized and stored in a glass flask with a Teflon seal. It is kept under
refrigeration to prevent the evaporation of water in the product.

5.2 PS/PNIPAM core/shell particles characterization

In this section, we discuss the characterization of the particles we synthesized. The PS/PNIPAM
core/shell particle suspension was characterized in terms of thermal degradation, morphology, and
hydrodynamic size as a function of temperature.

In thermal degradation characterization, the sample mass is measured as a function of the tem-
perature. This technique is also known as Thermo-Gravimetric Analysis (TGA). In TGA equipment,
the sample is heated under controlled atmosphere conditions, where temperature ramps are typically
applied at a rate of 10 to 20 °C/min, depending on the suspected properties of the sample. The
sample is placed in a pan attached to a scale in a furnace. The pan is usually made of platinum. A
TGA for suspensions determines the mass content of particles within suspension. If the particles are
composed of materials that degrade at different and well-determined temperatures, it is possible to
quantify the materials’ mass concentration that constitutes the particles. In our case, we determined
the concentration of PS/PNIPAM particles in the suspension obtained from the synthesis described
in the previous section and the concentration of PNIPAM and PS in the suspension. For this pur-
pose, we used a ThermoGravimetric Analyzer TGA-Q500 by TS Instruments Inc. The analysis was
carried out under a N2 atmosphere, and we used a temperature ramp from room temperature to
600 °C with a rate of 10 °C/min.

Fig. 5.3(a) shows the TGA curve as a function of temperature for the PS solution used in
the synthesis of our PS/PNIPAM particles. The measurement is presented as the absolute weight
percentage of the sample (black solid-line). Also is shown the Weight Derivative (WD) against
temperature (blue solid-line). Two key features can be observed. The first one corresponds to a total
mass loss of 89.33% from room temperature to 150 °C. In this stage, all liquid solvents, including
water, are evaporated. Therefore, by drying the sample, we determined the mass concentration of
PS particles in the original suspension provided by the manufacturer to be 10.67% w/w in water. In
the second feature, a mass loss is observed from ∼ 400 to 450 °C, corresponding to PS degradation
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Figure 5.3: Weight percentage as a function of temperature (black solid-line) and weight
derivative against the temperature (blue solid line) for: (a) PS particles from the original
suspension provided by the manufacturer, and (b) PS/PNIPAM core/shell particles synthe-
sized by us.

into ashes. From the WD curve, we can estimate that the maximum mass loss rate in PS degradation
is at 417.6 °C. Our result is consistent with those reported in the literature. [69]

Fig. ??(b) shows the TGA curve as a function of temperature for the PS/PNIPAM particles
synthesized in this work, presented as the absolute weight percentage of the sample (black solid
line) and the weight loss derivative with respect to temperature (blue solid line). Three thermal
degradation events are observed. In the first stage, similar to the TGA result for the PS solution in
Fig. 5.3(a), all solvents are evaporated. From this, by drying, we estimate the mass concentration
of the synthesized PS/PNIPAM particles to be 2.12% w/w in water.

The second and third degradation events are identified by their respective peaks in the derivative
weight loss curve. We assume that the minimum between these two peaks marks the transition
from PNIPAM to PS thermal degradation. The second thermal degradation occurs approximately
between 300 and 408.7°C, with a maximum mass loss rate at 385.8°C, which we associate with the
thermal degradation of PNIPAM. [70] The third degradation event is observed between 408.7 and
470°C, with a maximum mass loss rate at 427.8°C, corresponding to PS decomposition. [69] Based
on these results, we estimate the mass concentrations of PNIPAM and PS in the sample to be 1.40%

and 0.58% w/w in water, respectively. From the TGA analysis, we conclude that our synthesized
product contains both PNIPAM and PS in the concentrations stated above.

Since TGA analysis of our synthesized product cannot confirm if the PNIPAM coats PS par-
ticles, a direct imaging technique is required to determine if the synthesis successfully produced
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PS/PNIPAM core/shell particles. To this end, we used a Scanning Electron Microscopy (SEM) at
the Central Laboratory of Microscopy of the Institute of Physics, National Autonomous University
in Mexico. The sample was prepared with a dilution of 1:1000 and dried at room temperature. The
SEM facility is equipped with a JEOL JSM-7800 microscope.

