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8 Abstract

9 A statistical technique to efficiently map out the energy surfaces of nanoclusters and molecules is described. Global

10 energy minimizations are performed to reach of the catchment basins of the lowest energy stationary points. Saddle

11 points are located by using a large value of the iterative energy change as the stopping criterion of a final local re-

12 laxation. Minima are derived from saddle points by simply tightening the stopping criterion and continuing the re-

13 laxation. A statistical approximation to the widths of the paths in phase space between saddle points and minima is

14 obtained. Application is made to argon clusters of 7 and 38 atoms.

15 � 2003 Published by Elsevier Science B.V.

16

17 1. Introduction

18 Understanding the dynamical behavior of small

19 clusters of atoms and molecules in nonzero tem-

20 perature environments is indispensable to their

21 eventual utility in nano-chemical, nano-electronic,

22 and nano-optic applications [1,2]. Equilibrium
23 molecular dynamics is normally employed to

24 model the thermodynamical behavior of an en-

25 semble of such systems by employing the ergodic

26 hypothesis. However, a time averaged, or even an

27 ensemble description is not very useful for pre-

28 dicting the time local dynamical behavior of a

29 single nanocluster or molecule. Such behavior can

30only be obtained by knowing the initial state and

31by detailing the local free energy surface of the

32system in the neighborhood of that state. Fur-

33thermore, molecular dynamics cannot readily

34identify particular reaction paths, these can only

35be delineated by directly mapping the topography

36of the energy surface.
37Even if the interest is in the average behavior

38of an ensemble in thermodynamic equilibrium,

39calculation of the forces in molecular dynamics is

40computationally expensive, and it can be expected

41that a typical trajectory, even for small clusters,

42will only visit a small fraction of the allowed

43phase space, making a poor approximation to

44ergodicity. The need for statistically based meth-
45ods to characterize the potential energy surface

46for large systems has been previously emphasized

47[3,4].
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48 Periodic quenching along molecular dynamic

49 traces to find minima, and eigenvector following to

50 find associated saddle points, has been the tech-

51 nique of choice to statistically map out potential

52 energy surfaces [5–8]. This technique samples effi-

53 ciently the potential energy minima and some of
54 the lowest energy connecting saddle points, there-

55 by allowing construction of �disconnectivity
56 graphs� [9–11] which characterize the global nature
57 of the energy surface. However, this method does

58 not provide a very detailed map of the lowest en-

59 ergy topography, since, for reasons of computa-

60 tional economy, normally only the path

61 determined by the smallest positive eigenvalue of
62 the Hessian, evaluated at the minimum, is ex-

63 plored. All other paths available from one given

64 minimum to another are usually ignored. The re-

65 sulting map is thus only a skeleton of the real

66 multi-dimensional topography, defining the path

67 of likely least activation energy. Even in excep-

68 tional cases where all of the saddle points are ob-

69 tained [12], information needed for describing the
70 dynamics or thermodynamics is still lacking since

71 no measure is obtained of the widths of the paths

72 in phase space, or, in other words, of the most

73 important part of the enthropic contribution to the

74 free energy.

75 Another proposed technique, also employing

76 molecular dynamics, is to raise the total energy

77 starting from a given minimum until the potential
78 energy drops below this minimum. Quenching

79 finds the second minimum, and the saddle point

80 connecting the two is then obtained by quenching

81 from the point of maximum potential energy on

82 the molecular dynamic trace using a large cutoff

83 value for the kinetic energy [13]. As with the ei-

84 genvector following approach, this method ob-

85 tains a path which may be the most probable
86 reaction path in phase space, but little information

87 is provided on the possible range of paths and their

88 probabilities and thus on the spectrum of allowed

89 dynamical behavior.

90 2. Statistical characterization of the energy surface

91 In this Letter, we present an efficient technique

92 for mapping out in detail the topography of the

93lowest energy regions of the potential energy sur-

94face. This is achieved through a statistical sam-

95pling of the probability of passing from saddle

96point to saddle point, or from saddle point to

97minimum by enumerating the trajectories taken by

98a fast conjugate gradient local relaxation, once an
99effective global search has put the system within

100reach of the lowest energy saddle points and

101minima. Saddle points are located by using a large

102value of the relative energy change per iteration,

103jDV =V j, as the convergence criterion of the local

104relaxation. Minima are obtained from saddle

105points by simply tightening the criterion for con-

106vergence and continuing the relaxation. Saddle
107points can be obtained from saddle points by

108tightening the convergence criterion and relaxing it

109once again if the potential energy has decreased by

110more than a few percent. The relative volume in

111phase space of the attraction basin associated to a

112particular minimum or saddle point at the site of a

113saddle point can thus be statistically estimated and

114probabilities for reaction paths assigned. No cal-
115culation of the forces in the global relaxation, nor

