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Growth and morphology in Langmuir monolayers
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Abstract. – We show that domain growth of condensed phases from a metastable phase
in Langmuir monolayers presents several stages. At the very beginning, depending on the
supersaturation level, structures evolve through a tip-splitting dynamics. If supersaturation
levels are high, there is a morphological transition, domains grow with needle tips that show as
growth proceeds, side branching. The way in which the instability starts at round domains when
a small lateral pressure jump is applied to the monolayer is also shown. A model for a monolayer
interacting with the subphase is presented. This model can be related to the theory of dynamic
phase transitions, where morphological structures and morphological transitions are predicted.

Introduction. – Insoluble amphiphilic molecules form Langmuir monolayers (LMs) at
the air-water interface. LMs are studied using measurements of pressure-area isotherms,
Π(A, T ) = γ0(T ) − γ(A, T ), where T is the temperature, A is the area/molecule, γ and γ0

are the surface tensions of the monolayer and of pure water, respectively, and using some
observational technique like Brewster angle microscopy (BAM). In this letter, we present a
study of how patterns formed by monolayer domains of a stable phase, usually a solid or
liquid condensed phase, propagate into a metastable one, usually a liquid expanded phase.
During this propagation, the interface between the two phases moves as the metastable phase
is transformed into the stable one. The interface becomes unstable and forms patterns as a
result of the competition between a chemical potential gradient that destabilizes the interface
on one hand, and line tension that stabilizes the interface on the other. The further the
system is out of equilibrium the faster the metastable phase will turn into the stabler phase
and, consequently, the faster the interface will propagate. The competition between effects
that stabilize and destabilize the system gives rise to characteristic length scales of growing
domains and determines together with the anisotropy, the overall shape and symmetry of
domain patterns. Balance between competing effects varies as growth conditions change. The
observed patterns may be grouped into a small number of typical patterns or morphologies
each representing a different dominant effect. For a given system, each morphology is observed
over a range of growth conditions.

In single-component LMs the problem of non-equilibrium growth morphologies is subtler
than in 3D solids. In the latter case, the role played by the released heat during the phase tran-
sition, which has to be diffused away from the interface before the front can advance further,
is not important in LMs, because the monolayer rests on a large body of water (subphase)
that acts as an isothermal reservoir, absorbing all the latent heat released during the phase
transition. In monolayers, growing instabilities are usually observed along a fluid/non-fluid
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phase transition, where the involved phases have a large difference in area density (∼ 50%).
Supersaturation induces domain growth, which depending on the experimental conditions,
forms fractal, seaweed, and dendritic morphologies.

Pattern formation in 3D has a long history [1, 2]. The selection problem for growing nee-
dle crystals was solved through the micro-solvability theory, with the conclusion that surface
tension and surface kinetics, despite their small size, turned out to be singular perturbations
to the problem that totally change the character of interfacial dynamics [3, 4]. When surface
tension and surface kinetics are isotropic, dendritic growth does not occur, but rather fingers
with tip splitting dynamics. Anisotropy is required in the interfacial dynamics to produce
dendritic growth [2, 5–7]. A theory of pattern formation for diffusional growth has been pre-
sented, which is able to develop a morphology diagram [8–11]. Here, the building block for
the dendritic structure is a dendrite with parabolic tip, and the basic element for the sea-
weed structure is a doublon [12, 13]. The control parameters in the morphology diagram are
the anisotropy, ε, of the capillary length and the undercooling, ∆; structures are classified
according to whether they are compact or fractal, and whether they posses orientational or-
der or not. Many experiments have been performed to understand the solidification problem
in 3D. However, experimental studies of 2D patterns formed by monolayer domains when a
stable phase is propagating into a metastable one are not common. Miller and Möhwald [14]
worked with a phospholipid monolayer and explained their observations in terms of a diffusive
model with impurities, since they used a dye to observe the monolayer with polarized fluo-
rescence microscopy; they observed structures that correspond to seaweed growth. Using the
same observational technique, a chiral amphiphile was studied [15]. More recently, monolayer
observations are made with the non-invasive BAM. A variety of non-equilibrium growth struc-
tures has been found for monolayers [16–18], although in these studies the observed instability
was not discussed. Flores et al. [19], observed dendritic growth for DODA monolayer caused
by supersaturation and Bruinsma et al. [20] have proposed a hydrodynamic mechanism based
on Marangoni flow to describe growth instabilities.

