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Abstract

The dynamics and stability of ecosystems is studied from the perspective of the
linear theory of irreversible thermodynamics. It is argued that if the external
constraints are constant, the ecosystem will naturally evolve toward a stable
thermodynamic stationary state in which the production of entropy within the
ecosystem is at a local minimum value. This extremal condition leads to equa-
tions for the stationary state population dynamics of interacting species, more
general than those of Lotka-Volterra, and to conditions on the parameters of the

community interaction matrix guaranteeing stability.

PACS numbers: 87.23.-n, 87.23.Cc, 87.23.Kg, 05.70.Ln

I. INTRODUCTION

The complexity of a typical ecosystem containing over 3000 species [1] leads to non-trivial
questions concerning its stability and dynamics. Such questions are of crucial importance in
guiding wildlife management programs, and in forecasting ecological catastrophes. The mod-
eling of ecosystems in the traditional ecological framework is based on ad hoc extensions of

Lotka-Volterra type equations [2-5]. Apart from providing little theoretical insight or empir-



ical predictive power, such a framework implicitly contains a celebrated paradox contrasting
the theoretical improbability of a stable, complex system with ample field evidence of stable,
complex ecosystems [2].

This letter looks at ecosystem stability and dynamics from the perspective of the linear
theory of irreversible thermodynamics (LIT). The ecosystem is modeled as an open thermo-
dynamic system over which a constant free energy flow is impressed, sunlight. Interactions
between the individuals of the species and with their external abiotic environment, cause a
time change of the total entropy of the system. If the external constraints, energy and nutrient
flows, over the system are constant, and if indeed biological processes are under the dominion
of the same physical laws as chemical, transport, and mechanical processes, LIT predicts [6]
that the system will evolve toward a stationary state in which extensive variables such as the
total entropy S are constant in time. This generates dynamical equations for the species pop-
ulations more general than, but including, those of Lotka-Volterra. Further, a LIT condition
of minimal entropy production in the stationary state dictates relations among the elements of

the community interaction matrix, ensuring stability.

II. THE TRADITIONAL ECOLOGICAL FRAMEWORK

Population modeling in the traditional ecological framework is based on the equations [3],

dt
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where Fj is, in general, some empirically inspired, nonlinear function of the populations p; of the
n species. For example, for the Lotka-Volterra equations (having the stability characteristics of
a much wider class of ecological models employed in the literature [3]), F' takes the following
form,

F; = pi(b + ipjcij)- (2)

i=1



Of much interest in ecology, because of its frequent occurrence in nature, is the so called
ecological steady state in which all growth rates are zero, giving the fixed point, or steady state,

populations p;,

0= Fi(pi(t), p5(t), .-p, (1)) (3)

The local population dynamics and stability in the neighborhood of the fixed point can be

determined by expanding Eqn. (1) in a Taylor series about the steady state populations,
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where z;(t) = p;(t) — pf and the x denotes evaluation at the steady state. Since Fj|, = 0, and
close to the steady state the x; are small, only the second term in the expansion (4) need be

considered. In matrix notation, this gives,
X(t) = Ax(t), ()

where x(t) is a n x 1 column vector of the population deviations from steady state values, and
the so called “community matrix” A has the components

_ R,
8pj *.

(6)

aij

which represent the effect of species j on the rate of change of population 7 near the steady
state.
The solution of equation (5) is
n
zi(t) = 21 Cij exp(A;t) (7)
j=
where ); are the eigenvalues of the matrix A and the integration constants Cj; are determined
from the initial conditions.
From equation (7) it is obvious that local asymptotic stability near the steady state requires

that the real parts of all the eigenvalues of A must be negative. This condition gives rise to very
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restrictive relations among the components a;; of the community matrix A [3]. For example,
it can be shown that for a n = 2 species community it requires that a;; + ass < 0, and

a11092 > a12a91- For the Lotka-Volterra equations, Eqn. (2), this implies

pici1 + pycae < 0, (8)

and

C11C22 > C12Co1. (9)

For a community of an arbitrary number n of species, the requirement that the n x n matrix A
have all real parts of its eigenvalues negative is equivalent to the demonstration of the existence
of a positive definite quadratic function V = xTPx (Lyapunov function) having its derivative
with respect to time negative definite [7].

The relations between the components of the community matrix for ensuring stability of the
ecosystem are thus specific, and can be shown to be more specific the more complex the system
[3]. This leads to a celebrated paradox: Without a mechanism for fine tuning the community
matrix, there should be little probability of finding stable complex ecosystems. However, in
nature, most ecosystems are very complex and most are at least locally stable [1,8].