Fig. 5.4(a) shows a micrograph of PS particles, where the cores exhibit a well-defined circular
morphology. In Fig. 5.4(b), a micrograph of our synthesized particles is shown, where they depict
a rough surface. The inset in Fig. 5.4(b) presents a zoomed-in micrograph of one of the synthe-
sized particles in Fig. 5.4, where we can observe that the synthesized particles have a well-defined
core/shell structure. The core is measure with a diameter of 99.7 nm, while the shell has a thickness
of 38.8 nm. Thus, the PS/PNIPAM particle in the micrograph has total radius of 69.2 nm at fully
collapsed state. This size is very similar to the expected value based on our reagents estimation in
sec. 5.1. From the micrographs, we can conclude that our synthesized particles are indeed core/shell
particles.

Figure 5.4: Scanning electron microscopy micrographs. (a) Micrograph of PS particles. (b)
Micrograph of our synthetized PS/PNIPAM core/shell particles. Inset: a zoomed-in view of
a single PS/PNIPAM particle.

Finally, we measured the hydrodynamic radius as a function of temperature T , RDLS
h (T ), of our

PS/PNIPAM particles in water suspension, where it’s expected to be larger than that measured by
SEM, as the particles are dry in the latter case. In the suspension, the PNIPAM structure retains
water even above the LCST. [19, 60] To determine the particle size in the suspension, we use the
Dynamic Light Scattering (DLS) technique, following the protocol described in chap. 3. Using a
previously calibrated chiller, the temperature of the scattering chamber is set at 10, 15, 20, 25, 30,
32, 35, and 40 °C. In all cases, the scattering chamber was allowed to thermalize for one hour before
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starting the DLS measurements. DLS measurements were performed from the lowest temperature
(10 °C) to the highest (40 °C). In Fig. 5.5, Rh is shown as a temperature function. As expected, Rh
decreases with increasing temperature. Below LCST (∼ 32 °C) PNIPAM is swollen, whereas above
LCST, it transitions to a shrunk state.

Figure 5.5: Hydrodynamic radius as a function of temperature for a PS/PNIPAM core/shell
particle suspension in water (black circles). In the red bars, the standard error in the sizing
is shown. Also, it shows the PS core radius in a blue dashed line.

The hydrodynamic radius RDLS
h as a function of temperature T and its respective polydispersity

index (PDI) is shown in Table 5.2. We can observe that the PDI below temperatures of 32 °C is
greater than 0.1. Thus, for our PS/PNIPAM particles, below the LCST, the particle size distribution
is polydisperse. On the contrary, the PDI from and above 32 °C is less than 0.02. Therefore, for our
particles, above the LCST, the particle size distribution is highly monodisperse.

Table 5.2: Hydrodynamic radius measured by DLS, RDLS
h at different scattering chamber

temperature T . The hydrodynamic radius is in nanometers, the temperature is in °C, and
the polydispersity index (PDI) is dimensionless.

T RDLS
h PDI T RDLS

h PDI

10 321.6 ± 0.2 0.192 ± 0.041 30 252.0 ± 0.2 0.131 ± 0.026
15 317.2 ± 0.2 0.235 ± 0.032 32 234.4 ± 0.2 0.005 ± 0.005
20 298.0 ± 0.2 0.193 ± 0.022 35 199.6 ± 0.2 0.002 ± 0.002
25 280.6 ± 0.2 0.164 ± 0.031 40 159.5 ± 3.4 0.002 ± 0.002

From all the characterization results described in this section, we can conclude that the synthe-
sis protocol produced well-defined spherical PS/PNIPAM core/shell particles, where the PNIPAM
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coating exhibits the expected thermo-responsive behavior below and above the LCST. Also, our
synthesized particles are polydisperse below the LCST and highly monodisperse above the LCST.