Results and discussion. – Here, we present how, at some point during the domain growth,
there is a morphology transition from tip splitting to side branching. This was observed for
three different Langmuir monolayers using BAM: dioctadecylamine (DODA), ethyl palmitate
(EP), and ethyl stearate (ES). In particular, to observe the domain growth of the S1 phase in
DODA monolayer, we performed several experiments where the monolayer was compressed up
to the phase coexistence of LE and S1. After few minutes of relaxation (∼ 15min), a pressure
jump was made by a sudden compression of the monolayer to supersaturate the system. This
sudden compression created the equivalent of undercooling in classical solidification. The pres-
sure reached after the jump was maintained constant. Jumps of the same size were repeated
several times consecutively to increase the supersaturation level at each jump. After the initial
jump, domains usually were very small, and the smaller ones melted again during the obser-
vation time. At larger supersaturations (second or third pressure jump), the size of domains
allowed for a clear observation of them, using BAM. Further jumps were in general useless,
since domains became large and big enough to interact among them. In a first experiment,
we made jumps of ∆Π = 1mN/m, and after the third jump, when a pressure of Π = 9mN/m
was reached, the monolayer initially presented flower-like domains formed by 5–7 leaves, not
very symmetric, and most of the times, bulged at the ends; some of them showed tip splitting.
Thereafter, domains grow on average, with a seaweed-like structure caused by the typical
tip-splitting dynamics (fig. 1a). However, since the local growing conditions along the trough
were not exactly the same, it was usual to observe some locations along the monolayer with
domains showing tip splitting and others showing thick arrow-shaped tips. Figure 1b shows
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Fig. 1 – BAM images of the DODA monolayer. a) After pressure jumps of ∆Π = 1mN/m that reach
a final pressure of Π = 9mN/m (T = 24.2 ◦C). b) After pressure jumps of ∆Π = 2mN/m that reach a
final pressure of Π = 8mN/m (T = 23.6 ◦C). c) After a pressure jump of ∆Π = 4mN/m, that reached
a final pressure of Π = 8mN/m (T = 23.5 ◦C). The horizontal full width is 220µm for each image.

BAM images of the DODA monolayer (T = 23.6 ◦C) after pressure jumps of ∆Π = 2mN/m
that reached the final pressure of Π = 8mN/m (second jump). At this saturation level, the
monolayer seems to cross a transition zone, growing with a dynamics for which tip-splitting and
side-branching morphologies were equally likely. Depending on the observed location in the
monolayer, we could observe seaweed structures or dendrites, although the later ones were not
well formed. It was very common to observe mixed domains, i.e., domains with some legs show-
ing tip splitting and some legs showing needle tips; in the later case, even showing side-branches
(usually the larger ones). Figure 1c shows BAM images of DODA monolayer (T = 23.5 ◦C) af-
ter a pressure jump of ∆Π = 4mN/m, that reached a final pressure of Π = 8mN/m (after the
first jump). Here, the supersaturation was larger than in the two preceding examples. In this
case, even though initially there were some domains showing tip splitting and some deformed
seaweeds turning into dendrites, it was more common to observe domains with six dendritic
legs with clear side branching. Finally, a global observation of figs. 1, where the essential dif-
ference is just the size of the pressure jumps that leads to different supersaturation levels (tem-
perature is almost the same), makes it clear that, at low supersaturation levels, seaweed growth
is preferred. On the contrary, at large supersaturation levels, dendritic growth is preferred.

