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3 Chapter 3: Entropy Production — Second Principle of
Thermodynamics

3.1 Reversible and Irreversible Processes

Consider some time dependent physical process.
If eqns. describing process are invariant with respect to change of sign of the time variable, process
is called reversible. If not, process is irreversible.
Give an example of a naturally occurring or man-made reversible process.
Eg.
10%u 0%u 0*u %
o2 a2 Tz Tz
c? ot ox oy 0z
Equation is invariant under t — —t — reversible.
Fourier equation for temperature;

19T _ T  &T | 2T

a ot 022 + oy? 022 2)

— irreversible.
Most physiochemical processes, diffusion, conduction (heat or electricity) chemical reactions, etc. are
irreversible processes.

Therefore, a theory of irreversible thermodynamics essential.

3.2 Entropy

From Greek word evrpwmn meaning “evolution”.
Postulate the following properties

1. is an extensive property of a system

2.
dS =d.5+d;S

d;S =0 (reversible process)

d;S >0 (irreversible process)

For isolated systems;

dS =d;S >0 (3)

Second law of thermodynamics.
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Most general evolution criterion of natural processes.

Other criterion, eg. F' = E — TS decreases when irreversible changes occur.
However, functions like F' and G exist only for specific conditions (eg., changes at constant temper-
ature and volume, or, at constant temperature and pressure).

3.3 Local Formulation of Second Law

Consider system I inside a larger system II such that the global system is isolated.

Second law
dS =dS" +dS™ >0 (4)
Postulate
;ST >0, d;S" >0 (5)
Situation in which
d;ST >0, d;S" <0 with d(ST+ S") >0 (6)

excluded.

No possibility for compensation — in every macroscopic region (microscopic fluctuations are negligi-
ble) of the system the entropy production due to irreversible processes is positive.

Interference of irreversible processes only possible when they occur in same macroscopic region.
Local formulation of second law is postulate on which course is based.

Has been verified through statistical mechanics and experiment.

3.4 Absolute Temperature

Consider closed system containing a single component, irreversible processes excluded.
Entropy defined by
dq

as = — (7)

T is called absolute temperature. Satisfies

1. T is positive

2. T is an intensive property obtained by measuring some arbitrary property like electrical resis-
tance

3. T is an increasing function of the “empirical” temperature of the system.

To fix scale, set T' = 273.16°K for triple point of water.

Note that
B dE + pdV

as -
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3.5 Entropy Production Due to Heat Flow

Consider two closed subsystems I and II (total system therefore also closed) maintained at uniform
temperature 77 and T!! respectively.
Being an extensive variable

dS = dS" +ds" (9)
For each phase
d'Q=diQ+dQ, d"Q=d'Q+d]Q (10)
For whole system
dIQ dHQ
dsS = T + T (11)
dQ d'Q . /1 1
= S+ i (3 - m) 12)
Where we have used (3.24).
Then,
d.Q  d'Q
d.S = T T (13)
and
R 1 1
d;S =d; Q (F — ﬁ) (14)

results form irreversible heat flow inside the system.
Now, empirically, can show that entropy production d;S is always positive; therefore,

1
dZIQ >0 when F — ﬁ >0 (15)
and
. 11
diQ<0 when F—ﬁ<0 (16)

Entropy production is only zero when thermal equilibrium is established, i.e. when 77 = 71,
Entropy production per unit time

&S dQ /1 1
=S (- m) >0 (17)

Equation will be shown to be very general. Product of rate of irreversible process (dfQ/dt) by
function of state (1/77 — 1/T11).
Generalized flow and corresponding force.
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3.6 Entropy of Multicomponent Systems - Chemical Potentials

Generalize the total differential of the entropy for multi-component systems.

dE p L
dS = — +=dV - =2d 1
S T T 1% ; —dny (18)
ft are the chemical potentials defined by
0S
oy = T (—) (19)
! In, EVn

The chemical potentials are intensive variables (like other partial derrivatives of S,
eg. 1/T' =0S/0E, p/T =0S/0V).

Chemical potential can be expressed in other ways; eg. energy representation

oF
= [ — 20
IU”Y <an7 ) SV”{Y ( )
Introducing the enthalpy H = E + pV, Helmholtz free energy FF' = E — T'S, Gibbs free energy
G=H-TS,
OH oF oG
o = (aT) - (aT) - (aT) (21)
v/ Spn/, Y/ TVn, v/ Tpnl,

Show that the above relations are correct.