5.3 Results and discussion

Fig. 5.6(a) shows our experimental scattering intensities vs scattering angles for PS plain stan-
dard particles with mean diameter = 100 nm (Bangs Laboratories, Inc. USA) (black squares),
showing that the calibration of our SLS device is correct. It also indicates PS/PNIPAM core/shell
particles at 20 °C (blue circles) and 40 °C (red triangles) synthesized by us. At small scattering
angles, we can observe that PS/PNIPAM core/shell particles scatter around one order of magnitude
more than PS plain standard particles, even though PS plain standard particles and the core of
PS/PNIPAM particles have a very close size. To fit the experimental scattering data shown in Fig.
5.6(a), we use a similar procedure to MSA2 because it presents a low experimental noise. This allows
us to estimate κ rigorously without any data masking. Considering that scattering intensities are
measured in vertical polarization setup, the proportionally constant κ is calculated as an average
of all the experimental points ratios with |Ŝ1(θ)|2, i.e., κ = (1/N)

∑N
i=1[Is(θi)/|Ŝ1(θi)|2], where the

scattering amplitude, |Ŝ1(θ)|2, is given in Eq. (2.13) and is calculated as a homogeneous sphere or
multilayer sphere, as appropriate. Therefore, in both cases, the predicted scattering intensity for our
model would be Î(θi) = κ|Ŝ1(θi)|2, and we will name these routines HSPH and MSA3, respectively.

We consider the PS/PNIPAM particles to have a monodisperse PS core with a homogeneous
refractive index (RI), nPSc = 1.59. The nominal core radius, RPSc = 49.5 nm, is taken from the
manufacturer’s specifications. The RI of the PNIPAM shell is approximated using the refractive
index profile model given in Eq. (4.1). In the multilayered sphere approximation, the parameters
obtained from the best fit are the thickness and RI of the PNIPAM plateau region in the shell,
denoted as TPP and nPP , respectively, as well as the overall shell radius Rs, and the polydispersity
of both the PNIPAM plateau region, σPS , and the full shell, σS (see inset in Fig. ??(a)).

Following the same procedure used to determine the number of layers for discretizing the RI
profile, we choose a discretization with L = 12 layers, which provides a good balance between the
precision of the form factor estimation and the computational cost of its calculation. The first layer
represents the PS core, the second corresponds to the RI plateau, and the remaining ten layers are
used to model the Gaussian decay in the refractive index profile.

To fit the experimental data of PS plain standard particles, we used the SSPH routine. We set
the hydrodynamics radius provided by DLS as an upper search limit value for the particle radius.
For PS/PNIPAM particles, to save computing time, we first fit the PS/PNIPAM experimental data
for 40 °C, whose results allow us to set the search limits for PS/PNIPAM at 20 °C because at 40 °C,
the PNIPAM shell is shrunk, and a large amount of water is expelled. Hence, at 40 °C, the PNIPAM
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Figure 5.6: (a) Experimental temperature-dependent scattering intensity (arbitrary units) as a function of
the scattering angle (degrees) of PS plain standard particles with 100 nm of mean diameter (black squares)
and of PS/PNIPAM at 20 °C (blue circles) and 40 °C (red triangles). Models: homogeneous sphere for
PS plain standard particles (black line); MSA2 for core/shell particles are indicated by the blue dashed
and red dashed-dotted lines at 20 and 40 °C, respectively. The inset presents a cartoon of the core/shell
particle structure. (b) RI profiles from fits the experimental data of PS/PNIPAM particles at 20 and 40 °C;
the dashed rectangle represents the PS core. The inset presents the form factor fits for the PS plain and
core/shell particles.

RI plateau must be at maximum, setting an upper search limit value for the PNIPAM RI plateau
for 20 °C. Then, we first fit the data corresponding to 40 °C, setting the range of the PNIPAM RI
plateau between the water RI and 1.46, where 1.46 is the RI plateau value fitted for the PNIPAM
microgels (see sec. 4.3). The thickness search range is set between the core and hydrodynamic
radius. The upper search limit for the particle radius at 20 and 40 °C is the hydrodynamic radius
provided by DLS (see Table 5.3). To end this fit, we determined the PS/PNIPAM search ranges
at 20 °C. We set the same search steps for the size, RI, and polydispersity parameters used in the
MSA1 and MSA2 routines.