The most plausible mechanism thus far offered for tuning the parameters of the community
matrix is natural selection [3]. However, this explanation is not complete since it leads to
another celebrated problem; that of natural selection working on the evolution of a system of

a population of one (the ecosystem) [9].

III. PROPOSED THERMODYNAMIC FRAMEWORK

The linear theory of irreversible thermodynamics provides an interesting framework for
accommodating the problem of ecosystem dynamics and stability. We start by writing the
total change in time of entropy of the ecosystem as a many-body expansion of entropy changes

due to interactions among individuals (allowed by the eztensivity property of entropy),
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The T'; represent the change of entropy in time due to 1-body interactions of individuals
with their abiotic environment (eg. evapotranspiration, photo-synthesis, respiration, metabolic
heat transfer to environment, etc.); I';; represents 2-body interactions between individuals (eg.
predator-prey, competition, symbiosis, mutualism, etc.); I';;; correspond to the 3-body inter-
actions, and O(4) represents 4-body and higher order interactions (eg. those required for the
functioning of societies).

The total time change of entropy can be expressed as a sum of an external term, of no

definite sign, and an internal term, of positive definite sign (required by the second law of

thermodynamics),

as d.S d;S

a - at o a (11)

The external part of the change of entropy can be associated with the one body interactions of

the individuals with their abiotic environment,

The internal, dissipative part is then associated with the biotic 2-body and higher order inter-

actions among the participating individuals,

dt S1d - pipiTiy + Y pipjorTije +O(4)| > 0. (13)
i=1 [ j=1 j,k=1

In the stationary state, dS/dt = 0, and since the internal dissipation is positive by the second

law, then,

d.S

el > pili <0, (14)

1=1

indicating that in the stationary state, at least one of the species must bring negative entropy

into the ecosystem of an amount greater than the positive entropy given back to the environment
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by the other one-body exchanges. This role is most often played by the photo-synthesizing
species.

The inherent stability of the stationary state implies,

0 |dS
n; l%”:“ (15)

for all species . The *x now denotes evaluation at the stationary state populations.

In the following, equation (10) will be truncated at the two-body terms. The justification
for this is that, for most ecosystems, higher order n-body interactions will be less probable
since they require n-body localization within a limited space-time volume. The two-body
truncation is in fact the norm in most ecological studies [3,10,11] with few exceptions [12]. This
truncation, however, may not be valid for ecosystems with societal species, in which higher
n-body interactions probably play an important role. The more general dynamical equations
and stability relations obtained from the complete equation (10) employing equation (15) will
be developed in a forthcoming article.

Thus, taking equation (10) only to second order in the interactions, Eqn. (15) gives

n
L+ le;(rij +Tj;) =0. (16)

j=
A simple change of variable makes these equations recognizable as equivalents of those defining
the steady state populations in the ecological framework employing the Lotka-Volterra equa-
tions, Eqgs. (2) with conditions (3). For example, for the case of n = 2, the appropriate
substitutions are, I'y = —bl\/cm/TIQ, [+ T = —\/C12631 and ['y; = —cnm&, with

corresponding definitions for I'y and T'y,.

In the stationary state, assuming linear phenomenological laws (see below), the internal

dissipation of entropy, ;S = d;S/dt is a minimum [6]. In general, if ;S is a function of n

populations, the condition for it to be a minimum is that the Hessian matrix,

028
hij = (2 1
’ <3piapj> ‘* (17)
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is positive definite [7]. As an example, for n = 2 species, ;S is a function of two variables, p;

and p,, and the following two conditions must be satisfied [13];

a28
| 0,
PPy
RS #s| [ s - a8
Op1? Opo? Pip} Op10pa - '

To second order in the interactions, this leads to the following conditions on the interaction

parameters,

[y >0,

AT T9g > (g + 1121)2- (19)

With the variable substitutions introduced above, these relations can be recognized as sufficient
conditions for stability of the steady state populations in the ecological framework, equations
(8) and (9).

For arbitrary ecosystem size n, that these conditions are the same as those imposed on the
community matrix for stability in the ecological framework can be demonstrated as follows:

Consider the quadratic function
V=x"Tx=(p—p*)"'T(p-p), (20)

where T' is the matrix of entropy change due to 2-body interactions I';;. The internal entropy
production of the ecosystem at arbitrary populations p, i.e. pTI'p, and that at the stationary
state populations, p*TI'p* are both positive definite by the second law of thermodynamics.
Since the internal production of entropy is at a minimum in the stationary state, V' is thus also
positive definite.