When ES monolayer was compressed at relatively high speed (80 cm2/min, at T = 32 ◦C),
it was possible to catch the growth of domains just from the beginning, from nearly round
domains up to dendritic domains. Initially, there are small round domains, the instability
deforms the 1D interface and forms fingers; some of the fingers grow faster and form flower-
like domains. In a next stage, the fingers turn into legs that show tip splitting. In the next
events, growth is very rapid, and since the local conditions are slightly different along the
monolayer, domains show mixed growing dynamics, i.e., parts of a domain grow through tip
splitting and other parts present needles, which quickly show side branching. At the end,
before domains collide, the legs present a clear dendritic morphology (see fig. 2; a film can
be seen at: http://www.fisica.unam.mx/liquids/movies/movies.html). EP monolayer
shows exactly the same pattern. These experiments clearly show that there is a morphology
transition during domain growth of a condensed phase into the metastable fluid LE phase.

Dendrite tip radius was measured on electronic images coming from BAM as function of
dendrite length. We fit a circle to the tip of fully developed dendritic legs (resolution 0.5µm)
and measured the distance from that tip to the domain centre to which the dendritic legs were
attached. The tip radius is almost insensitive to the dendrite length, probably revealing that
the supersaturation level is similar for all dendrites in these experiments, as well as the level of
line tension anisotropy; therefore, there is a selected tip radius [9]. For all measured dendrites,
the tip radius was around 1.5µm depending on the experimental conditions. Our results here
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Fig. 2 – BAM images showing ethyl stearate L′
2 phase growing into the LE phase at relatively high

speed (time difference between images ∼ 2 s). The monolayer was compressed at 80 cm2/min, at
T = 32 ◦C. The horizontal full width is 430µm/image. Arrows indicate a particular growing domain.

are just an estimate, since we are close to the resolution limit of the BAM technique. The
position of the side branches was measured from the domain centre. Although, the side-
branches at the right and at left sides are at different positions, both are disposed in a periodic
way. The relation is almost linear; the linear correlation fitting coefficient is greater than 0.9
for each dendritic leg. The average distance between side branches is 5.9 ± 1.2µm, and the
average ratio of this periodicity and the measured tip radius for each dendrite leg is 3.8± 0.5.
This number is similar to the quasi-2D dendrites obtained in NH4Br [21]. Figures 3a and b
present examples of doublons formed after a small pressure jump in LMs. Although they
are astonishing, as growth proceeds the channel that characterizes them becomes, in general,
wider. Figure 3c shows an AFM image of a Langmuir-Blodgett monolayer transferred on
mica, where we can observe the channel of the doublon. The height difference between the
domain plateau and the LE phase level is ca. 0.85 nm due to the different tail tilting between
the S1 and the LE phases in this monolayer.

To study the instability of the circular shape, we used monolayers made of ES and of
EP whose relaxation times are short. In these experiments, the monolayers were compressed
gently up to the LE/L′

2 phase transition, where round domains could be clearly observed with
BAM; they were allowed to relax for ∼ 5min. We then made a sudden compression of the
monolayer that produced a lateral pressure jump. If the pressure jump is small (∼ 1mN/m),
the 1D circular interface deforms with a long wavelength ondulation. If pressure jumps are
a little bit larger (∼ 2mN/m), an instability starts to develop. Structures similar to small
fingers appear and grow at the interface line. As an example, in fig. 4 we present images of
growing fingers from round domains of EP at LE/L′

2 phase transition after a lateral pressure
jump. Since we are able to observe the early stages of the destabilization, we report frequency
histograms of distances, λ, between fingers. This distance was actually measured as the

Fig. 3 – Doublons formed in Langmuir monolayers. a) DODA T = 23.8 ◦C, Π = 5mN/m. b) Ethyl
palmitate T = 20.3 ◦C, Π = 6mN/m. Horizontal full width is 220µm. c) AFM images (phase lag) of a
LB transferred DODAmonolayer on mica. The horizontal full width is 13.5µm; temperature and pres-
sure of LB transferring: T = 25.6 ◦C and Π = 6mN/m. The doublon channel is shown by an arrow.
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Fig. 4 – Growing fingers from round domains of ethyl palmitate at LE/L′
2 phase transition after a

small lateral pressure jump, and a frequency chart vs. λ for the domain marked with a circle and a
centre, showing how many fingers are found at λ (domain radius 100.4µm).