Table 5.3: Parameters for the MSA3 best fit from the experimental data of our PS/PNIPAM
particles at 20 and 40 °C and the hydrodynamic radius measured by DLS, RDLS

h . The radius
and thickness values are in nanometers, the temperature is in °C, and κ is in arbitrary units.

MSA3

T RDLS
h TPP nPP σPP Rs σs κ

20 298 42.5 1.34 1.15 298 1.14 3.80
40 159.5 92.5 1.36 1.00 144 1.00 2.88
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The best-fit value for the PS standard plain particles is R = 51.3 nm with a monodisperse
distribution. The best-fit values for PS/PNIPAM particles are presented in Table 5.3. In all cases,
the scattering intensities fit well with the experimental data, and these results could show that the
shell grew with uniform size in our PS/PNIPAM synthesis. The structural differences of the shell
due to the synthesis process can be observed below LCST, where the size of the PNIPAM RI plateau
in the shell and the size of the shell are not monodisperse. Also, as observed in the hydrodynamic
radius characterization by DLS (see Table 5.2), above the LCST, the particle size distribution is
monodispersed. The best-fit parameters of MSA3 for our PS/PNIPAM particles at 20 and 40 °C
are shown in Table 5.3.

In Fig. 5.6(b) is shown the radial RI profile for the MSA3 calculation obtained by the best fit to
the experimental data. Here, we can observe that the coating is not very dense. Still, despite this,
the scattering properties of the PS/PNIPAM particles are dominated by the optical and geometrical
parameters of the shell. In the inset of Fig. 5.6(b) is shown the form factor functions, calculated
using Eq. (2.16), corresponding to the best-fit scattering intensity of Fig. 5.6(a). The PS plain
standard particles scatter in the Rayleigh scattering regime due to their small size. [27] The shell
is responsible for losing the Rayleigh scattering behavior of our core/shell particles. As far as we
know, our results are the first attempt to describe the form factor and RI profile of this kind of
composite particle in the Mie Scattering regime. As a final remark, it’s crucial to say that the
RI profile model used to describe the dielectric properties for PS/PNIPAM core/shell particles is
probably not suitable for describing PNIPAM coatings in whose synthesis other reagents, such as
acrylic acid. The use of this reagent in the PNIPAM synthesis aims to reduce the optical contrast
between the PNIPAM and the water. [14,15,64] This will be briefly discussed in the next section.

5.4 Light scatterd by PS/PNIPAM-co-Acc core/shell par-

ticles

Meng et al. studied the scattering properties of core-shell particle suspensions with a PS spherical
core coated with PNIPAM crosslinked with acrylic acid (AAc). [15] The addition of AAc to PNIPAM
reduces the density of the microgel shell, and the particle radius can be increased up to a factor of 2
compared to PNIPAM alone. [14] Consequently, PNIPAM-co-AAc is expected to absorb significantly
more water than PNIPAM microgels, leading to a good refractive index match with water in the
swollen state. [14] Our model can describe the form factor of core-shell composite particles reported
by Meng et al., who measured the light scattering intensity at λ = 532 nm.

Fig. 9a presents the Meng et al. [15] experimental scattering intensity versus scattering angle of
PS particles coated (PS/PNIPAM-co-AAc) and without coating (PS) at 25 °C (swollen state) and
35 °C (shrunk state). The experimental data for uncoated PS and PS/PNIPAM-co-AAc particles
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at 25 °C are very similar, despite the hydrodynamic radius of PS/PNIPAM-co-AAc particles being
∼ 850 nm, i.e., approximately ten times the core radius. However, at 35 °C, the scattering intensity
of PS/PNIPAM-co-AAc scatters light preferentially at small angles (forward scattering); here, the
hydrodynamic radius is 438 nm.
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Figure 5.7: (a) Experimental temperature-dependent scattering intensity (arbitrary units) as a function of
scattering angle (degrees) of plain PS particles (black squares) and of PS/PNIPAM-co-AAc at 25 °C (blue
circles) and 35 °C (red triangles). Models: HSPH for plain PS particles (black line); MSA3 for core-shell
particles (blue dashed and red dashed-dot lines) at 25 and 35 °C, respectively. (b) Radial RI profile obtained
by fitting the experimental data of core/shell particles at 25 °C and 35 °C using MSA3. Arrows indicate
the hydrodynamic radius. [15] A dashed rectangle represents the PS core, and the RI profile has the same
color-line code as in Fig. 5.7(a). The inset of Fig. 5.7(b) presents the form factor fits for the PS plain and
core/shell particles, shown with the same color-line code used in this figure.

