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Transport Coefficients of Fluid Mixtures 1 

R. Castillo, 2 M. Lop~z de Haro, 3 and E. Martina 2 

On the basis of the successful description of the equilibrium properties of simple 
fluids and fluid mixtures using perturbation theory, the consequences of 
including density- and temperature-dependent diameters in the formulas for the 
transport coefficients of dense hard-sphere fluid mixtures are investigated. The 
advantages and limitations of this approach for the correlation of the 
experimental data of real mixtures, together with numerical estimates for par- 
ticular mixtures, are discussed. On the other hand, recent mean field kinetic 
theories which include the effect of the attractive tail in the intermolecular 
potential are employed to derive transport coefficients for mixtures. Numerical 
results are presented and comparison with other theories is also made. 

KEY WORDS: kinetic theory; mixtures; numerical results; transport coef- 
ficients. 

1. I N T R O D U C T I O N  

The need for accurate values of the transport properties of working fluids 
for industrial or scientific purposes increases every day. In particular, fluid 
mixtures occur in most chemical engineering applications and it is clear 
that the acquisition of reliable data for the enormous variety of mixtures 
can never be completely achieved by direct measurement only. In these 
circumstances, a predictive method for the transport properties of 
fluid mixtures that, while being reasonably accurate, depends little on 
measurements or empirical prescriptions is a desirable goal [1 ]. 
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Explicit theoretical expressions for the transport coefficients of real 
simple or multicomponent dense fluids in terms of the intermolecular forces 
parameters have been obtained quite recently for simple models [2~4]. The 
study of these models provides the major source of insight for the 
understanding of the transport behavior of dense fluids. Among these, the 
hard-sphere model has played a prominent role in kinetic studies at liquid- 
like densities. The first kinetic theory for a dense hard-sphere fluid is due to 
Enskog [5], who generalized the Boltzmann equation to describe the hard- 
sphere dynamics in the dense regime. This theory was later extended to 
deal with binary [6] and multicomponent [7] dense hard-sphere fluid 
mixtures, but the extensions were found to be at odds with irreversible 
thermodynamics [8]. The inconsistency was resolved by van Beijeren and 
Ernst [9], who proposed what is called the revised Enskog theory (RET). 
They showed that the mutual and thermal diffusion coefficients were the 
only linear transport coefficients which had to be corrected. As van 
Beijeren has pointed out recently, the RET has other attractive features 
[10]. In addition, H theorems have been derived from this equation [11]. 
van Beijeren and Ernst did not provide explicit expressions for the linear 
transport coefficients in terms of the masses, hard-sphere diameters, and 
concentrations of the components of the mixture. In addition, in Ref. 7, 
certain effects were ignored in the derivation of the viscosities and thermal 
conductivity. This situation has motivated further work on the RET. In 
Ref. 2, explicit and correct expressions for the linear transport coefficients 
of the RET were gathered and discussed in detail, and these will serve as 
the starting point for the calculations presented in this paper. 

The main difficulty in applying the RET transport coefficient 
expressions to real fluids lies in relating the contact values of the hard- 
sphere radial distribution function (rdf) and the hard-sphere diameters 
appearing in the theory to quantities associated with the real system. One 
possible way to achieve this connection, already suggested by Enskog, is to 
associate the contact value of the rdf with the thermal pressure [5]. This 
procedure, known as the modified Enskog theory (MET), is clear-cut only 
in the one-component case. An alternative approach is based on the use of 
statistical-mechanical techniques which have become standard in the 
equilibrium theory of fluids [12]. These procedures select a state-depen- 
dent hard-sphere reference potential in relation to a full potential. Such a 
route has been followed in Ref. 3a for a one-component Lennard-Jones 
fluid and the results appear to be quantitatively superior, conceptually 
cleaner, and technically more tractable than those of the MET. Here we 
extend the calculations to Lennard-Jones binary mixtures by using a state- 
dependent diameter ai for each separate component and adopting the hard- 
sphere sum rule ~u = (cri + ~j)/2 for the diameter cr U. We present numerical 
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results for the shear and bulk viscosities and the mutual diffusion coef- 
ficient using several schemes [13, 14] to model the state-dependent hard- 
sphere diameter. 