distance between neighbouhoring valleys that have a finger between them (valley-to-valley
distance). The histograms show a maximum at the most frequent value of λ. This implies
that there is a wavelength that grows faster than the others, indicating that the competition
between stabilizing and destabilizing effects leads to a dynamics in which some modes grow,
some modes decay, and there is a mode that grows faster than the others and determines the
characteristic length of the pattern at short times. This is consistent with typical dispersion
relations of classical free-boundary problems.

As mentioned, in monolayers, the involved phases have a large density difference, of the
order of 50%. As a result, domain growth will necessarily give rise to a density profile in the
domain neighborhood. Therefore, mass diffusion must be a key variable to understand domain
growth in LMs. Let us consider a LM with two coexisting phases in thermodynamic equilib-
rium. Here, we will represent by LE the liquid expanded phase, and by LC any condensed
phase, with a long-range or with a quasi–long-range order in an order parameter. We denote by
µ the chemical potential of amphiphile molecules. This one is the same for both phases when
the interface is flat or when the interface curvature is negligible; let us denote it by µo. ρl and
ρs are the amphiphile densities for LE and LC phases, respectively. If we impose a small, but
abrupt, decrease in the total area occupied by the LM, as in the experiments described above,
a transient increase in surface pressure ensues. Far from the LE/LC line boundary, both the
amphiphile density and chemical potential in the LE phase increase by amounts δρ and δµ,
respectively. The chemical potential µ0 and the density ρs in the LC phase change only by a
negligible amount. For sufficiently low levels of supersaturation, i.e., for sufficiently small val-
ues of δρ and δµ, the condition of local thermodynamic equilibrium can be used. Under these
conditions, we reach a stationary state, where the chemical potential is a continuous function of
position, and it must be equal on both sides of the LE/LC flat line boundary. Away from this
LE/LC line boundary, µ increases monotonically until it reaches a value µ∞ = µ0 + δµ at the
monolayer boundary. The chemical potential gradient in the LE phase is the thermodynamic
force that drives amphiphile molecules towards the LE/LC line boundary. Concomitant with
the chemical potential, density increases monotonically from the line boundary until it reaches
the asymptotic value ρ∞ = ρ0+δρ. For monolayer domains of a specific radius, local thermody-
namic equilibrium at the interface implies that we must consider the Gibbs-Thomson equation:

µ(interface)− µ0(T ) = − τ

∆ρ
κ, (1)

where κ is the local curvature, ∆ρ is the equilibrium density difference between LE and
LC phases at the temperature T , and τ is the line tension. The subphase is treated as an
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incompressible fluid where the subphase velocity field v(vx, , vy,, vz) and the pressure field
P (x, y, z) can be calculated at the stationary state, using the Stokes’ hydrodynamic equation
η∇2v = ∇P with ∇ · v = 0; here, η is the subphase viscosity. Let us denote by u(r, θ)
the monolayer velocity that follows a 2D Stokes equation, which can be written according to
Bruinsma et al. [20] in the following way:

ηs∇2⊥u = ∇Π− η∂zu, (2)

where, ηs is the interfacial shear viscosity for the LE phase and (−η∂zu) is the viscous stress
exerted by the subphase. In order to compare surface and bulk viscous terms in eq. (2), modes
of wave vector q have been considered [20]. The ratio of the interfacial to subphase viscous
terms (ζ = ηs/η) is of the order qζ, therefore, there are two regimes: Surface viscous losses
are dominant when qζ � 1 and subphase viscous terms dominate when qζ � 1. Bruinsma
et al. [20] estimated that for monolayers the surface-viscous regime applies. Here, the flow
profile is determined by the solutions of a purely 2D Stokes equation:

ηs∇2⊥u ≈ ∇Π. (3)

On applying ∇⊥· to both sides of eq. (3), and considering in a first approximation the mono-
layer as incompressible (both LE and LC phases), it gives

∇2⊥Π = 0. (4)

To first order in the gradients, eq. (4) gives ∇2⊥ρ = 0, and finally

∇2⊥µ = 0. (5)

Therefore, we have obtained that the monolayer growth is governed by Laplace’s equation, in
the steady state. Equation (5) has to be solved with two boundary conditions at the interface
given by the Gibbs-Thomson boundary condition, eq. (1), and the conservation boundary
condition:

vn =
M

∆ρ
[β(∇⊥µ)s − (∇⊥µ)l]·n, (6)

where, vn is the normal velocity to the interface, and β = M ′/M is the ratio of LC to LE
mobilities, M ′ and M , respectively; the diffusion coefficient is D =M(∂µ/∂ρ).

It is important to note that eq. (5), with the boundary conditions at the interface (eqs. (1)
and (6)), is similar to the equations used by Müller-Krumbhaar and collaborators [8–11] to
analytically build the kinetic phase diagram, if we would include in the Gibbs-Thomson equa-
tion a supersaturation parameter ∆, and a capillary length with an anisotropy parameter ε,
i.e., d = do (1 − ε cosnθ) [8–11]. Here, do is the so-called capillary length defined by do =

τ
[
(∆ρ)2(∂µ

∂ρ )
]−1

[2]. The diagram predicted by those authors has regions of different mor-
phological structures and lines indicating transitions between such morphological structures,
where the control parameters are the degree of undercooling and the strength of anisotropy in
the solid phase. They could discriminate between compact structures and fractal structures,
as well as between structures with orientational order, like dendritic structures, and structures
without apparent orientational order, as seaweed structures. Therefore, this is the underlying
reason to have dendritic and seaweed structures in monolayers: the equation governing the
monolayer is Laplace equation in the chemical potential. The transitions between morpholog-
ical structures must be related to moving the control parameters, supersaturation level and
line tension anisotropy, through the boundary lines along the morphological phase diagram.

Finally, using our model, we performed a linear stability analysis for a slightly perturbed
round domain, whose radius is given, R = Ro + δn cosnθeωt, where δn is a small deformation
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amplitude. Thus, using eqs. (5), (1) and (6), and calling to ∆ to the supersaturation far away
from the circle, that is, U(R∞) = −∆, we obtain the following dispersion relation for our
problem:

ωn = [n− 1]
vR

Ro

[
1− n(n+ 1)Ddo[β + 1]

vRR2
o

]
, (7)

where ωn denotes the growth rate of the perturbation. The right-hand side of this formula
contains two parts: a positive destabilizing term, which is proportional to the velocity and a
negative stabilizing term, which contains the surface tension. This result is in agreement with
classical dispersion relations and could explain why, in the experiments presented above, ad-
dressed to study the manner in which the circular shape becomes unstable there is a dominant
wavelength.

Conclusion. – We have showed that in monolayers, the domain growth of condensed
phases from a metastable phase presents several stages. Some unstable modes grow faster
than others and structures evolve through a tip-splitting dynamics. At high supersaturation
levels, there is a morphological transition. Domains start to grow with needle tips, which
show as growth proceeds, side branching. In addition, we showed how the instability starts
at round domains when a small lateral pressure jump is applied to the monolayer and it is
consistent with classical linear stability results for free-boundary problems. Finally, we have
presented a model for a monolayer interacting with the subphase which can be related to the
theory of dynamic phase transitions developed by Müller-Krumbhaar and collaborators [9–11],
where morphological structures and morphological transitions, from the type observed in this
work, can be obtained. In single-component monolayers diffusion of heat is not the key factor,
instead, the key factor is the area density difference between coexisting phases.
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