.

We use the MSA3 procedure (see sec. 5.3 to fit the scattering intensity data measured in a
vertical polarization setup. Here, we assume that PS/PNIPAM-co-AAc particles have a core with
homogeneous RI. nPSC = 1.59. The radius of the PS core was obtained from the best fit to PS
plain experimental data, [15], and we considered that the PNIPAM-co-AAc shell has a Gaussian
RI profile given by Eq. (4.1), consistent with previous systems studied in this dissertation. Fig.
5.7(a) presents our best fitting for different models, HSPH for PS plain particles and MSA3 for
PS/PNIPAM-co-AAc particles at 25 and 35 °C. The best-fit value for the experimental data of the
PS plain monodisperse particles is Rc = 76 nm. The best-fit value for the experimental data of the
core-shell particles in hydrated (swollen) state is Rs = 190 nm, and in dehydrated (shrunk) state
is Rs = 247 nm. Although the fitted scattering intensities agree well with the experimental data,
the best-calculated shell radius in both cases underestimates the hydrodynamic radius measured by
Meng et al. [15] The parameters for the best fit of MSA3 for PS/PNIPAM-co-AAc particles at 25



5.4. LIGHT SCATTERD BY PS/PNIPAM-CO-ACC CORE/SHELL PARTICLES 75

and 35 °C are in Table 5.4.
Fig. 5.7(b) presents the radial RI profile of the MSA3 obtained by the best fit to the experimental

data. The RI remains relatively flat at 25 °C and decreases quickly at 35 °C. This behavior is likely
due to the PNIPAM-co-AAc shell, which retains a significant amount of water even in the shrunk
state. Under these conditions, the RI profile of the PNIPAM-co-AAc is probably not well described
by a Gaussian decay. The inset of Fig. 5.7(b) shows the form factors for plain PS particles and
PS/PNIPAM-co-AAc particles at 25 and 35 °C. As noted by Meng et al., we also observed two main
scattering features: (1) Below the LCST, the scattering properties are primarly determined by the
PS core. 2) Above the LCST, scattering properties are influenced by both the core and the shrunk
shell. [14, 15]

Table 5.4: The parameters for the MSA3 best fit to the experimental data for PS/PNIPAM-
co-AAc particles at 25 °C and 35 °C, as well as the hydrodynamic radius measured by Meng,
Re
h. et al. [15] Radius and thickness values are given in nanometers, temperature in °C, and

κ in arbitrary units.

MSA3

T Re
h TPP nPP σPP Rs σs κ (×10−13)

25 847 1 1.34 1.00 190 1.11 2.59
35 438 74 1.40 1.00 247 1.01 4.44





Chapter 6

Conclusions

This thesis applies the Mie scattering solution for a multilayer sphere to predict and analyze the
static light scattering of nonhomogeneous colloidal particles with spherical symmetry. The colloidal
systems studied include pure PNIPAM particles and core-shell PS/PNIPAM and PS/PNIPAM-co-
AAc particles. These systems were chosen for their potential applications in the design of optical
devices, which served as the primary motivation for this research. The central objective is to
reversibly tune the scattering properties of PNIPAM-based particles in order to achieve a distinctive
transmittance spectrum [2,14,15].