Relations involving the chemical potentials

Oy Opiy Oy /T) hy
—_— = — — = _ = — 22
<6T> S ( ap )y o7 T2 (22)
Py Ty Py
where s,, v, and h., are respectively specific molar entropy, volume and enthalpy of component v as
defined by
S ) ( ov ) ( OH )
Sy = | =™ y Uy = |5 ) hy=\7— <23)
! ( an’Y pTnl, ! an7 pTnl, ! an7 pT'nl,

Prove relations (22) using definitions (23).
For ideal systems
Ky = C’Y(pa T) + RT log N, (24)

where (,(p,T) is independent of composition and NN, is the mole fraction (= n,/n).
For ideal gasses

G(p,T) = RT logp + 1,(T) (25)
For non-ideal systems
= G, (p.T) + RTlog f, N, (26)

where f, is the activity coefficient.
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3.7 Entropy Production due to Chemical Reactions - Affinity- Coupling
of Chemical Reactions — Closed Systems

Expression for entropy flow and production due to single chemical reaction in a closed system. Using
eqns. (2.6) d¢ = dn, /v, and (18), can write

_ Q0 Ade

2
ds T 7 (27)
where A is the affinity of the chemical reaction, related to the chemical potentials by
A=Y v, (28)
5
The total entropy change can thus be divided into two parts
dQ
deS = — 2
5= (29)
and Ad
45 — 75 -0 (30)

Prove that d;S as given by eqn. (30) is always > 0 except in equilibrium, in which case it is = 0.

For the equilibrium state
A== vy =0 (31)
5

Prove that if the transformation represented by & consists in the passage of component v from phase
I to phase II, then the equilibrium condition (31) becomes

ph = pd! (32)

In terms of the chemical reaction rate v we have for the entropy production per unit time of the
reaction 5.S )

- —Av>0 33

at T (33)

A and v thus always have the same sign. The right-hand side of this equation is again a product of a
generalized flow (chemical reaction rate v) and corresponding force (affinity A/T'). It is of the same
general form as eqn. (4.17) for the irreversible process of heat flow.

Extension to the case of several simultaneous reactions

d;S = %ZApdgp >0 (34)
p

where

In equilibrium
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Entropy production per unit time
d;S 1
Z_:_ZAPIUP >0 (37)
dt T4

Second law of TD requires that entropy production resulting from all simultaneous reactions is
positive. However, could have system undergoing two simultaneous reactions such that

Al’Ul < 0, AQ’UQ >0 (38)

provided that
Al’Ul + AQ’UQ >0 (39)

Reactions called “coupled” reactions. One reaction can thus go in a direction contrary to that de-
scribed by its own affinity.

This is a coupling of two distinct irreversible processes. Is of great importance to biological processes.

Another example (to be seen later) — thermodiffusion — diffusion of matter against its concentra-
tion gradient results in a negative entropy production but this effect is compensated by the positive
entropy production due to the flow of heat.

Suggest three other possibly coupled irreversible process which might be important to biological or
physical phenomena.
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3.8 Chemical Affinity
Using eqn. (26), jy = ¢y(p,T) + RT'log N, and (28), A = — >, vy,

=—> ¢ (p,T)— RT> v,log N, (40)
v Y
Define the equilibrium constant K(p,T) by

RTlog K(p,T ZVVCW p,T (41)

Then the affinity becomes A = RT'log K (p,T) — RT Y., vylog N, N, =molar fraction

K(p,T)

A=RT1 42
s g - )

In equilibrium, A = 0, so
K(p,T)= Ny*...NZ (43)

Called “law of mass action”.

Alternative expression for the affinity from eqn. (21)

But,
oG oG dn., ( oG )
— — _— —1 = —_— v (45)
(8& ) »,T ; (an“Y)p,T,n; dg ; Oy p.Tonl, !
Therefore,
A= (ﬁ) (46)
0¢ o T
Remembering that G = H —T'S
OH oS oS
A=—|— T|— =rpr+ T 47
(%), (&), (%), o

In some cases, it may be possible to neglect the entropy variation term in (47), so that the entropy
production due to a chemical change becomes simply proportional to the heat of reaction

S  Av _ rpmv 1 (d.Q
So 20 Ment (L2 48
dt T T dt (48)
Show that =&+= = —1 <%>ﬂ. Under what conditions can the entropy production term <g—§>p7T’U
can be neglected?
For simultaneous reactions 4.0
i 1 e
P 49
it T ; e =TT ( dt ) . (49)
P