116of the Hessian in the local search, is required. With

117moderate computational resources, the low-energy

118regions of systems of up to approximately 100

119atoms can be routinely mapped out (with some-

120what lower efficiency for short range potentials

121since these give a more complex energy surface

122[14]).
123As a demonstration of this technique, we pres-

124ent the topography mapping of the potential en-

125ergy surface of argon clusters of 7 and 38 atoms,

126modeled with a Lennard–Jones (LJ) potential of

127form

V ¼
X
i<j

4�
r
rij

� �12
"

� r
rij

� �6
#
; ð1Þ

129with r ¼ 3:4 �AA and � ¼ 1:671� 10�14 erg [7]. The

130potential energy surface of this system has been
131studied through the conventional technique of

132molecular dynamics and eigenvector following

133[7,11–13,15–18]. It is known that, within the LJ

134model, Ar7 has four minima and at least 838

135saddle points [12]. The low-energy minima and

136their connections through the lowest energy saddle

137points for Ar7 have been enumerated by Wales and
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138 Berry [7] through the eigenvector following meth-

139 od, providing a convenient check of our proposed

140 technique. Ar38 has a much more complicated

141 potential energy surface topography due to the

142 larger number of degrees of freedom. The global
143 minimum is known to be a truncated octahedron

144 fcc structure but an icosahedral structure is almost

145 degenerate in energy and has a much larger

146 catchment basin accessible from higher energy

147 [15]. Ar38 is presented here as a demonstration of

148 the efficiency of the proposed technique and of the

149 detail in the topography map which can be ob-

150 tained.
151 Our technique employs a hybrid algorithm

152 consisting of a global, �symbiotic� variant [19] of
153 the genetic algorithm [20], followed by a local

154 conjugate gradient relaxation [21]. The conjugate

155 gradient relaxation (analogous to fast quenching

156 in the molecular dynamics scheme) is initiated if,

157 after a fixed number of generations of the global

158 genetic optimization, the lowest energy obtained
159 for the system has not changed [19]. Since the in-

160 terest is normally in the lowest energy minima and

161 saddle points, those with significant representation

162 at 300 K for example, for large systems the search

163 algorithm can be tuned to find only these sta-

164 tionary points by prolonging the global part of the

165search. However, for the case of Ar7 where the

166system is relatively small, and to demonstrate the

167completeness of our approach, we tune the algo-

168rithm to find also higher energy stationary points.

169The distribution in energy of stationary points,

170and the number of times each was found in 860 000
171distinct runs of the global algorithm for Ar7 is

172plotted in Fig. 1. In section (a) of the figure, the

173convergence criterion, K � jDV =V j, for stopping

174the conjugate gradient refinement was set very

175tight, K ¼ 10�12 per iteration, meaning, as ex-

176plained below, that the stationary points repre-

177sented in large numbers in Fig. 1a are minima. For

178example, explicit calculation of the Hessian reveals
179that of the 55 points plotted in Fig. 1a only the

180four lowest energy points are minima (as found in

181[7]), the other 51 points corresponding to saddle

182points, inflexion points, or partial cluster minima

183with less than 7 atoms (for example, the spike at

184�0:207� 10�12 erg corresponds to the octahedral

185global minimum of Ar6 plus 1 atom at a large

186distance).
187The novelty of the approach presented here is

188that the ratio of finding saddles to finding minima

189may be increased by increasing the value of the

190convergence criterion K. Section (b) of Fig. 1

191corresponds to the results of the runs with the

Fig. 1. (a) Energy distribution of the stationary points found for Ar7 in 860 000 runs of the algorithm using a tight convergence criteria

of K ¼ 10�12. (b) The same but for K ¼ 10�8, showing that the algorithm converges more often on points which are not minima (many

of which are saddle points). The number of times the point was found is plotted with logarithmic scale on the y-axis.
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192 same initial conditions but with the convergence

193 criterion set loose at K ¼ 10�8. The algorithm now

194 converges with greater probability on stationary

195 points which are not minima. Explicit calculation

196 of the Hessian of 80 points chosen at random from

197 the distribution shows that roughly 64% of these
198 are saddle points, 11% are inflexion like points or

199 shallow valleys, while the rest correspond to min-

200 ima of less than 7 atoms, saddles of minima of less

201 than 7 atoms, and minima of 7 atoms. The in-

202 creased probability of converging on a saddle

203 point when using a larger value of K is due to the

204 fact that the implementation of the conjugate

205 gradient minimization is necessarily discrete.
206 Therefore, unless the discrete displacement in

207 configuration space is in the direction of the ei-

208 genvector corresponding to an eigenvalue of the

209 Hessian which is negative, i.e., on the concave

210 downward part of the saddle, a larger value of K
211 leads to a higher probability that the algorithm

212 will converge if the search is in the immediate

213 neighborhood of the saddle point. This probability
214 is related to the number of positive eigenvalues of

215 the Hessian at the saddle point and to the inverse

216 of the magnitudes of these. The convergence

217 probability will be greater for conjugate gradient

218 minimizations than for steepest decent methods

219 which tend to follow directly the eigenvectors

220 corresponding to large negative eigenvalues.