Throughout this doctoral research, we observed that in PNIPAM light scattering experiments,
the Mie scattering solution is not used by the soft matter physics community to describe the light
scattering properties of nonhomogeneous colloidal particles with spherical symmetry. Instead, the
Rayleigh-Gans-Debye (RGD) approximation is always employed, even when the system does not
fully satisfy the validity conditions of RGD. This may lead to an inaccurate description of the light
scattering properties of PNIPAM particles. [18, 24,25]

One of the main reasons experimentalists prefer the RGD approximation over the Mie scattering
solution is the mathematical complexity involved in the latter approach. [24, 26] However, various
numerical methods are available to evaluate the Mie scattering solution for homogeneous and non-
homogeneous particles with spherical symmetry. [27, 31,38] In our work, we considered that Yang’s
formulation for the Mie scattering solution for a multilayer sphere provides the most intuitive and
stable numerical scheme to describe the light scattered by nonhomogeneous spherical colloidal par-
ticles. Therefore, we adapted Yang’s algorithm for our needs, and it was used to fit experimental
data from static light scattering experiments successfully.

For this reason, the primary objective of this dissertation is to demonstrate that applying the
Mie scattering solution for homogeneous and nonhomogeneous spheres for particles with spherical
symmetry is now straightforward, provided their dielectric properties are known. To this end, this
dissertation reviews the Mie scattering solution for homogeneous and multilayer spheres. It provides

77
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numerical algorithms for both approaches, including algorithms to solve the average integrals for
particles with size polydispersity, and they are available in our GitHub repository (https://gith
ub.com/Complex-Fluids-IFUNAM/Mie-Scattering) for anyone interested in using them. Finally,
the developed numerical tools are applied to successfully study the light scattering of the particles
of interest.

In this work, we employed a radial refractive index (RI) profile model for PNIPAM microgels
that resembles the structure of a core-shell particle: a core with constant RI and a shell where the
RI decays in a Gaussian manner until it matches that of the surrounding solvent (see Eq. (??)).
After discretizing this RI profile, we applied the Mie scattering solution for a multilayer sphere to
calculate the form factor functions of suspensions of PNIPAM, PS/PNIPAM, and PS/PNIPAM-co-
AAc core/shell particles.

For the PNIPAM case presented in Chapter ??, the scattering intensity in the swollen state is
accurately predicted, as evidenced by the excellent agreement with experimental data reported in
Ref. [18] (see Fig. ??). In the shrunk state, however, the Gaussian RI profile combined with our
polydispersity model does not describe the scattering properties effectively, as the microgel behaves
more like a solid homogeneous sphere. In this regime, the Mie scattering solution for homogeneous
spheres becomes more appropriate. As a future direction, it would be valuable to explore how
variations in parameters such as core and shell polydispersity influence the form factor.

To the best of our knowledge, this is the first time the form factor of PNIPAM microgels in the
swollen state has been described using the Mie scattering solution for a multilayer sphere with a
refractive index profile based on the PNIPAM density distribution.

Chapter ?? details the synthesis and characterization of PS/PNIPAM core/shell particles. Their
light scattering properties were successfully described using the Mie scattering solution for multilayer
spheres. In this case, we proposed a discontinuous RI profile model, in which the PNIPAM shell was
modeled in the same way as for the pure PNIPAM particles discussed in Chapter ??.

Finally, in Chapter ??, we explored the applicability of the same RI profile model to static light
scattering data of PS/PNIPAM-co-AAc particles reported in Ref. [15]. PNIPAM-co-AAc absorbs
significantly more water than conventional cross-linked PNIPAM microgels. Although the scattering
intensity was well described using our RI profile and the Mie scattering solution for multilayer
spheres, the fitted radii were notably smaller than the hydrodynamic radii reported by the authors.
These results suggest that the refractive index distribution of PS/PNIPAM-co-AAc particles may be
substantially more complex than that of conventional PNIPAM microgels, warranting further study
to determine a more suitable RI profile model.

It is also important to note, as discussed in Section 2.1.4, that the Rayleigh-Gans-Debye (RGD)
approximation is not valid for describing the light scattering properties of polystyrene particles in
water. Consequently, it is also unsuitable for modeling the scattering of more complex particles that

https://github.com/Complex-Fluids-IFUNAM/Mie-Scattering
https://github.com/Complex-Fluids-IFUNAM/Mie-Scattering
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incorporate a polystyrene core. The Mie scattering solution, derived from the full electromagnetic
theory, provides an exact solution for the scattered field and establishes a direct relationship between
the incident wave and the scattered intensity. In this way, it offers a significant improvement over
the RGD approximation.