In this approximation, the entropy of a living organism can be measured by its metabolism, as
recorded by calorimetry.
Design a feasible experiment to measure the entropy production of an animal?
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3.9 Entropy Production and Entropy Flow in Open Systems

Start with the Gibbs formula including flow of material from the exterior and chemical reactions
occurring in the interior.

s = d¢ Z’”de Ly Ade

- (50)

oy L, (51)
vy

Now, consider a system consisting of two open subsystems but which is closed as a whole. The
change of the total entropy of the system is expressed by

d1¢ d11¢ ,uI NII ; Ald€I AIIde
dS = = + Z ?}—T—}I den, + =7+~ (52)

where A and A!! are the affinities of the reactions taking place in each subsystem. Separating the
flow of energy due to mass flow and heat internally, and heat from the exterior gives

1 11 1 11 I g¢1 IT g¢IT
ds = dQ+dQ dfqb(l 1>—Z<ﬁ—“—”>den§+Ad§+Ad£ (53)
ol

TI TII TI — TII TI — TII TI TII
Clearly,
dlQ  dl'Q

deS = =57 + =g (54)

and T IT T3¢l IT 3¢I1

1 1 10 I A'dE AMtdé
I I

diS = dqb(F_TU) —;<T—?—Tﬂ>de”v+ TI + T >0 (55)

This entropy production results from the transport of heat and matter between the two phases and
also from the chemical reaction taking part in each phase.

Entropy production per unit time

d; 1 1\ df ! I\ dpl ALyl Al
—S=<———>’——Z<M—;}> DLl 2 5y (56)

dt T TH T! dt T! T =

Again, entropy production is a bilinear form of the rates of irreversible processes and of some functions
of state which may be called the “generalized forces”.
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3.10 Entropy Production Due to Electrochemical Reactions

Generalization to include electrochemical or photochemical reactions.

Include the presence of an electrical or radiation field in the conservation of energy.

Example

Transport of electrically charged component from position at potential ¢! to position at potential ¢!,

Consider open subsystems I and II in contact, but closed as a whole.
Degree of advancement

—dn{Y = dn{f = d¢, (57)
Let z, denote electrovalency of the ionic component v being transported by the field.
Let F be the electric charge associated with one gram-ion of a species having an electrovalency
of 1 (F =0.9649).
The electric current is then (¢ = z,F)

dg,

I= zA,]:E = z,Fv, (58)

Including the change of electrical energy into internal energy
dE = dQ — pdV + (o' — ") Idt (59)

(remember that power P = dE/dt = V1)

Assume that the Gibbs equation is still valid in presence of field.

True if polarization of matter can be neglected. Orientation of molecules in electric field associated
with decrease in entropy.

If temperature uniform throughout whole system, Gibbs equation becomes

dE 1 11
dS = —+ZdV = 3" (%dng + “T”dn§1> (60)
Yy

Using the above equations show that ...

_dQ | Adg,
ds = Tt T (61)
with .
A, = A+ 2, F(oh — ') = (ufy + 2, Fph) — (u{f + 2, F ') (62)
[y = py + 2y F @ (63)

called the “electrochemical potential”.
The internal entropy production due to the transport of the electrically charge component is thus

_ Ade,

d;S -

(64)
Presence of electrical potential manifests itself only by altering the value of the affinity.

At equilibrium, .
A =0 or ol — 0 =5 F(rl — I (AR
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3.11 Entropy Production in Continuous Systems

Until now we have considered discontiuous systems — where the intensive variables have the same
value throughout each homogeneous region, but different values in each region.

Now we will consider intensive variables which are not only a function of time, but also of space
coordinates, continuous systems.

eg. metal bar heated at one end and cooled at the other, a mixture of diffusing components.

Continuous Systems
No new physical principles required.

Conservation of Mass

dp
Frie —div pw (66)

Equation of continuity, p is mass density and w is macroscopic velocity.

. Opw,  Opw,  Opw,
d = Y

il ox + oy + 0z
Eqn. (66) holds also for a mixture. Define

w= (X pyn)/p (68)

w is thus velocity of center of gravity.

In general, local change of a physical quantity is due not only to the divergence of a current but also
to a source term.

For example, consider a chemical reaction, equation of continuity for the density p, of component ~y

is thus
9p,
ot

where v, is the rate of the chemical reaction per unit volume.

= —divpywy + vy Myv, (69)

Flow of component v can be decomposed into a flow with velocity of center of mass and a diffusion
flow relative to w.

pywy = pyw + py(wy —w) = pyw + py A, (70)

A, represents diffusion velocity with respect to w.