221 Making the convergence criteria too large leads
222 to preferential convergence on neither a minimum

223 nor a saddle point, but somewhere else, for ex-

224 ample, at some point in the basin of a shallow

225 valley or at an inflexion like point. Although such

226 topographical features clearly play an important

227 role in the dynamics, the immediate interest of this

228 Letter is to locate either saddle points or minima.

229 The optimal is thus to converge on as many true
230 low-energy saddle points as possible while at the

231 same time avoid converging elsewhere. A value of

232 K ¼ 10�8 was empirically determined for the LJ

233 potential, and for the cluster sizes presented here,

234 to provide the best compromise in this sense. This

235 rather tight stopping criteria eliminates the possi-

236 bility of stopping on all slopes which are not al-

237 most zero on the potential energy surface. To
238 eliminate inflexion like points from the sample, we

239 require that the stationary point connects directly

240at least two distinct minima. Finally, we require

241that the stationary point–minima connections are

242found at least three or more times for Ar7, and at

243least two or more times for Ar38 where the statis-

244tics are less. Since each run of the algorithm is

245from a different initial configuration, it is im-
246probable that the algorithm will converge at the

247same point in energy within a shallow valley in

248distinct runs. However, the probability of con-

249verging at the same point will be much higher if the

250algorithm is lead to that point by the curvature of

251the potential energy surface, as in the case of true

252saddle points. These three saddle point selection

253criteria eliminate, to a great extent, spurious,
254shallow valley and inflexion like points.

255The algorithm is thus first run with K ¼ 10�8,

256and, after recording the energy at which the al-

257gorithm converges (with significant probability on

258a saddle point), changing the value of K to 10�12

259and continuing the optimization. This convergence

260criterion is almost always sufficient to allow the

261discrete search to leave the saddle point. If the
262potential energy then drops by more than 2%, K is

263again changed to 10�8, allowing for the possibility

264of convergence on a second, lower energy saddle

265point. The process is repeated until the conjugate

266gradient code converges finally, with K ¼ 10�12, on

267what must be a local minimum. Since the algo-

268rithm is efficient and can be run hundreds of

269thousands, or millions, of times, each starting from
270a distinct random initial configuration of the at-

271oms, statistics are accumulated concerning the

272widths of paths in phase space leading from sad-

273dles to minima, or saddle points to saddle points.

274The same saddle point may be found on the route

275to various different minima. The reconstructed

276energy surface thus consists of not only the inter-

277connections between saddle points and between
278saddle points and minima, but also probabilities

279associated to these reaction paths. To the extent to

280which the conjugate gradient relaxation is similar

281to the relaxation approach taken by Nature, the

282calculated probabilities provide an approximation

283to the real attraction basin widths in phase space.

284It is noted that here we are moving over a surface

285defined by an empirical potential fitted to experi-
286mental data rather than by a quantum first prin-

287ciples calculation incorporating all relevant
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288 degrees of freedom. However, not withstanding

289 the much larger CPU costs involved in the latter,

290 the method is applicable to both approaches.

291 The detail in the potential energy surface for

292 Ar7 can be surmised from Fig. 2 which plots the

293 minima, saddle points, and their interconnections
294 (saddle point to saddle point connections are not

295 shown). The connection of a saddle point to a

296 minimum is drawn only if the point was found to

297 connect at least two minima and only if the the

298 connection was found three or more times. Min-

299 ima were considered to be the same if their ener-

300 gies were within 0:00001� 10�12 erg and saddle

301 points were considered to be the same if their en-
302 ergies were within :0003� 10�12 erg. In Fig. 2, the

303 horizontal and vertical positions of the minima

304correspond to their actual energies. The vertical

305positions of the saddle points correspond to their

306actual energies while the horizontal positions were

307taken to be at the center of the distribution in

308energy of all the minima they connect. The width

309of the connecting lines in the figure is drawn pro-
310portional to the number of times the connection

311was found, and represents an approximation to

312phase space widths. In total, 305 saddle points

313connecting directly two or more minima, and

314found three or more times, are shown in the figure.