For all the reasons mentioned above, we conclude that the primary limitation in using the Mie
scattering solution for homogeneous and multilayer spheres to study the light scattering properties
of homogeneous and nonhomogeneous spherical particles is not the mathematical complexity of Mie
solutions, but rather our lack of knowledge of the dielectric properties of the particles under study.





Chapter 7

Applications and future research
directions

The results presented in this dissertation can be immediately used in many applications where
a concise methodology was lacking to apply the Mie scattering solution to adequately describe light
scattering experiments on particles where the RGD approximation is not valid. Next, some of the
future research directions or applications are enumerated:

1. A natural extension of this experimental technique could be using the Mie scattering model
for multilayered spheres to characterize more complex colloidal particles, like hollow sphere
particles, multilayer composite colloidal particles, etc.

2. Our open-source computational programs for the Mie scattering solution could help to de-
velop numerical tools for engineered particles with optical properties that are of scientific and
technological interest, like the PNIPAM composite particles. [16, 17]

3. As Mie scattering solutions formulation includes imaginary refractive indices, our method
is an alternative to the RGD approximation and Monte Carlo simulations to describe the
absorption spectra of metallic core/shell gold particles coated with PNIPAM. [27] This kind
of composite particle is currently being studied for its properties, which may be useful in
biomedical applications and photonic technology [25]

4. Since the extinction cross-section is related to the scattered light and, consequently, to the
amplitude scattering coefficients, the Mie scattering solutions can be related to light scattering
spectroscopy, which looks for a nonintrusive characterization of submicron particles. The
influence of the internal structure of nonhomogeneous particles on their radiative properties
is an open issue in many fields of science and technology. [71,72]

81
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5. Our model for multilayered spheres could be a starting point for studying particles with spheri-
cal symmetry. Furthermore, video holographic microscopy characterization of colloidal spheres
has been developed by fitting their measured hologram normalized images to a theoretical ex-
pression of these normalized images. It involves the Mie scattering coefficients of colloidal
particles, whose radius and refractive index are free parameters. [73]

6. Knowing the light scattering of mesoscopic core-shell particles makes it possible to predict
their photonic properties as the transport mean-free path of the light. The transport mean-
free path of the light is closely related to pseudogaps in light transmittance through colloidal
suspensions with strong short-range structural correlations. In this sense, for the systems
studied in this thesis, the next step is to study the structural correlations of PNIPAM and
PS/PNIPAM suspensions and include them in numerical schemes to predict the transmittance
spectrum as a function of wavelength. [6, 8]



Appendix A

Vector harmonic functions

The Mie scattering solution introduces vector harmonic functions to simplify the mathematical
representation of the incident, internal, and scattered electromagnetic fields. The derivation of these
vector harmonic functions can be found in Bohren and Huffman’s book. [27] They are defined as
follows:

Mzn
o1n = cosφπnznêθ − sinφτnznêφ,

Mzn
e1n = − sinφπnznêθ − cosφτnznêφ,

Nzn
o1n = sinφn(n+ 1) sin θπn

zn
ρ
êr + sinφτn

[ρzn]
′

ρ
êθ + cosφπn

[ρzn]
′

ρ
êφ,

Nzn
e1n = cosφn(n+ 1) sin θπn

zn
ρ
êr + cosφτn

[ρzn]
′

ρ
êθ − sinφπn

[ρzn]
′

ρ
êφ,

(A.1)

where zn denotes the spherical Bessel function of the first kind jn(ρ), and the Hankel function of
the first kind h(1)n (ρ). The prime symbol denotes differentiation concerning ρ, where ρ = kr.

Using vector harmonic functions, it is possible to write the electromagnetic incident fields that
define the incident plane wavefront as follows: [27]

Ei =

∞∑
n=1

En(cnM
jn(ρ)
o1n − idnN

jn(ρ)
e1n ), (A.2)

Hi = − k1
ωµ1

∞∑
n=1

En(dnM
jn(ρ)
e1n − icnN

jn(ρ)
o1n ). (A.3)
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