Note that
Z pyA, =0 (71)
5
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For every extensive variable, can write an eqn. similar to (69).
eg. Entropy per unit volume s,

05,
ot

The above is the extension of dS = d.S + d;S to continuous systems.
It is obvious that

= —divd+o (72)

o =0 (reversible processes) ,o >0 (irreversible processes) (73)

Calculation of local entropy production based on the local formulation of the Gibbs equation.
For discontinuous systems (see (56))

s (1 1\d Wl I\ dend Al AT
| —_—— —) = > 4
it (Tf T”> it Z(Tf ) ar T T =Y (74)

For a continuous system it can be shown (try to derrive this) that

_ W' oT I 6,u,Y/ ; Avv
U__iﬁ%_l_;;T(}—’y_ prs A T >0 (75)

summation over i(i = 1,2, 3) refers to the geometrical coordinates. W is the heat flow in coordinate
i, F, is the force (per unit mass) acting on component 7. p* is the chemical potential per unit mass.

In present description of continuous systems, must distinguish between bulk movement with ve-
locity w and the c diffusion flows p,A, out of which only ¢ — 1 are linearly independent (see (71)).

For non-viscous systems (no friction), velocity of center of gravity w does not appear in the eqn.
for the entropy production, and is therefore considered a reversible phenomena. Irreversibility is
related to the diffusion.

In a two component system, without temperature gradient, and without chemical reaction, eqn.
(75) reduces to

1 oy oy
O':T<f1—%> 1A1+ <f2— ;;)pgA2>0 (76)
Assuming mechanical equilibrium and using eqn.(71) 32, p,A, = 0 gives
oy s \
<f1—8x>p1+<.7:2— 81‘ ,02—0 (77)

Note that instead of using the average mass velocity w we could have used any reference velocity.
Entropy production must remain invariant under such a change. Eg. if take as the reference velocity
wo then eqn. (76) becomes

1 ouy
o= (]-"1 - %) pr(wr — ws) > 0 (78)

Show that eqn. (78) is correct.
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3.12 Internal Degrees of Freedom

Irreversible processes related to internal degrees of freedom of molecule.
eg. orientation of spin, electric dipole moment, deformation (isomerization)

Starting point is Gibb’s formula (18);

ds 1dE+pdV_ 1/ ( )871(7)

at Tdat Ta T o
n(7y) is density of molecules in state -y so n(y)d~y is number of molecules for which the internal para-
meter lies between v abd v + d.

dy (79)

Consider a continuity eqn. for (On(y)/0t)
First assume that change of v is discrete, i.e. v changed by transformations from or into neighboring

states v — 1 or v+ 1. Then

dn

d—t” + (Uy — V4—1) =0 (80)
v, is rate 7y — (y+ 1) and v,_; is rate of y — 1 — 7.

If v is a continuous parameter
on(y) | 9v(7)
ot 0y
— is a continuity eqn. in the “internal coordinate space” 7.

v(7y) is the reaction rate (flow) giving how the molecules change along coordinate +.
In vector notation
On(y)

ot

By partial integration, eqn. (79) can be transformed into

=0 (81)

= —div () (82)

dS 1dE pdV 1 r0u(y)
it Tdt Tdat Tl o v(y)dy (83)

SO

4iS 1 rou(y)
i T/7 7 v(y)dy >0 (84)

We now postulate a further refinement in the second law of TD.

In each part of the internal coordinate space, the irreversible processes proceed in a direction such
that a positive entropy production results. Implies

o = —%‘9’5—(77)@(7) =0 (85)

o™ is the entropy production per unit volume of the internal configuration space.
o* has usual form, product of an affinity (or force) —=%(0u(v)/dv) and a rate v(y) of irreversible
process.
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If there is a potential energy which varies with 7 (eg. if v is the angle 0 of a dipole with respect to
an external electric field e, then

E,ot = —me cos(0) (86)

where m is the dipole moment, there then appears a corresponding “force” —0F/dv in the entropy
production (exactly as F, appeared in eqn. (75),

ot _% (6;5(77) n 85;@) o(7) > 0 (87)

Assuming that there is a linear relation between the rate and the affinity, can obtain a formulation
of Debye’s theory of the orientation of dipoles in an alternating electrical field.

What is the Debye theory in this context, and suggest how the results above for the entropy production
due to changes in the internal coordinates may be used to provide an independent formulation of this
theory.
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