315We did not find any points in Fig. 2 which were

316not either saddle points, or minima of 6 atoms

317with one atom at a large distance.
318Note that the lowest energy saddles connect

319isomer 1 with isomers 3 and 4, and not with isomer

3202. The number of saddle points which connect

321more than two minima is substantial, and these

322connect isomer 1 with isomers 3 and 4. Note that

323isomer 2, which is the capped octahedron, is fed

324only substantially from the Ar6 octahedron plus

325one atom (energy �0:207� 10�12). Even though
326such a point is not a traditional saddle point,

327neither is it an inflexion point (since the potential

328energy surface is asymptotically flat in the config-

329uration coordinates of the single atom) nor a

330shallow valley (since it connects in fact three dis-

331tinct minima directly). Its delineation, however, is

332important to the thermodynamics of the system.

333For example, it predicts that the capped octahe-
334dron will be stable with respect to thermal excita-

335tion since the only reaction path of substantial

336phase space volume consists of essential evapora-

337tion of the capping atom (occurring at a rather

338high total energy, or temperature).

339For Ar38, 100 000 runs of the algorithm were

340performed. Here, in order to obtain good statistics

341for the different paths leading to the very lowest
342energy minima, the results of the global optimi-

343zation are augmented by a factor of 10 by applying

344light, stochastic perturbations, �shakes�, of the low-
345energy configurations found. Local optimization,

346with the conjugate gradient relaxation, then pro-

347ceeds for each shake in the same manner as de-

348scribed above. In Fig. 3 only those saddles which

349connect at least two minima of low energy
350(< �2:83� 10�12 erg), and found two or more

351times, are shown (4803 saddle to minima connec-

Fig. 2. Plot of saddle points and connections to minima for

Ar7. The saddle points were obtained with a convergence cri-

terion K ¼ 10�8 while the minima were obtained with

K ¼ 10�12. Only saddle points which connect at least two

minima, and only connections obtained at least three times are

plotted. The thickness of the connecting lines is proportional to

the number of times the connection was found.
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352 tions in total). Note that information used in

353 plotting the figure is, for example, sufficient to

354 delineate the reaction paths between the global

355 minimum fcc and icosahedral isomers, and, addi-

356 tionally, to obtain an approximation of the phase

357 space widths of these paths. In Fig. 4, all of the

358 saddle to minima connections for Ar38, found
359 more than three times, are shown. This figure in-

360 cludes more than 35,780 of the lowest energy

361 saddle to minima connections.

362 3. Discussion and conclusions

363 Energy surface maps such as the ones given in
364 Figs. 2–4 contain sufficient information to deter-

365 mine the dynamics and thermodynamics of these

366 finite systems at finite temperature. For example,

367transition rates between isomers in equilibrium can

368be estimated from the energies of the minima and

369connecting saddle points, and a measure of the

370phase space volume of the local potential wells and

371saddle points [22]. The volume is usually obtained
372through calculation of the �curvature� of the po-

373tential energy surface, obtained from the determi-

374nant of the Hessian of the potential energy

375function [22] evaluated at the minimum. Such a

376description, however, is not very accurate since the

377curvature at the site of the minimum is not the

378curvature of the potential energy surface near the

379saddle point. The statistical approach of enumer-
380ating trajectories better approximates the phase

381space volume of the actual path from a saddle to a

382minimum. All reaction paths along with their re-

383spective probability weights can be considered in

384the calculation of the transition rate. Such phase

385space volumes are also adequate for understanding

Fig. 4. Saddle point–minima connections found three or more

times for Ar38. The width of the lines is proportional to the

number of times the connection was found.

Fig. 3. The same as for Fig. 2 but for Ar38. Only saddle points

which connect at least two minima with energies below

�2:83� 10�12 erg, and which were obtained two or more times,

are plotted.
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386 out of equilibrium processes such as relaxation or

387 nucleation, processes from high to low potential

388 energies. Explicit use of our topography maps to

389 predict the dynamics and thermodynamics of na-

390 noclusters will be the subject of a forthcoming

391 paper.
392 We have presented a very simple and efficient

393 technique for determining the low-energy topog-

394 raphy of the potential energy surface of molecules

395 and nanoclusters. The technique employs an effi-

396 cient global algorithm, combined with stochastic

397 perturbation, which reaches the lowest energy re-

398 gions of the potential energy surface, and an iter-

399 ative conjugate gradient local relaxation which can
400 be biased to converge in the neighborhood of a

401 saddle point by setting the convergence criterion

402 loose enough. The technique not only finds the

403 connections between saddle points and minima, or

404 between saddle points and saddle points, but also

405 approximates the phase space volumes of these

406 paths through statistical sampling.

407 The approach represents a considerable im-
408 provement over eigenvector following techniques

409 in the sense of being more efficient in the deter-

410 mination of the low-energy topography of the

411 energy surface, and of providing widths for the

412 paths in phase space. Most of the reaction paths

413 leading from one low-energy minimum to another

414 can be found and characterized, leading to an ac-

415 curate determination of the dynamical or ther-
416 modynamical behavior of clusters or molecules, in

417 or out of equilibrium.
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