The time derivative of V' is

dv _d[(p—p)T(p—p")]
dat dt '

(21)
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A most general result of linear irreversible thermodynamics is that the time change of the

internal production of entropy

= — 22
dt | dt (22)

d ldisl _d [p;tl“p]

is negative semi-definite if the external constraints are time-independent [6]. Since d [pTFp] /dt

*

thus has its maximum value of zero at the stationary state populations p*, it is obvious that
dV'/dt is negative definite. V is thus the Lyapunov function which establishes the local asymp-
totic stability of the community matrix for an arbitrary community size. An ecological steady
state thus has the dynamic and stability characteristics of a thermodynamic stationary state
and it 1s tempting to consider the former as a particular case of the latter.

These stability conditions can be shown to be somewhat more general. For example, consider

the case of a system evolving from one stationary state to another [6]. The second law of

thermodynamics requires that always

d;S
>0 23
>0 (23)
or, to second order in the interactions,
n
> pipiTi; > 0. (24)
2
For example, for n = 2 species
T'11p; + (C1g + Dot )pips + Caop > 0. (25)

Equation (25) can only always be satisfied, for whatever values of the populations, if the first
of conditions (19) are met. For ecosystems in which (I';3 4+ I'y;) is negative, the second of
conditions (19) must also be met. The second law of thermodynamics thus places restrictions
on the values of the inter- and intra-specific interaction parameters in the direction of securing
ecosystem stability during evolution. An association of the second law of thermodynamics with

natural selection is thus implied.



IV. PHENOMENOLOGICAL LAWS AND RECIPROCITY RELATIONS

The employment of the condition of minimal internal entropy production and that of the
negative definiteness of the time change of the internal entropy production implicitly assumed
the linearity of the phenomenological laws and the reciprocity relations of Onsager [6]. To
second order in the interactions, the total change of entropy in the ecosystem, Eqn. (10), can

be written in the form,

ds & Lij+Ty
i S pLi+ > pipj (%) (26)
i=1 j=1
In terms of generalized flows J and forces X [6],
d;S
D) (27)

The flows and forces can thus be assigned as,

Lij + Ty

Ji = ij (T) , Xi=ni. (28)

The generalized forces are thus the populations of the species and the flows are the total
changes of entropy due to the two-body interaction of species 7 with the rest of the species j.

The phenomenological relations are thus of the linear form,
Ji =Y LijX; (29)
J
where the phenomenological coefficients are,

(30)

Ty + T},
Li=Ta, Ly=(~23-2).

2
From this and equation (19), or the condition following from equation (25), it follows that,

The reciprocity relations of Onsager and the positive definite nature of the proper phenomeno-
logical coefficients are thus satisfied to 2nd order in the interactions, within or out of the

stationary state.



V. DISCUSSION AND CONCLUSIONS

Including interactions between individuals only to second order was justified on the basis of
the smaller probability of higher n-body interactions. This was also useful for comparing our
results with the traditional approach based on Lotka-Volterra type equations (in general also of
second order). Including higher order interactions means that the phenomenological relations
will then no longer be linear, implying that the condition of minimal entropy production no
longer strictly applies. However, the more general result found by Prigogine and co-workers [6],
concerning the rate of internal entropy production, can still be used in this nonlinear regime.
In a forthcoming paper it will be shown that this gives rise to wider spectrum of dynamical
behavior for the populations.

In the case of changing external constraints, or more generally an evolving ecosystem, in
which the phenomenological coefficients (interaction parameters) cannot be treated as con-
stants, again the linear theory does not apply. However, it is still valid, as shown above, that
the universal law of positive internal entropy production places restrictions on the relations
between the interaction parameters in the direction of securing ecosystem stability.

In conclusion, non-equilibrium thermodynamics can serve as a useful framework for de-
scribing the dynamics and stability of ecosystems. Under the postulates of LIT, the stability of
the community matrix is guaranteed, independent of its size, and there is thus no complexity-
stability paradox. Under constant external constraints the thermodynamic system evolves nat-
urally toward a stable stationary state characterized by minimal internal entropy production,
implying a stable community matrix. The second law of thermodynamics places restrictions
on the interaction parameters, maintaining community stability during the evolution of the
ecosystem from one stationary state to another. This suggests a connection between natural

selection of stable ecosystems and the second law of thermodynamics.
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