Even if the hard-sphere model has been predominant in the study of 
linear transport coefficients of dense fluids, the attractive part of the inter- 
molecular potential might appreciably contribute to the value of these coef- 
ficients in real systems. There is so far very little theoretical work and 
almost no systematic numerical studies on this effect. 

The dense square-well fluid was investigated by Davis et al. [15] using 
an Enskog-like kinetic equation. More recently, Karkheck and Stell [16] 
have used the maximization of entropy to derive a kinetic variational 
theory (KVT) that includes the attractive part of the intermolecular poten- 
tial in a mean field term. The pressure obtained is that which comes from 
approximating the full rdf by that of a hard-sphere reference system. Thus, 
thermodynamic quantities such as the internal energy are exact through 
first order in potential tail strength [3]. The KVT has been generalized to 
mixtures in the Kac-tail limit by Karkheck et al. [3]. As is well known the 
Kac potential is infinitely weak and long-ranged and it gives exactly the 
van der Waals equation of state. They found that only the mass diffusion, 
thermal diffusion, and barodiffusion coefficients show a dependence on the 
tail, but the shear and bulk viscosities and the thermal conductivity were 
the same as those of the RET [31. Several extensions of the KVT have 
been derived recently either by extending the entropy analysis [4a] or by 
using alternative approaches [4b], but no numerical results have been 
obtained for mixtures. In this paper we carry out a numerical study of the 
mutual diffusion coefficient for binary Lennard-Jones systems in the Kac 
limit. 

The paper is organized as follows: in Section 2 the RET formulas for 
the shear and bulk viscosities and the mutual diffusion coefficient are given. 
The KVT binary diffusion coefficient for a van der Waals mixture is also 
presented. In Section 3 numerical results are presented. The effect of using 
the Barker Henderson (BH) [12], Rasaiah Stell/Mansoori-Canfield 
(RS/MC) [ 131, or Weeks-Chandler-Andersen (WCA) [ 14] prescription 
in the calculation of the transport coefficients is examined. We compare our 
results with experimental data and discuss their use as a possible 
correlation scheme. 

2. TRANSPORT COEFFICIENTS FOR A DENSE 
BINARY M I X T U R E  

In this section the formulas for the shear 0/) and bulk (~c) viscosity 
and the isothermal isobaric mutual diffusion coefficient (DI2) for a dense 
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binary mixture are given. These coefficients are defined through the usual 
expressions for the momentum (~) and isothermal isobaric mass fluxes (J1): 

O~ 0 
"c = PI - 2r/~--~ + x ~--~. ~7I (~) 

OPj 
J l  = - - D I 2  0t = (2) 

where P is the hydrostatic pressure, fi is the hydrodynamic velocity, 
pi= m~n~ is the mass density, n~ is the number density, m i is the mass of 
species 1, and the symbol + denotes the symmetric traceless part of the 
corresponding tensor. 

Explicit expressions for t/, ~c, P, and D12 using the RET have been 
presented in Ref. 2. Formulas for the same quantities were derived from the 
KVT in Ref. 3b. Both theories lead to the same viscosities but differ in the 
pressure and the mutual diffusion coefficient, due to the explicit appearance 
of the attractive tail in the latter. 

Following the notation in Ref. 2 the aforementioned quantities are 
written as 

1 1 ( ~j~'l )--~ r I =-~ ~.= 1 + -= pbg/Mj~z~j~ kB Tb(o ~ 

4 2 ~ (2~rnsmjkBT.]~/2 

-[- ~ t E l j = l  .= \ mi + mj / ninja4Zuc 

= j = l  \ mi+mj / ninja~176 

+ 2 pbo.M/i)~o.c kB Th} 0 
i = l  

(3) 

(4) 

2 L 
pRET=nkBT+ ~ ~ nikBTpbozij~ 

i=1 j=1  

2 2 
pKVT = pRET ...}_ E E n i n / a o  

i=lj=l 

(5a) 

(5b) 

P~ [-E - e '  ] D ~  x -- d(2) El2 2p2mln 2 1,o l 11 ~22 J 
(6a) 



Transport Coefficients of  Mixtures  855 

2allnl 
2p2rnln , k B T  

( 2 a 1 2 n l ' F P 1 k B T + 2 ( a l l n i + a 2 1 n = ) ] ~  (6b) 
- E12+~)L~=k~T+2(a12n,-.t-a22n2)~J 

1 , 2re 3 Mji - ms 
a i j=-~ f  drqhij(r), pbG=--~-njai j ,  

m i  + m j ' 
(7) 

, , ,  
~r~. = (ai + as)12, Eis = - -  - -  , Pi = ~ Eo 

kB T \ O n J  T,,k~j j = i 

Here ai is the hard-sphere diameter of species i, kB is the Boltzmann con- 
stant, T is the temperature, n = n l  + rt2 is the total number density, p = 
Pl q-P2 is the total mass density,/z i is the hard-sphere chemical potential of 
species i, Z,j<. is the contact value of the rdf of a hard-sphere mixture 
evaluated at the local density n, ~bb is the attractive part of the inter- 
molecular potential explicitly defined below, and b(0 i), h~ 0, and dido ~ are coef- 
ficients that appear in the Sonine polynomial expansion of the one-particle 
distribution function [-cf. Eqs. (24), (31), (33), and (37) in Ref. 2]. We con- 
sider the 10th Enskog approximation to these coefficients, which may be 
obtained from Eqs. (43), (45), and (47) in Ref. 2, setting S =  2, N =  10, and 
the expressions for the bracket integrals appearing in them given in Ref. 17. 

Since we are interested in obtaining numerical estimates of the trans- 
port properties for real mixtures through the RET Eqs. (3)-(6a), we need a 
prescription to obtain a state-dependent hard-sphere diameter in terms of 
the parameters associated with the potential chosen to model the actual 
system. Here, we chose a Lennard-Jones potential to model each com- 
ponent of the real system. This potential is 

c/i~J(r) = 48, [ ( - ~ )  t2 -- ( - ~ )  6 } (8, 

where e~ is the depth of the well and O-o~ is the minimal separation of two 
molecules such that ~LJ(o-0i ) = 0. AS mentioned before we select some of the 
well-known criteria commonly used in liquid state theory to associate an 
effective with o-~ and ~. We refer to Refs. 12-14 for a detailed discussion of 
the prescriptions and to Ref. 3a for their application in this context. 

On the other hand, we require an expression for ~ ( r )  to compute 
D KvT [Eq. (6b)]. For each component ~ is defined by 

~i ( r )  = oo, r <~ aoi 
(9) 

~ ( r )  = q~LJtr~ \ i ,  r > ffOi 
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where ~i is an infinitely repulsive potential representing the hard core and 
we have used part of the Lennard-Jones potential to mimic the tail. Notice 
that the KVT for mixtures is valid for the potential given in Eq. (9) only in 
the Kac limit. 

3. NUMERICAL RESULTS AND DISCUSSION 

We present preliminary numerical results for the transport coefficients 
discussed in Section 2. All the calculations are based on the use of the 
approximations given in Ref. 18 for the rdf Zuc and the chemical potentials 
#i. We have chosen an argon-neon mixture as a probe to test the validity 
of our method for the shear viscosity t/. Such a mixture is usually modeled 
by Lennard Jones potentials. Moreover, there exist experimental data for 
the transport properties of this system. In addition, we have also examined 
D12 for a methane-ethane mixture where, again, experimental values are 
available. Even if this system is definitely not composed of molecules 
interacting with Lennard-Jones potentials, we use this as an effective 
interaction. 

Finally, since we were not able to find experimental results on the bulk 
viscosity of mixtures, we calculated it for a one-component fluid 
representing argon. For comparison we have included the results of the 
RET, taking the hard-sphere diameter ai as ~roi. We call them RET, in con- 
trast with the results which make use of effective diameters with a given 
criterion. 

In our calculations the mixing rules 

and 

a U = (a~ + aj) /2  (10) 

a~j = k , ,~a~ (11) 

were employed. Here k is a pure number. The Lorentz-Berthelot rule 
corresponds to k = 1. A different value of k could be used to correlate 
experimental data, a common procedure in the literature [19]. 

In Fig. 1, the bulk viscosity tc of argon is shown as a function of the 
density at two temperatures. The parameters we chose are e/kB = 93.90 K 
and a0 = 3.542• [1]. At the higher temperature (dilute and moderately 
dense gas) we find a pair agreement between the RET and the experimental 
data of Hanley and Cohen [20]. This agreement is improved by using any 
of the criteria to select the effective diameter. The RS/MC scheme appears 
to be specially successful. At lower temperatures (liquid densities) the RET 
still does a good job, but quite surprisingly only the RS/MC improves the 
quantitative agreement. 
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Fig. 1. Compar ison of theoretical (solid lines) and experimental (filled circles) bulk 
viscosities as functions of mass  density for dense argon at two temperatures. Here n* = 
n I a~ + n2a 3 and p is the mass  density. The RS, WCA, and BH theoretical curves reflect 
state-dependent diameters based upon the Lennard-Jones  parameters ~/kB=93.9 K 
and a0 = 3.542/~. 

Figure 2 shows the shear viscosity t/ of an equimolar argon-neon 
mixture at one temperature. The parameters employed for the neon are 
e / k B = 3 2 . S K  and a o = 2 . 8 2 / k  [1].  The RET is close to experiment but 
underestimates t / a t  lower densities compared with the data of Kestin et al. 
[21]. We find that as in the case of a one-component  fluid [3b] ,  no 
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Fig. 2. Comparison of theoretical and experimental shear viscosities as 
functions of mass density p for an equimolar neon-argon mixture at T= 298 K. 
The Lennard-Jones parameters for this system are e/kB = 32.8 K and ao = 
2.820 ~, for Ne and e/kB = 93.9 K and Go = 3.542/~ for Ar. 

cri terion for the effective diameter  is to be prefered at all densities. At low 
densities the RS/MC seems to yield too high values, while the other criteria 
get closer to the data. At higher densities no  definitive s tatement  can be 
made due to the lack of experimental  points. 

In  Fig. 3 the mutua l  diffusion coefficient D12 of a me thane -e thane  
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Fig. 3. Comparison of theoretical and experimental mutual diffusion coefficients 
as functions of mass density p for an equimolar methane-ethane mixture at 
T = 3 1 3 K .  The label RET+ta i l  denotes the KVT results. The effect of the 
attractive tail is shown for two values of the parameter k entering into the 
modified Lorentz-Berthelot mixing rule. The Lennard-Jones parameters used in 
the calculation are e/kB= 148.6 K and ,r 0 = 3.758 ,~ for Me and e/kB=215.7 K 
and a 0 = 4.443/~ for Et. 
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mixture is shown. The parameters used are e/kB = 148.6 K and ao = 3.758 
for methane and e/kB =215.7 K and a0=41443 ~ for ethane [1]. For this 
mixture the RET is definitely too far below the experimental values. The 
effective diameter prescriptions improve the situation very little, with the 
RS/MC being the best one. This is not very surprising since one expects 
that D12 would depend strongly on the attractive tail. That this might be 
the case is suggested by our calculations with the KVT [Eq. (6b)]. We find 
that the inclusion of the tail substantially increases the theoretical values of 
D12. With the Lorentz-Berthelot rule, the values obtained overestimate it 
with respect to the experimental data [1, 22]. If the value of k is lowered, 
the theoretical results come dramatically closer to the experimental ones. 
There is no a priori rule to set a k in Eq. (13). A change of as much as 25% 
in O12 may take place when k is varied 2% at intermediate densities. 
Without any basic theoretical insight about the nature of the modified 
mixing rule, we can say only that this point deserves further investigation. 

In summary, these results, although preliminary, are encouraging and 
show that the procedure we have followed requires very little input while 
still yielding reasonably accurate predictions. Therefore, it might be worth 
considering as a real correlation scheme. A detailed comparison of this 
method with other correlation schemes, such as those of Ely and Hanley 
[23] and Najafietal. [24], for real mixtures is presently under way. 
Extensions and refinements of the theory are also being considered. 
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